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Abstract: Differential privacy (DP) defines privacy protection by promising quantified indistinguisha-
bility between individuals who consent to share their privacy-sensitive information and those who
do not. DP aims to deliver this promise by including well-crafted elements of random noise in the
published data, and thus there is an inherent tradeoff between the degree of privacy protection and
the ability to utilize the protected data. Currently, several open-source tools have been proposed
for DP provision. To the best of our knowledge, there is no comprehensive study for comparing
these open-source tools with respect to their ability to balance DP’s inherent tradeoff as well as the
use of system resources. This work proposes an open-source evaluation framework for privacy
protection solutions and offers evaluation for OpenDP Smartnoise, Google DP, PyTorch Opacus,
Tensorflow Privacy, and Diffprivlib. In addition to studying their ability to balance the above tradeoff,
we consider discrete and continuous attributes by quantifying their performance under different
data sizes. Our results reveal several patterns that developers should have in mind when selecting
tools under different application needs and criteria. This evaluation survey can be the basis for an
improved selection of open-source DP tools and quicker adaptation of DP.

Keywords: differential privacy; open-source tools; evaluation

1. Introduction

Privacy relates to one’s ability to decide on the manner, context, and timing that
one’s personal information is managed by others. Data privacy protection is important
for guaranteeing human dignity, safety, and self-determination as well as for guarding
proprietary rights and economic interests. Despite the extensive academic research and
legal recognition that data privacy protection has received, e.g., General Data Protection
Regulation (GDPR) [1], Health Insurance Portability and Accountability Act (HIPAA) [2],
and California Consumer Privacy Act (CCPA) [3], the practice often does not use quantified
methods for protecting data privacy. Differential privacy (DP) is a prominent proposal
for quantifying privacy protection. It promises quantified indistinguishability between
individuals who consent to share their privacy-sensitive information and those who do
not. DP aims at delivering this promise by including well-crafted elements of random
noise in the published data, and thus there is an inherent tradeoff between the degree of
privacy protection and the ability to utilize the protected data. Recently, several open-
source tools have been proposed for DP provision. To the best of our knowledge, there
is no comprehensive study for comparing these open-source tools with respect to their
ability to balance DP’s inherent tradeoffs as well as the use of system resources. This
work proposes an open-source evaluation framework for DP tools and services. Using
this framework, we offer evaluation results for OpenDP Smartnoise, Google DP, PyTorch
Opacus, Tensorflow Privacy, and Diffprivlib. We consider both discrete and continuous
attributes by quantifying their performance under different data sizes. Our results reveal
several patterns that users should have in mind when selecting DP tools.
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Concretely, in this paper, we evaluate open-source differential privacy (DP) tools
and services for protecting privacy-sensitive information in data systems. We develop a
comprehensive evaluation framework and provide insights into the performance of these
tools for various data analysis tasks. Our work facilitates the selection of DP tools by
developers and aims to bridge the gap between theoretical and applied research on DP. In
the rest of this section, we articulate the definition of differential privacy (Section 1.1). Next,
we review the related open-source tools (Section 1.2) before delving into our evaluation
approach (Section 1.3). We then proceed to stating the specific way in which we advance
the state of the art (Section 1.4).

1.1. Differential Privacy

Dwork proposed differential privacy (DP) [4] as a means for guaranteeing that all
individuals will be exposed to essentially the same risk of jeopardizing their privacy. This is
completed by quantifying the probability of his or her privacy-sensitive information being
included in a DP analysis. That is, the analysis ensures that privacy-sensative information
cannot be effectively revealed, regardless of the adversary’s computational power or access
to any additional information that may exist, or will ever exist.

The ε-DP definition is one of the formulations of DP, where ε is the key parameter.
Specifically, ε quantifies the privacy loss or the amount of noise added to the compu-
tation to achieve privacy guarantees. A smaller value of ε indicates a stronger privacy
guarantee. We describe the definition of ε-DP protection, which considers a probabilis-
tic program (or mechanism) M; see [5] for details. The program M is said to provide
ε-DP protection for all events S, S ⊆ range(M), given two datasets D and D′, such that
Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ, where range(M) denotes the output range with a
given input, and Pr[ ] denotes probability distribution and δ ≥ 0 is a predefined constant
that quantifies the probability of an additional privacy breach beyond the specified privacy
guarantee. The parameter ε refers to the privacy budget, which controls the level of privacy
guarantee achieved by mechanism M. In other words, DP guarantees that the addition or
removal of information related to a single individual in a dataset essentially does not affect
the result of any analysis or query and limits the risk of privacy disclosing associated with
providing or refraining from providing (privacy-sensitive) information to a dataset.

1.2. A Brief Review of Open-Source Tools with DP Services

We briefly review the most relevant open-source DP services. In this work, the
term statistical queries refers to the analysis of data to extract statistical features, e.g., the
operation of SUM, AVERAGE, COUNT, and HISTOGRAM.

1.2.1. OpenDP Smartnoise

OpenDP Smartnoise [6] has its roots in Harvard University Privacy Tools Project.
This project gained experience in building and deploying PSI [7], a system developed to
share and explore privacy-sensitive datasets with privacy protections of DP, and ultimately
contributed to their efforts toward Smartnoise. OpenDP Smartnoise has also incorporated
insights from other DP tools, such as PinQ [8], εktelo [9], PrivateSQL [10], Fuzz [11], and
LightDP [12]. While most of the tools like PSI and PinQ are research prototypes, OpenDP
Smartnoise is now putting efforts into further developing DP concepts into production-
ready tools. With those features, OpenDP Smartnoise has obtained significant popularity
from the developer community, with more than two hundred stars in its open-source
software repository.

1.2.2. Google DP

Google released an open-source version of its DP library that empowers some of
its core products [13]. Available in Java and Go, this library captures years of Google’s
developer experience and offers practitioners and organizations potential benefits from its
implementation, with a fairly low entrance level of expertise in DP.
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1.2.3. Opacus

PyTorch Opacus [14] is Facebook’s DP library for machine learning (ML) services,
built on top of PyTorch. It is developed in collaboration with Facebook AI Research,
the PyTorch team, and OpenMined, an open-source community dedicated to developing
privacy techniques for ML and AI. The service from Opacus targets both ML practitioners
and professional DP researchers with its general and specific features.

1.2.4. Tensorflow Privacy

TensorFlow Privacy [15] (TFP) is an ML framework developed and released by Google,
initially inspired by the work of Abadi et al. [16], who implemented a similar optimizer
for TensorFlow and a privacy cost tracker. It emerges and adapts DP mechanisms to
TensorFlow to allow users to leverage differential privacy in the training of ML models.
Furthermore, TFP is configurable, and developers can define their own ML models, with
which developers can implement their operators in their applications. With its flexibility
and DP services, TFP has become an open DP tool that is leveraged and contributed to by a
large developer community.

1.2.5. Diffprivlib

Developed by the industrial giant IBM, Diffprivlib [17] empowers differential privacy
in machine learning tasks, including classification, regression, clustering, dimensionality
reduction, and data regularization. It is supposed to be a general-purpose tool for conduct-
ing experiments, investigations, and application developments with differential privacy.
With its detailed product manual (https://diffprivlib.readthedocs.io/en/latest/, accessed
on 30 May 2023), practitioners of different levels can easily find what they need during
their interaction with Diffprivlib. As a result, Diffprivlib’s open repository [18] has gained
considerable attention amongst developers.

1.2.6. Chorus

Chorus [19,20] utilizes a cooperative architecture to achieve DP statistical queries.
It leverages industrial-grade database management systems (DBMS) for data processing
tasks and even queries that need to be modified or, in some cases, entirely rewritten.
This architecture has three primary components, namely rewriting, analysis, and post-
processing. The rewriting component is used to modify queries to perform functions like
clipping, the analysis component to analyze queries to determine different properties such
as required noise to satisfy differential privacy, and the post-processing component to
process the result of the queries. An example from Chorus is the implementation of a
summation mechanism with clipping. The rewriting component can modify the original
query so that the DBMS executes the clipping and the summation, leaving the rest of the
summation mechanism to the analysis and the post-processing component.

What separates Chorus from previous work is that it is DBMS-independent. Unlike
an integrated approach, Chorus does not require modifying or affecting the database or
changing to a purpose-built database engine. Therefore, Chorus can leverage DMBS to
ensure scalability when working on datasets that hold large amounts of data.

Added safeguards can be necessary when deploying Chorus to minimize the chance of
a malicious actor acquiring sensitive data. For example, in the case of Chorus’ deployment
on Uber, privacy-sensitive data were only available through a centralized query interface,
which was protected along with the privacy budget account and the DMBS from tampering.

While the early repository of Chorus archived by Uber is deprecated (https://github.
com/uber-archive/sql-differential-privacy, accessed on 30 May 2023), a new version
emerged that is maintained and active among the open-source community (https://github.
com/uvm-plaid/chorus, accessed on 30 May 2023). The new repository of Chorus has not
gained much attention since its relatively recent release. Nevertheless, Chorus showed
strength in its early version, and, thus, more concrete results and popularity among devel-

https://diffprivlib.readthedocs.io/en/latest/
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opers can be expected for its current version. In this work, we focus on the evaluation of
DP tools that have already gained significant popularity; see Section 1.3.

1.3. Evaluation Approach

Several open-source tools are available for applying DP in statistical queries [21]
and machine learning [17]. In this paper, we refer to statistical queries as the retrieval
of features and aggregated information from datasets, e.g., SUM, COUNT, and AVERAGE. In
machine learning tasks, models are constructed using training data from a given dataset.
For example, linear regression is an effective linear modeling approach as it captures the
relationship between a scalar response and one or more explanatory variables. Those two
kinds of tasks, i.e., statistical query or machine learning, are prevailing tools for application
development, and, thus, we select them to serve as evaluation test cases. Our evaluation
strategy is summarized in Table 1.

Table 1. Evaluation strategies in this work.

Machine Learning Domain Statistical Query Domain

Environment • Docker

Task to evaluate • Regression

• Sum
• Count
• Average
• Histogram

Influencing factors
• Dataset size
• Privacy budget, ε

Evaluation
criterion

Utility

Prediction accuracy
reduction compared
with non-private
machine learning.

Decreased query
accuracy due to
privacy measures.

Overhead

Extra resource consumption induced by differential
privacy, including
• Execution time
•Memory consumption

Database to evaluate on
• US health reform monitoring survey data
• UCI Parkinson dataset

Our choice regarding the studied DP tools was based on the support that each of
these tools received from comparably larger communities, technology companies, and
research institutions as well as their wide acceptance in the open-source community. We
also required a sufficiently long history of being free from known bugs or fixable bugs [22],
as well as developer-friendly documentation. Our evaluation criteria for the studied DP
tools focus on data utility and system overhead, i.e., running time and required memory.
The considered tools are evaluated within two task domains, i.e., statistical query and
machine learning. Since tools of different categories follow different evaluating procedures,
we analyze the evaluation results within every single domain. During the evaluation, we
adopt a diversity of settings to investigate how different tools’ performances vary under
different conditions.

We use the open-source data of United States Health Reform Monitoring Survey [23]
and the UCI Parkinson dataset [24] for experiments in statistical queries and machine learn-
ing. We carefully selected these datasets since they fulfill two criteria: alignment with the
functionalities of the investigated tools and diversified data settings. Our chosen datasets
cover both statistical analysis and machine learning tasks supported by the considered
tools. For example, the Health Survey dataset includes categorical integer data, while the
other involves continuous data, ensuring a comprehensive evaluation across different data
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types. This deliberate diversity offers valuable insights into how the tools perform with
varied data.

1.3.1. The United States Health Reform Monitoring Survey Data

The Massachusetts Health Reform Survey (MHRS) is an annual telephone survey con-
ducted to track the impacts of Massachusetts’ comprehensive healthcare reform bill, which
aimed to achieve near universal coverage in the state. The survey was initiated in 2006, just
before the implementation of key elements of the law, and has been conducted in various
years since then, including 2006–2010, 2012, 2013, 2015, and 2018. The survey sample con-
sists of a random selection of working-age adults in Massachusetts each year. The dataset
size varies by year, with sample sizes ranging from approximately 2000 to 4000 non-elderly
adults. The survey covers various aspects related to healthcare, including insurance status,
access to and utilization of healthcare services, out-of-pocket costs, medical debt, insurance
premiums, covered services, and health and disability status. The survey questions are pri-
marily drawn from established and validated surveys, with some modifications to address
specific concerns in Massachusetts. Over time, questions have been added or removed to
address emerging issues and maintain a reasonable survey length.

1.3.2. The UCI Parkinson Dataset

This dataset is focused on tracking the progression of Parkinson’s disease (PD) symp-
toms using speech tests. It introduces a method for remote assessment of the unified
Parkinson’s disease rating scale (UPDRS) through self-administered speech tests, providing
clinically useful accuracy. The dataset is consdired to be the largest PD speech database in
existence, consisting of approximately 6000 recordings from 42 PD patients who partici-
pated in a six-month multicenter trial. The dataset contains speech recordings obtained
from PD patients. The recordings include sustained vowel phonations, where the patients
are asked to hold the frequency of phonation steady for as long as possible. The recorded
voice signals are analyzed using signal processing algorithms to extract clinically useful
features that reflect the progression of PD symptoms. The dataset also includes corre-
sponding UPDRS scores, which serve as the metric to assess the presence and severity of
symptoms. The dataset’s main purpose is to demonstrate the feasibility of frequent, remote,
and accurate UPDRS tracking using speech tests. By mapping the extracted speech features
to UPDRS scores through regression techniques, the study aims to provide objective tools
for assessing PD and enable telemonitoring frameworks for large-scale clinical trials of
novel PD treatments.

1.4. Our Contribution

We study a critical aspect of data systems, which is the protection of privacy-sensitive
information. Our study evaluates open-source differential privacy (DP) tools and services.
The area of privacy protection has a well-recorded history of failed solutions. DP is a
leading framework that offers qualitative guarantees for the protection of privacy-sensitive
information. The implementation of tools for providing DP solutions has its own set of traps
and pitfalls since it is a non-trivial effort to ensure that all cryptographic and system aspects
are well-addressed. A successful approach for addressing this challenge is to focus on
open-source solutions because they can be scrutinized by a large community of developers.
To the best of our knowledge, we are the first to offer a comprehensive study that compares
the performance of these tools from the application utilization and system perspectives.

Through this work, we develop an evaluation framework to compare privacy-preserving
tools to obtain a nuanced picture of the tradeoffs in data analysis where the tools are used. The
framework is implemented on Docker [25], which is compatible with the dominant operating
systems of Windows, Linux, and iOS and thus offers flexibility to programmers in terms of
software reuse purposes. The designed framework uses the proposed evaluation criteria to
quantify an analysis’ utility loss and system overhead compared to a non-private benchmark.
Using the devised framework, we evaluate the most relevant open-source tools and compare
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their performance on DP data analysis. Through the evaluation results, we provide insights
into the studied DP tools. Our study can facilitate the selection of DP tools by developers
according to their needs and use cases.

• For developers looking at accumulating general statistics about categorical or continu-
ous datasets, Google DP seems promising, with a margin of error from about 0.1% to
2% for simple queries (SUM, COUNT, AVG) with ε ' 1.5. Given the same set of queries
and ε values, Smartnoise provides an error of about 0.5% to 5%. We also note that
Smartnoise offers better accuracy for HISTOGRAM queries, with an error below ca. 10%
compared to Google DP’s about 15%, on Health Survey.

• For developers looking at building DP machine learning models, both Opacus and
Tensorflow Privacy (TFP) show promising results, obtaining data utility below around
6% error for ε ≥ 1.0 on Parkinson and Health Survey. Nevertheless, TFP manages to
obtain around two times better data utility than Opacus given maximum data size and
ε = 3.0. Diffprivlib, on the other hand, outperforms both tools on Health Survey given
maximum data size and ε = 3.0. It should, however, be noted that Diffprivlib did
not manage to generate any useful results on continuous data and is also limited to
linear regression and logistic regression models, while TFP and Opacus offer building
custom neural networks, allowing developers to build complex models for a variety
of problems.

For the sake of supporting the scientific process in the area and further develop-
ment, we release our work as open-source software (https://github.com/anthager/dp-
evaluation, accessed on 30 May 2023). This enables the reuse of our work in further evalua-
tion of the considered tools and beyond. We hope that this work can provide a landscape
of the pros and cons of the existing open-source privacy tools and intuitive knowledge to
practitioners on how to leverage them in their privacy protection service development, and
ultimately narrow the gap between theoretical and applied research on DP.

1.5. Document Structure

We provide an overview of the evaluation settings in Section 2, where we present the
proposed evaluation criteria, framework, and implementation. In that section, we explain
the details of our evaluation methodology, including the specific criteria we use to assess
the performance of our approach, the framework we have designed for conducting the
evaluation, and the implementation details of our experimental setup. Moving forward, we
present the evaluation results in Section 3, where we analyze and discuss the outcomes of
our experiments. There, we provide a comprehensive presentation of the results obtained
from applying our methodology. We review the related literature and compare it to our
study in Section 4. Finally, in Section 5, we draw insightful conclusions and engage in
discussions. We reflect on the conclusions derived from our findings and address the
limitations of our proposed evaluation framework. Additionally, we outline potential
future directions to further improve and expand upon our research.

2. Evaluation Settings

We describe our evaluation plan by explaining our criteria (Section 2.1) as well as pro-
pose our evaluation framework in Section 2.2 and present our experiment implementation
in Section 2.3.

2.1. Evaluation Criterion

Information on individual data might be disclosed from data analyses. However,
tools that mitigate this disclosure by leveraging differential privacy might ultimately cost
analysis accuracy and increase the use of system resources [26,27]. Therefore, our focus is
to study the difference between the DP and non-privacy-protected (NP) results that these
tools produce and how this difference varies between different tools.

We adopt data utility (also referred to as accuracy) and system overhead as evaluating
metrics for the considered tools. Utility refers to whether the data are still useful to conduct

https://github.com/anthager/dp-evaluation
https://github.com/anthager/dp-evaluation
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a specific functionality after the data are perturbed with DP measures, i.e., how much, for a
given ε, an outcome deviates from the actual quantity it attempts to estimate, e.g., what
degree of accuracy reduction occurs when querying on the perturbed dataset compared
with the original dataset. We define the system’s overhead as the additional time and
memory it takes to complete a DP query or train a DP-ML model versus the non-privacy-
protected (NP) query or ML model. Overhead is further divided into two metrics: memory
overhead and runtime overhead, which will be detailed below.

The metrics of utility and overhead illustrate what deviations can be expected from
the DP results of the tools and allow for comparison amongst tools’ performances. The
criterion utility is quantified by the deviation of the prediction error over several runs of the
same experiment using the Root Mean Square Percentage Error (RMSPE). This is essentially
the percentile difference between the DP and NP results shown in Equation (1), where N is
the number of experiment runs, NP is the NP benchmark result, and DP is the DP result.

RMPSE =

√
N
∑

n=1

(
NP − DP

NP

)2

N (1)

Memory overhead is measured by comparing the worst-case memory usage between
DP and NP query/ML tasks to guarantee minimum system requirements for the tools;
i.e., the measurement shows the percentile difference between the worst-case memory
usage of DP vs. NP query/ML results. Specifically, memory usage is recorded when the
tools conduct DP and NP query/ML tasks. This criterion of memory overhead is considered
in this evaluation since it can be noticed by users who care about the usability of the privacy
tools; e.g., lower memory usage ultimately improves speed due to less paging, fewer cache
misses, and faster structure traversals, and it also improves stability by reducing virtual and
physical out-of-memory aborts. Moreover, for specific tools that use an external database,
including Smartnoise and Google DP, the memory usage of the database container is also
recorded. This recording will show how the tools affect the memory usage during load on
the database since we are running queries on a high frequency during this process.

Runtime overhead is measured by comparing the time passed before and after entering
the critical section, i.e., the part where the tool conducts an ML task or runs a query.
To minimize external impact and obtain reliable and comparable results throughout the
experiments, we aim to eliminate operations like initialization or saving results to the
highest extent. Similar to the memory usage, we obtain the difference between the time
passed before and after, comparing the DP and NP time usage. However, instead of
comparing the maximum runtime, we average the results by applying RMSPE, shown in
Equation (1).

2.2. Evaluating Framework

We construct our evaluating framework in pursuit of insights into the impact of DP
tools’ privacy measures on accuracy and system resource usage. To this end, we measure
the difference between DP and NP results regarding our evaluation metrics: data utility and
system overhead. In addition, we vary two parameters that affect these metrics, the dataset
size (Table 2) and privacy budget (Table 3), which is denoted by ε, to further illuminate the
privacy–utility tradeoff induced by differential privacy measures.

Table 2. List of dataset sizes for each dataset.

Dataset Sizes

Health Survey size ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 9358}
Parkinson size ∈ {1000, 2000, 3000, 4000, 5000, 5499}
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Table 3. The privacy budget, ε, values.

ε Values

ε ∈ {0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0}

We study the impact of ε and dataset size since they are the parameters that trade
between privacy protection and data utility. We illuminate this tradeoff to provide develop-
ers or DP service practitioners, e.g., healthcare institutions and companies, with practical
results to make educated choices when applying these tools. The set of sizes for considered
datasets where the evaluation experiments are conducted is listed below.

Our selection of ε values in the evaluation takes into consideration recommenda-
tions both from research works and practical settings in the industry. While analytical
research has evaluated DP algorithms using a privacy budget ranging from 0.01 to 7, prac-
titioners prefer a narrow scale. Microsoft, in collaboration with OpenDP, explains in their
product Azure that privacy budgets are typically set between 1 and 3 to limit the risk of
re-identification (https://docs.microsoft.com/en-us/azure/machine-learning/concept-
differential-privacy#differential-privacy-metrics, accessed on 30 May 2023). They state that
ε values below 1 provide full plausible deniability and that values above 1 come with a
higher risk of disclosing the actual data.

In order to cover a wide range of privacy–utility tradeoff results, we use the practice
of ε as guidelines for selecting a set of ε in our evaluation experiments. The set of ε values
considered is listed in Table 3.

Since different DP tools function and conduct computation with different techniques,
we group the tools by the service that they offer into two domains, statistical queries and ma-
chine learning. This categorization allows for a reasonable comparison of tool performance
within each group of tools.

For the evaluation of statistical query tools, we select a set of queries to conduct on
each column in the dataset, as listed in Table 4. Note that the HISTOGRAM queries are only
conducted on columns composed of categorical values since the statistics of the categorical
values can be sorted into buckets. For machine learning tools, we carry out linear regression
tasks since regression is the only service that all the considered ML tools have in common.

Table 4. List of queries.

QUERIES

Queries qs ∈ {SUM, AVG, COUNT, HISTOGRAM}

To clarify how we conduct our experiments for the different tools, we present a high-
level diagram shown in Figure 1 illustrating how data flow through the different tools and
generate results.

2.3. Experiment Implementation

We aim to enable the reuse of our framework to the full extent and allow users to de-
velop and test our code in any environment without installing and handling dependencies
locally. Therefore, we build a collective framework for all the tools, focusing on usability
and portability.

To make sure that our code works across different environments, we develop the eval-
uation framework on Docker [25], which packages each tool package and its dependencies
in a virtual container. Docker also eases the memory usage measurements by exposing a
RESTful API running on the host system through a UNIX socket, from which metrics such
as memory usage can be fetched.

https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy#differential-privacy-metrics
https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy#differential-privacy-metrics
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Figure 1. A high-level overview of the experiment flow, showing (1) DP queries and non-privacy-
protected (NP) queries being conducted on Postgres and (2) ML tasks conducted for DP models and
non-privacy-protected models.

Each tool evaluated is packaged in its own Docker image together with all the packages
the tool depends on, along with the framework code. This implementation empowers
evaluations using the framework to run on any Linux, Windows, or macOS computer. The
complete evaluation, therefore, only requires Docker version 20.10.6 or higher.

To visualize how the framework is constructed, we present a diagram in Figure 2.
It shows the dataflow in the framework as follows: (1) data and metadata (with the
experiment- and hyperparameters) are loaded in Context class, which is (2) initialized in
Tester script for the respective tool. (3) Tester makes use of various utils from a collective
package DPEvaluation. (4) The results are saved after running Tester, whose outcomes are
collected by (5) Plot Builder with Aggregator, both of which are parts of the collective
utils package.

Figure 2. High-level overview of experiment implementation, showing how data flow in the evalua-
tion framework.

3. Evaluation Results

This section presents the results of our evaluation, where we show to what level
prevailing functionality is affected by the use of differential privacy (DP). The results of
statistical queries appear in Section 3.1 and machine learning results appear in Section 3.2.
We summarize the results in Section 3.3, where we search for emerging patterns that are
related to the tools’ performance.
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3.1. Statistical Tools Assessment

This section evaluates two tools with statistical query services, namely Google Differ-
ential Privacy (Google DP) and OpenDP Smartnoise, using the two considered databases
as shown in Table 2. The evaluation varies the privacy budget ε and data size during the
experiments and looks into how the query results of SUM, AVERAGE, COUNT, and HISTOGRAM
change when the DP mechanism is integrated. In the evaluation, each query runs twenty
times, of which two extreme results are removed, and the remaining eighteen are averaged
for analysis.

Generally, the results reflect the trend that utility increases given larger ε values and
data sizes for both tools, yet no obverse connections among memory overhead, ε values,
and data sizes can be observed. There also exists an opposite impact of data size on the
runtime overhead for the two tools that, while larger data size results in an increase in run
time for Smartnoise, it acts conversely for Google DP, although significant irregularities
exist. In comparing the two query tools, we observe that Google DP offers better query
accuracy than Smartnoise in all query types except HISTOGRAM and that Google DP accrues
significantly less runtime than Smartnoise when comparing their DP queries against the
benchmark. The overall results indicate an advantage of Google DP on Smartnoise under
limited conditions. We detail the quantified evaluation results as follows.

3.1.1. Data Utility

The evaluation in this part studies the differential privacy (DP) query tools’ impact on
utility by comparing how DP query results differ from non-privacy-protected ones using
different settings. We anticipate that a higher privacy budget, ε, and a larger data size
will provide better utility since less noise is injected under such conditions. However, as
detailed below, although the experimental results match our anticipation, we notice local
irregularities, e.g., in the case of HISTOGRAM queries.

Figure 3 shows contour plots for each tool’s performance regarding different ε values
and data sizes. Darker shades of blue in the plots indicate a lower RMSPE, corresponding
to higher utility. Conversely, lighter shades indicate a larger RMSPE, corresponding to
lower utility. Note that the plots have different RMSPE scales, implying that a shade in one
plot (which indicates an RMSPE value) does not necessarily correspond to the same shade
in another plot.

The contour plots demonstrate that, for simple queries of COUNT, SUM, and AVG, Google
DP bears RMSPE between 0.1% and 20%, indicating 0.1–20% worse than the benchmark,
while Smartnoise performs between 0.2% and 350% over the considered parameter ranges
of ε and data size. However, Smartnoise performs better than Google DP on the HISTOGRAM
queries with RMSPE between 0.5% and 60%, compared to Google DP’s between 0.2% and
250%. Such results imply Google DP’s advantage over simple query types while the reverse
in the HISTOGRAM query. We also observe that HISTOGRAM queries generally have a more
significant impact on data utility than other types of queries for Google DP and Smartnoise.
A possible reason might be that HISTOGRAM queries expose more information about the
dataset properties; as a result, more noise is injected into the HISTOGRAM results to guarantee
the privacy of individuals, which in turn reduces data utility.

Moreover, the results show that HISTOGRAM queries obtain better results on Parkinson
than on Health Survey for both tools, which is expected since the categorical columns in
Parkinson have fewer bins than Health Survey data, thus exposing less information about
Parkinson data properties. Consequently, less noise is injected into the results on Parkinson
data in pursuing individuals’ privacy, and higher query accuracy is obtained.

Figure 4 shows more details on the results that higher ε values decrease the RMSPE (see
the definition in Section 2.1), implying that higher utility of DP queries is obtained where
higher ε values improve accuracy for all queries of SUM, AVERAGE, COUNT, and HISTOGRAM for
both of our two considered datasets. This observation is quite explicit, especially for results
on Parkinson. As anticipated, the relationship that data utility grows with the increase in
data size can also be observed. Generally, the results on Parkinson are more consistent with
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our anticipation, while those for HISTOGRAM queries on Health Survey data show marginal
levels of fluctuation.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3. Contour plots for the evaluation of statistical query tools on utility when DP is integrated
for different data sizes (Table 2), ε values (Table 3), and queries (Table 4). RMSPE is defined in
Section 2.1. The sub-plots (a–d) present the results by Google DP on Health Survey for the query SUM,
COUNT, AVERAGE, and HISTOGRAM, respectively. The sub-plots (e–h) present the results by Smartnoise
on Health Survey for the query SUM, COUNT, AVERAGE, and HISTOGRAM, respectively. The sub-plots (i–l)
present the results by Google DP on Parkinson for the query SUM, COUNT, AVERAGE, and HISTOGRAM,
respectively. The sub-plots (m–p) present the results by Smartnoise on Parkinson for the query SUM,
COUNT, AVERAGE, and HISTOGRAM, respectively.

We observed a consistent trend across Figures 3 and 4, where lower epsilon values
resulted in a more pronounced degradation of utility. This aligns with our expectations as
smaller epsilon values correspond to tighter privacy budgets, necessitating more substantial
noise addition during data analysis. Consequently, the utility of the dataset experiences a
significant reduction when epsilon values are small due to the above inherent property of
DP-based systems.
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3.1.2. Runtime Overhead

In this section, we illustrate how the runtime differs between conducting differential
private (DP) queries and non-private ones by testing the tools of Google Differential Privacy
and Smartnoise. Note that we vary the settings of ε and data size to gain evaluating results
under different conditions.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4. The evaluation results of statistical query tools on utility for different data sizes (Table 2), ε

values (Table 3), and queries (Table 4). RMSPE is defined in Section 2.1. The sub-plots (a–d) present
the results by Google DP on Health Survey with data size of 7000, 8000, 9000, and 9358, respectively.
sub-plots (e–h) present the results by Smartnoise on Health Survey with data size of 7000, 8000, 9000,
and 9358, respectively. The sub-plots (i–l) present the results by Google DP on Parkinson with data
size of 3000, 4000, 5000, and 5499, respectively. The sub-plots (m–p) present the results by Smartnoise
on Parkinson with data size of 3000, 4000, 5000, and 5499, respectively.

For this evaluation, we anticipate that the runtime overhead might increase when DP
is integrated since DP requires additional computations to conduct the query. Intuitively,
the runtime for DP queries is also expected to grow with an increase in data size since more
information will be processed. The results, as detailed below, demonstrate that Google DP
poses less runtime than Smartnoise, while how the two tools are impacted by DP differs;
i.e., Smartnoise experiences an increase when data size rises, while Google DP reacts in the
opposite manner. Beyond that, we observe apparent fluctuations in the results and no clear
relationship between ε and runtime.
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In Figure 5, we provide contour plots for each tool’s runtime overhead regarding
ε and data size. The plots show that large data sizes generally increase the runtime for
Smartnoise, i.e., between 400% and 500% RMSPE for the smallest data sizes and about
450% to 550% for the largest. In contrast, the Google DP performance does not follow our
anticipation, with RMPSE between 110% and 150% for the smallest data size and 100% to
130% for the largest. Overall, Google DP outperforms Smartnoise, which runs around 400%
to 500% slower when conducting DP queries compared to Google DP, which runs around
100% slower. A possible reason is that Google DP performs more efficient DP calculations
using a plugin inside the database compiled to native code (Section 1.2.2). Therefore, the
runtime might improve since no additional layer operates between the database and the
analyst that conducts the queries. In comparison, Smartnoise implements pre-processing
of queries before communicating with the database (Section 1.2.1), which might negatively
impact the runtime.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. Contour plots for the evaluation of statistical query tools on runtime overhead for different
data sizes (Table 2), ε values (Table 3), and queries (Table 4). RMSPE is defined in Section 2.1. The
sub-plots (a–d) present the results by Google DP on Health Survey for the query SUM, COUNT, AVERAGE,
and HISTOGRAM, respectively. sub-plots (e–h) present the results by Smartnoise on Health Survey for
the query SUM, COUNT, AVERAGE, and HISTOGRAM, respectively. The sub-plots (i–l) present the results
by Google DP on Parkinson for the query SUM, COUNT, AVERAGE, and HISTOGRAM, respectively. The
sub-plots (m–p) present the results by Smartnoise on Parkinson for the query SUM, COUNT, AVERAGE,
and HISTOGRAM, respectively.
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Figure 6 shows how ε impacts query accuracy for both Google DP and Smartnoise
for both datasets. It reveals that higher ε values do not necessarily decrease or increase
the RMSPE, indicating that ε values do not generally impact the runtime of DP queries.
Although slight local fluctuations exist, this observation is quite explicit and holds for both
tools and datasets, especially obvious for Google DP on Health Survey.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6. The evaluation results of statistical query tools on runtime overhead when DP is integrated
for different data sizes (Table 2), ε values (Table 3), and queries (Table 4). RMSPE is defined in
Section 2.1. The sub-plots (a–d) present the results by Google DP on Health Survey with data size of
7000, 8000, 9000, and 9358, respectively. sub-plots (e–h) present the results by Smartnoise on Health
Survey with data size of 7000, 8000, 9000, and 9358, respectively. The sub-plots (i–l) present the results
by Google DP on Parkinson with data size of 3000, 4000, 5000, and 5499, respectively. The sub-plots
(m–p) present the results by Smartnoise on Parkinson with data size of 3000, 4000, 5000, and 5499,
respectively.

3.1.3. Memory Overhead

This section investigates how DP impacts memory usage when running statistical
queries on Google DP and Smartnoise. We use various ε and data sizes to see how the
results differ under different settings. To gain a nuanced result, we measure the memory
usage in both the container of the Postgres database where noise is added and processed
data are stored and the container that processes the issued private or non-private queries
to the database.
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The memory overhead is measured by comparing the worst-case memory usage
between DP and NP query or ML tasks to guarantee minimum system requirements for
the tools; i.e., the measurement shows the percentile difference between the worst-case
memory usage of DP vs NP query or DP-ML vs NP-ML tasks, denoted as δ. Memory
usage is recorded during the time that the tools conduct DP and NP query or ML tasks.
This is measured by retrieving a stream of the memory usage of the Docker containers
that run the evaluation process in our evaluation. This criterion of memory overhead is
considered in this evaluation since it might affect the usability of the privacy tools; e.g.,
lower memory usage ultimately improves speed due to less paging, fewer cache misses, and
faster structure traversals, and it also improves stability by reducing virtual and physical
out-of-memory aborts. Moreover, for specific tools that use an external database, including
Smartnoise and Google DP, the memory usage of the database container is also recorded,
which means that we will present two different memory evaluations for these tools, both
for the evaluation container and the database container. This will show how the tools affect
the memory usage during load on the database since we are running queries on a high
frequency during this process.

In this evaluation, we anticipate the memory overhead for running queries to increase
when DP is integrated, and that the memory overhead grows as the data size rises since
more data are involved in the calculation procedures. As elaborated below, the results show
that DP generally poses an additional memory usage of less than 3% for the operations in
the Postgres database, while the processing of private queries poses 5–40% extra memory
consumption. However, the results disclose no clear relationship between ε, data size,
and memory overhead, and fluctuations of different levels exist throughout the results.
In comparison, there is no apparent advantage of one tool over another regarding mem-
ory overhead, yet Google DP slightly outperforms Smartnoise on the Health Survey data
composed of categorical variables.

Figure 7 shows contour plots for each tool’s performance on memory overhead regard-
ing different ε values and data sizes. While the plots reveal no explicit patterns, the results
on HISTOGRAM manifest a slight trend for the Postgres database operation in Smartnoise
that memory overhead grows with an increase in data size (Figure 7d,h), which holds for
both datasets. However, we also observe a significant impact of data size on the query
processing compared to that of ε (Figure 7a,c,e,g), where the value of ε does not necessarily
affect memory overhead, and the data size irregularly influences the memory overhead.

Figure 8 details the impact of DP on the Postgres database, from which we cannot
summarize any clear correlations between ε, data size, and memory overhead. In general,
the induced memory usage on the operation of the Postgres database is notably low
(/3%) for both tools and datasets, which indicates a marginal impact. In comparison,
although irregularities exist, Google DP shows lower peaks (less than two) in the delta axis
than Smartnoise (between two and three) in the Health Survey experiments, implying an
advantage of Google DP on categorical dataset over Smartnoise. In contrast, this advantage
is not evident in the Parkinson evaluation.

Figure 9 describes how DP impacts the processing of queries issued to the Postgres
database regarding memory overhead. We cannot observe any general relationship between
ε, data size, and memory overhead through this figure. However, the results show an
overhead of 5–40%, indicating more memory consumption of querying procedures than
database operations with less than 3% memory overhead (see Figure 8). The results also
suffer from fluctuations, especially for the HISTOGRAM query on Parkinson by Google DP,
whereas Smartnoise performs more stably, although no better in that case.
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(e) (f) (g) (h)

Figure 7. Contour plots for the evaluation of statistical query tools on memory overhead for different
data sizes (Table 2), ε values (Table 3), and queries (Table 4). δ is defined in Section 2.1. The sub-plots
(a–d) present the results on Health Survey by Google DP, Google DP with Postgre, Smartnoise, and
Smartnoise with Postgres, respectively. sub-plots (e–h) present the results on Parkinson by Google DP,
Google DP with Postgre, Smartnoise, and Smartnoise with Postgres, respectively.

3.2. Machine Learning Tools Assessment

We evaluate three machine learning tools with the provision of DP service, i.e., Ten-
sorflow Privacy, Opacus, and Diffprivlib, and investigate how their private models differ
from non-private ones learned from two datasets as shown in Table 1. This evaluation
considers the regression model for all the tools, which we instantiate as a linear regression
model since regression is the only functionality the considered tools hold in common.
Furthermore, we vary the privacy budget ε and data size in the evaluation to see how
the results differ regarding utility, runtime overhead, and memory overhead defined in
Section 2.1. Note that each model training runs ten times, of which two extrema results are
removed, and the remaining eight are averaged for analysis.

The results generally manifest the trend that the integration of DP in model training
induces model accuracy reduction, and this reduction lowers with an increase in either
ε or data size, which holds for all tools on both Parkinson and Health Survey data except
Diffprivlib on Parkinson data, where no useful result is obtained. We also observe that
Tensorflow Privacy poses less memory overhead for the larger data sizes of the considered
datasets, while no clear relationship exists between ε, data size, and runtime overhead.
In comparison, Opacus induces less model accuracy reduction than Tensorflow Privacy
and Diffprivlib, given ε ≤ 0.5 for both datasets, while Tensorflow Privacy outperforms
Opacus and Diffprivlib on the continuous dataset of Parkinson within a wide range of
privacy budget (0.5 ≤ ε ≤ 3.0). The results also indicate that Tensorflow Privacy poses less
runtime, and Opacus adds less memory usage when DP is integrated into model training.
The quantitative evaluating results are detailed in the following.
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8. The evaluation results of statistical query tools on memory overhead when DP is integrated
for different data sizes (Table 2), ε values (Table 3), and queries (Table 4), specifically the results
on memory overhead in the database (Postgres) that the queries are conducted on. δ is defined in
Section 2.1. The sub-plots (a–d) present the results by Google DP on Health Survey with data size of
7000, 8000, 9000, and 9358, respectively. sub-plots (e–h) present the results by Smartnoise on Health
Survey with data size of 7000, 8000, 9000, and 9358, respectively. The sub-plots (i–l) present the results
by Google DP on Parkinson with data size of 3000, 4000, 5000, and 5499, respectively. The sub-plots
(m–p) present the results by Smartnoise on Parkinson with data size of 3000, 4000, 5000, and 5499,
respectively.



Sensors 2023, 23, 6509 18 of 29

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 9. The evaluation results of statistical query tools on memory overhead when DP is integrated
for different data sizes (Table 2), ε values (Table 3), and queries (Table 4). δ is defined in Section 2.1.
The sub-plots (a–d) present the results by Google DP on Health Survey with data size of 7000, 8000,
9000, and 9358, respectively. sub-plots (e–h) present the results by Smartnoise on Health Survey with
data size of 7000, 8000, 9000, and 9358, respectively. The sub-plots (i–l) present the results by Google
DP on Parkinson with data size of 3000, 4000, 5000, and 5499, respectively. The sub-plots (m–p) present
the results by Smartnoise on Parkinson with data size of 3000, 4000, 5000, and 5499, respectively.

3.2.1. Data Utility

Evaluation in this section investigates how a differentially private machine-learning
model differs from a benchmark regarding model accuracy to show the tradeoff between
privacy and utility when a machine learning task is combined with differential privacy
(DP) under different experimental settings.

In this evaluation, we expect that higher ε values and larger data sizes will provide
better utility for the considered datasets since such conditions cause less noise added
during DP model training. As anticipated, the results show that the trained machine
learning model brings better accuracy as ε and data size increase. However, along with this
expected trend, there also exists local irregularities, and Diffprivlib incurs severe accuracy
reduction on the Parkinson data making it far from useful in that case. We further detail
the evaluation results below.



Sensors 2023, 23, 6509 19 of 29

The contour plots in Figure 10 describe how the learned model’s utility measured by
RMSPE varies regarding ε and data size. In general, the plots corroborate that utility grows
with larger ε and data size, though there are irregularities in the Parkinson results by Opacus,
where the data size 4000 presents a slightly increased RMSPE than the lower data size.
Also, ε does not necessarily affect Opacus’ modeling utility on Parkinson when ε ≥ 1.0. We
also observe that in the Health Survey experiments, Opacus exhibits marginal less RMSPE
(generally ≤ 6) than Tensorflow Privacy (generally ≤ 10), both of which perform much
better than Diffprivlib (≥10 under most of the settings); However, Tensorflow Privacy
provides obvious less RMSPE than Opacus and Diffprivlib on Parkinson data, as shown in
Figure 10d–f, indicating Tensorflow Privacy’s advantage on continuous data.

(a) (b) (c)

(d) (e) (f)

Figure 10. Contour plots for the evaluation of DP ML tools on data utility for different data sizes
(Table 2) and ε values (Table 3). RMSPE is defined in Section 2.1. The sub-plots (a–c) present the results
on Health Survey data under Tensorflow, Opacus, and Diffprivlib, respectively, and (d–f) present the
results on Parkinson data under Tensorflow, Opacus, and Diffprivlib, respectively.

Figure 11 depicts model accuracy reduction under different ε values, where we observe
that higher ε values decrease the RMSPE, implying less accuracy reduction of the DP-
integrated-model compared with the benchmark. This trend holds for the two considered
datasets by Tensorflow Privacy and Opacus, while Diffprivlib provides RMSPE of over 108

on the Parkinson data (Figure 11g–i), making it unacceptable under this scenario. Therefore,
we neglect the experimental results of Diffprivlib on Parkinson in the following analyses.
Even though, it is worth noting that Diffprivlib generates comparably equal accuracy to
Opacus and Tensorflow Privacy when no DP is applied on both datasets. In comparison,
Opacus outperforms Tensorflow Privacy and Diffprivlib when ε ≤ 0.5. However, since
RMSPE rises abruptly when ε decreases away from 0.5, the advantage of Opacus here
becomes insignificant. In contrast, Tensorflow Privacy produces less accuracy reduction
for Parkinson data within a wide range of ε (0.5–3.0), implying its better performance on
continuous dataset than Opacus and Diffprivlib.
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(d) (e) (f)

(g) (h) (i)

Figure 11. The evaluation results of DP ML tools on data utility for different data sizes (Table 2) and
ε values (Table 3). RMSPE is defined in Section 2.1. The sub-plots (a–c) present the results on Health
Survey with data size 8000, 9000, and 9358, respectively. The sub-plots (d–f) present the results on
Parkinson with data size 4000, 5000, and 5499, respectively. The sub-plots (g–i) repeat the results in
(d), (e), and (f), respectively, with a larger y-axis scale.

3.2.2. Runtime Overhead

Evaluation of this part presents how the considered machine learning (ML) tools
perform when combined with differential privacy (DP) regarding the runtime overhead
induced due to DP. We vary the experimental settings to see how the results differ under
various conditions.

The evaluation is anticipated to observe an increase in DP machine learning’s runtime
compared with the benchmark, and we also expect that the runtime overhead grows as the
data size rises in the experiments since more data are processed. The results, as detailed
below, show that Tensorflow Privacy poses the least runtime increase compared with
Opacus and Diffprivlib, with the general RMSPE of ≤40 in runtime for Tensorflow Privacy
versus 200–230 for Opacus and 400–2000 for Diffprivlib. Note that we did not display
the results of Diffprivlib on Parkinson data since there is no useful result generated, as
elaborated in Section 3.2.1. Beyond that, we observe no clear trend between data size, ε,
and runtime overhead.

Contour plots in Figure 12 describe each tool’s runtime overhead regarding differ-
ent ε values and data sizes. Through the plots, we observe that both ε and data size
affect the runtime overhead in an irregular manner, where no explicit patterns can be
concluded. The results also present fluctuations and irregularities that are hard to explain,
e.g., the abrupt increased RMSPE for Tensorflow Privacy on Health Survey when ε = 2 and
data size = 6× 103, and the sudden decreased RMSPE for Opacus on Parkinson when
data size = 3× 103. Even though, it is clear that Tensorflow Privacy incurs less RMSPE due
to DP in machine learning, compared with Opacus and Diffprivlib on both datasets.
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(a) (b) (c)

(d) (e)

Figure 12. Contour plots for the evaluation of DP ML tools on runtime overhead for different data
sizes (Table 2) and ε values (Table 3). RMSPE is defined in Section 2.1. The sub-plots (a), (b), and
(c) present the results on Health Survey data under Tensorflow, Opacus, and Diffprivlib, respectively,
and (d) and (e) present the results on Parkinson data under Tensorflow and Opacus, respectively.

Figure 13 illustrates the induced runtime under different ε values on the Health Survey
and Parkinson data for all the ML tools. The graphs reveal no relationship between ε and
runtime during model training of all the considered ML tools, while the results of the Health
Survey demonstrate a stable induced runtime by Tensorflow Privacy and Opacus. However,
as shown in Figure 13a, local irregularity exists for Tensorflow Privacy. Overall, Tensorflow
Privacy significantly outperforms Opacus and Diffprivlib regarding runtime on both the
considered datasets.

(a) (b) (c) (d)

(e) (f) (g)

Figure 13. The evaluation results of DP ML tools on runtime overhead for different data sizes (Table 2)
and ε values (Table 3). RMSPE is defined in Section 2.1. The sub-plots (a–d) present the results on
Health Survey with data size of 6000, 8000, 9000, and 9358, respectively. The sub-plots (e), (f), and
(g) present the results on Parkinson with data size of 3000, 4000, and 5000, respectively.

3.2.3. Memory Overhead

This section investigates the additional memory usage posed due to the integration of
differential privacy (DP) in machine learning (ML). We conduct experiments using various
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settings to look into how the considered ML tools perform in DP ML models compared
with non-private ones.

For the experiments, we anticipate an increase in memory usage in the training of
DP ML models compared with non-private ones since more DP models involve more
computation during the model training. As detailed below, the experimental results
demonstrate extra memory usage of different levels for all the considered ML tools due to
DP. Particularly, Tensorflow Privacy suffers the most memory usage (15–20% for the Health
Survey and above 70% for Parkinson) compared with Opacus (below 3.75% for the Health
Survey and below 4.0% for Parkinson). On the other hand, Diffprivlib generally contributes
an additional memory usage of 5–10% for the Health Survey, yet it does not provide useful
results for Parkinson. Overall, Opacus shows more advantage in memory overhead for DP
machine learning.

Figure 14 shows contour plots of each tool’s memory overhead regarding different ε
values and data size. From the plots, we can observe that TFP has a memory overhead of
about 90% for the Parkinson dataset for nearly all the data size and ε, and about 20% for the
Health Survey dataset (Figure 14a,e), although there is an unexpected decreased memory
usage for the highest data size of both Health Survey and Parkinson. Opacus (Figure 14b,d),
on the other hand, has less than 5% memory overhead in both of the datasets, while
irregularities exist for some data size and ε combinations for the Health Survey, and an
increased memory usage around the data size of 2000 for Parkinson. Diffprivlib gains
memory overhead mainly around 10% and experiences a slightly decreased memory usage
under the smallest data size and a significant decrease under the highest data size for the
Health Survey. We also note that the value of ε has no apparent influence on the results for
all three considered tools.

(a) (b) (c)

(d) (e)

Figure 14. The results of the impact of ML tools on memory overhead for different data sizes (Table 2)
and ε values (Table 3). RMSPE is defined in Section 2.1. The sub-plots (a), (b), and (c) present the
results on Health Survey data under Tensorflow, Opacus, and Diffprivlib, respectively. The sub-plots
(d) and (e) present the results on Parkinson data under Tensorflow and Opacus, respectively.

Figure 15 shows representative results on how memory overhead varies over different
combinations of data size and ε. Beyond the conclusion from Figure 14, we can also observe
a higher memory overhead for the Parkinson than that of the Health Survey. In contrast,
Opacus performs stably for both the two datasets with the lowest memory overhead.
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(e) (f) (g) (h)

Figure 15. The results of the impact of ML tools on memory overhead for different data sizes (Table 2)
and ε values (Table 3). The sub-plots (a–d) present the results on Health Survey with data size of 6000,
8000, 9000, and 9358, respectively. sub-plots (e–h) present the results on Parkinson with data size of
3000, 4000, 5000, and 5499, respectively.

3.3. Summary of Results

We observed that the experimental results depend on the studied tasks, the selected
DP tools, and their configurations. We note that some patterns emerge from the results; see
Table 5. In order to facilitate the tool selection, we define the following performance criteria.

Table 5. Summary of performance patterns emerging from the evaluation results of the studied tools
for machine learning (ML) and statistical query (SQ).

Tool Name Patterns Revealed

M
L

Diffprivlib • utility and runtime overhead grow with ε and data size on categorical data

PyTorch Opacus • utility grows with ε on categorical and continuous data
• utility grows with data size on categorical data

TensorFlow Privacy • utility grows with ε and data size on categorical and continuous data
•memory overhead grows with data size on categorical and continuous data

SQ

Google Differential Privacy • utility grows with ε and data size on categorical and continuous data
• higher runtime overhead for lower data size on categorical and continuous data

OpenDP SmartNoise • utility grows with ε and data size on categorical and continuous data
• runtime overhead grows with data size on categorical and continuous data

Any DP tool is inherently associated with some basic tradeoffs. For example, when
processing a large dataset, the system costs, e.g., processing time and memory usage,
increase. Another well-known tradeoff exists between the privacy budget and the utility
of the privacy-protected data. Naturally, the evaluated tools might include additional
dependencies and tradeoffs. In order to highlight such basic boundaries, Table 6 provides
the values of the utility and system costs under Favorable Experiment Settings (FES) and
Restrictive Experiment Settings (RES) with regard to the size of the dataset and privacy
budget. Specifically for FES, the size of the dataset is 9358 records and ε = 3.0 for the
categorical data. The size is 5499 records and ε = 3.0 for the continuous data. For the case
of RES, the size is 1000 records and ε = 0.1 both for categorical and continuous data. For a
more Detailed version of Performance Comparison (DPC), we provide the utility and system
costs that the tools have when considering an exhaustive set of pairs of dataset size (Table 2)
and privacy budget (Table 3).
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Table 6. Tool performance comparison for the tasks of machine learning and statistical query. For each criterion, we provide the ranking (in the upper part of the
table cells) of different tools associated with the numerical performance (in the lower part of the table cells) under the considered criterion.

Performance Criteria (RMPSE)
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Diffprivlib 1st
0.15

3rd
797.86

3rd
6.35

3rd
6.4 × 108

3rd
1176.20

3rd
46.21

3rd
2.76
to
1.21 × 108

3rd
603.17
to
1.15 × 103

3rd
9.11
to
16.64

Results far away from usable

4.6 × 108 2323.46 35.64 1.96 × 1011 856.53 31.54
1.53 × 109

to
1.89 × 1018

603.17
to
1.15 × 103

40.88
to
45.38

PyTorch
Opacus
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With the defined criteria and the performance measurement under each criterion, we
facilitate a need-based selection of DP tools, e.g., the highest utility, the lightest computing
resource requirement, and the least running time. Table 6 suggests that TensorFlow Privacy
and PyTorch Opacus perform equivalently well for machine learning tasks. Also, Google
DP works well for statistical queries.

4. Related Work

In this section, we conduct a review of the existing literature concerning the per-
formance evaluation of privacy tools that employ differential privacy (DP). Despite the
abundance of studies on DP, to the best of our knowledge, none of them have provided a
comprehensive comparative study of the available open-source tools applicable in prac-
tical scenarios. Furthermore, they often lack sufficient guidance on the application and
configuration of DP tools for privacy preservation.

4.1. Statistical Queries

As mentioned, the set of statistical queries, in this work, refer to the operation of SUM,
COUNT, AVERAGE, and HISTOGRAM. One DP query engine that has been integrated into the
industry is Flex [28]. The open-source library for Flex is deprecated (https://github.com/
uber-archive/sql-differential-privacy, accessed on 30 May 2023). However, their evaluation
remains relevant to provide clues on evaluating privacy tools.

Johnson et al. [28] evaluated Flex using an SQL-compatible interface, which makes it
convenient to put the interface in front of any already deployed SQL-compatible database
and, in turn, lowers the bar of adoption. Their evaluation uses a large set of real-world
queries run by Uber’s data engineers in production, which provides insights into how
Flex would perform in the industry. However, this evaluation merely benchmarks one ε
value (ε = 0.1) and presents only one single value of the additional overhead of 4.86 ms
corresponding to 0.03 % of the average execution time of their non-privacy-protected
queries. Furthermore, the 4.86 ms overhead does not include the pre-collection of frequent
join attributes, which has to be updated each time the underlying data are updated. Such
an evaluating procedure induces the risk that the actual overhead might be more significant
than presented by Johnson et al. Moreover, it is not clear whether overhead changes when
settings differ, e.g., in dataset sizes, privacy configurations, or queries, etc.

The DP tools of Smartnoise [27] and Google DP [21] are integrated into private
statistical-query services. Smartnoise results from years of cumulative experience building
and deploying privacy tools for research and has recently become a tool in Microsoft’s
privacy ecosystem. However, even though the open-source software community provides
transparency and demonstrates examples, no comparative research has been conducted on
the tool’s query engine.

Google DP has been evaluated alongside Flex [28] and PinQ, which is a research
project on privacy-integrated queries (PinQ). PinQ provides a programming language and
execution platform in which all expressible programs satisfy DP [8,21]. The evaluation of
Google DP included 1,000,000 runs with various aggregate functions, with a fixed ε value
of 0.1, where a benchmark TPC-H dataset was used. Meanwhile, in the comparison, Flex
and PinQ were run only 10,000 times due to performance concerns. This evaluation points
out that, compared with Google DP, Flex and PinQ cannot enforce contribution bounds for
databases where one single user can contribute multiple samples, leading to query results
that are not DP. Furthermore, because Flex or PinQ assume that the underlying database is
associated with at most one record per user, their performance comparison with Google DP
that supports the contribution of multiple samples can be problematic. The evaluation of
Google DP merely considered a single value of privacy budget. Our extensive evaluation
uses broad evaluation settings, i.e., different privacy budgets and dataset sizes.

Garrido et al. [29] compared the performances of Google DP, SmartNoise, diffprivlib,
diffpriv, and Chorus with respect to the features offered to the users. However, Garrido et al.
do not consider issues related to machine learning as we do. Hay et al. [30] proposed

https://github.com/uber-archive/sql-differential-privacy
https://github.com/uber-archive/sql-differential-privacy
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DPBench, which is an evaluation framework for privacy-preseving algorithms but only in
the context of histograms.

Our study encompassed a broad range of query functions, including SUM, COUNT,
AVERAGE, and HISTOGRAM. Previous research primarily concentrated on smaller or different
sets of functions. For instance, Garrido et al. [29] examined COUNT, SUM, AVERAGE, and VAR,
but not on HISTOGRAM as we do. Hay et al. [30] and Bu et al. [31] focused specifically on
COUNT, while Xu et al. [32] emphasized HISTOGRAM.

4.2. Machine Learning

DP machine learning (ML) has gained attention at companies like Google, Facebook,
and IBM. Investigations have been conducted on the performance of DP stochastic gradient
descent (SGD) [16], which is a dominant algorithm for private training of ML models.
Nevertheless, DP-SGD can increase the training time significantly compared to non-private
SGD [31]. In a recent study, Subramani et al. [15] reduced the runtime overhead when
executing DP-SGD. They implemented the functionality in the open-source library of
Tensorflow Privacy by exploiting language primitives [31]. Microsoft has shown support in
the DP-ML field by implementing Opacus and demonstrating the impact of epsilon and
dataset size on DP-ML [26]. To the best of our knowledge, we are the first to extensively
compare these DP ML tools.

Beyond improvements regarding performance, there is also work to improve the
privacy guarantees of DP-ML [33] and evaluate different means of DP with different privacy
budgets, which shows how the tradeoff varies between utility and privacy protection under
different settings. Their study focuses on gradient perturbation mechanisms, e.g., DP-SGD,
and uses Tensorflow Privacy to evaluate Rényi DP among others [34]. It demonstrates that
the privacy guarantees of DP for ML implementations may provide unacceptable balances
of the tradeoff between utility and privacy protection. They aim to find epsilon values
that balance the tradeoff for different DP approaches rather than for different DP tools. In
another study, Tramér et al. [35] provide an approach to improving performances of DP
models using primarily Tensorflow and parts of the Opacus library. They point out that
prior works have underestimated guarantees of utility and privacy protection as well as
demonstrated that solid privacy may come at only a nominal cost of inaccuracy by tailoring
the training to the data. However, their results, to the best of our knowledge, have not yet
been generalized as a tool that can be easily leveraged by the developer community. Our
study of the tradeoff between utility and privacy protection considers different DP-ML
tools as well as facilitates the selection of DP-ML tools.

4.3. Bibliographical Note

A technical report version of this article can be found at [36].

5. Conclusions

We propose an evaluation framework for differential privacy (DP) tools and offer
evaluation for state-of-the-art open-source DP tools. We define criteria to quantify how
different DP tools perform so that they can be selected. Specifically, we evaluate and
measure the impact of DP on different functionalities that the studied tools provide. We
use two data sources of different types to obtain a nuanced picture of how well the studied
tools perform when DP is applied. The evaluation results demonstrate the degree to which
the use of DP tools impacts data utility and system overhead. Our results can support
practitioners who consider using these tools.

5.1. Limitations

The studied approach did not include the conduction of a white box evaluation of the
DP tools since we wished to emphasize the most typical use case scenarios. Furthermore,
in our current work, we have not explicitly considered the correctness aspect of the DP
tools. While our evaluation focused on performance and utility, it is essential to assess
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the correctness of the DP mechanisms to ensure that the privacy guarantees are effectively
preserved. Such assessment requires other analytical tools and cannot be achieved using
only empirical results.

5.2. Future Work

We invite researchers and practitioners to leverage the proposed open-source evalua-
tion framework to explore additional aspects of DP tools, datasets, and machine-learning
methods. Since the framework is publicly available in an open-source format, it can serve as
a foundation for conducting comparative evaluations of emerging DP tools and analyzing
their performance in different scenarios. By extending the evaluation to include a broader
range of prospective tools, datasets with varying characteristics, and diverse machine-
learning techniques, the readers are offered to gain a more comprehensive understanding
of how future DP tools impact different datasets and applications most relevant to their
individual interests.
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SQ Statistical Query
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