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Abstract: The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing
maintenance policies leading to advancements in terms of productivity, efficiency, and financial
performance. In line with the growing emphasis on sustainability, industries implement predictive
techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment
failures by predicting anomalies during their production process. In this work, a new dataset that
was made publicly available, collected from an industrial blower, is presented, analyzed and modeled
using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically
the right and left mounted ball bearing units were measured during several months of normal
operational condition as well as during an encumbered operational state. An anomaly detection
model was developed for the purpose of analyzing the operational behavior of the two bearing
units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data
obtained from the left unit under normal operating conditions, learning the underlying patterns
and statistical connections of the data. The model was evaluated by means of the Mean Squared
Error using data from the unit’s encumbered state, as well as using data collected from the right
unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the
model proved its capability for generalization along with adaptability on assessing the behavior of
equipment similar to the one it was trained on.

Keywords: anomaly detection; autoencoder; deep learning; industrial data; long short-term
memory; predictive maintenance;

1. Introduction

The continuous technological advancement of the industrial sector, which now is
going through its fourth industrial revolution, widely recognized as Industry 4.0 (I4.0) [1],
has paved the way for the development and deployment of modern, reliable and robust
systems and protocols regarding business sustainability [2]. Industries are always trying to
stay relevant to market demands while also establishing a competitive presence in their
respective fields. Therefore, one of their principal objectives is to achieve economic profit
via cost efficiency throughout the production process. The prevailing course of action to
mitigate production costs is to ensure the healthy, practical and effective performance of
the manufacturing machinery through a maintenance policy, since defective equipment
may lead to catastrophic failures and have a negative financial impact on enterprises.
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1.1. Maintenance Policies

Traditional maintenance strategies include Corrective Maintenance (CM), Preventive
Maintenance (PvM) and Condition-based Maintenance (CbM) [3]. Although a Run-to-
Failure (R2F) approach is considered one of the main strategies, it is contradictory to the
general opinion of keeping a good equipment performance, since Corrective Maintenance
is an unplanned reactive technique that relies on repairs only after any asset failure oc-
curs. This is a high-risk policy due to its unexpected circumstances regarding equipment
downtime and extent of damage that can lead to major expenses and hinder production for
an unspecified period. On the contrary, Preventive Maintenance is a policy that relies on
scheduling, and any maintenance tasks such as machinery inspections, repairs, rebuilds or
adjustments follow a time-sensitive plan of action [4]. Despite the fact that this strategy
has a higher probability of failure mediation, it occasionally leads to redundant activities,
further adding to production costs or to the premature disposal of assets with a promising
Remaining Useful Life (RUL). Finally, the digital revolution as well as the technological
advances of Industry 4.0 have led to Condition-based Maintenance, a strategy that depends
on the continuous observation of the equipment’s mechanical condition and health status
with the help of tools set in place to obtain measurements through vibration monitoring,
thermography, ultrasound, infrared imaging, tribology, visual inspection, etc. [5]. This is
another unplanned method, and any activity by the maintenance management regarding
industry machinery is based on the regular analysis of the monitoring data by experienced
consultants and the quick actions performed upon detection of anomalies in data readings.

Predictive Maintenance

While the constant monitoring using human resources may present a good way
of preventing failures and performance issues, it is not the most productive and cost-
effective course of action, since the improvements in the industrial sector, particularly
the Industry 4.0 innovative technologies [6], allowed the emergence of a more beneficial
maintenance policy, the widely known Predictive Maintenance (PdM) [7,8]. Although the
term was used to describe Condition-based Maintenance practices twenty years ago [9], it
currently is recognized for its utilization of Industry 4.0 technologies, mainly the Industrial
Internet of Things (IIoT), Artificial Intelligence (AI), sensors, Big Data and the Cloud.
Modern digitization and automation systems set in place by industries that follow smart
manufacturing resulted in a great amount of data accumulation, further reinforcing the
fundamental purpose of a Predictive Maintenance strategy, which is to allow the scheduling
of maintenance actions before any damaging consequences occur to the manufacturing
process by identifying an imminent asset failure or an anomalous equipment behavior
through inference that is based on collected historical operating data [10].

In general, after the data collection and the necessary preprocessing, a suitable model
with a specific architecture is developed for the purpose of training on the aggregated data
and learning the underlying patterns that characterize the data. Such endeavor would be
difficult, time-consuming or even impossible to identify by the normal means of statistical
analysis and condition monitoring due to possible data complexity. Therefore, a major com-
ponent of a present-day Predictive Maintenance strategy is the use of Artificial Intelligence
and especially its subfields of Machine Learning (ML) and Deep Learning (DL) that enable
the development of algorithms and models [11] that have the ability to deconstruct the data
and recognize the hidden mathematical rules they abide by. Undoubtedly, this procedure
demands numerous calculations, and as the complexity of the model increases, so does
the amount of the arithmetic parameters that need to be calibrated during the training
step. The growing presence of ML applications and their integration into maintenance
policies [12] is both due to the increasing computing power of current processors, allowing
the deployment of more intricate model architectures and the advances of the scientific
field through innovative research initiatives.
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1.2. Data Availability

Evidently, data availability is an imperative component to a Predictive Maintenance
policy utilizing Machine Learning techniques, and although it appears to be an undemand-
ing task due to I4.0 technologies, the acquisition of real industrial operational datasets can
prove challenging, particularly to businesses implementing such policies for the first time.
Oftentimes, researchers resort to simulated or synthetically generated data to test their
scientific approaches [13,14], seeing that real-case records for specific operating conditions
are difficult to come by [15].

It is worth noting that healthy production line data are comparatively easier to obtain,
since fault conditions are less frequent in regard to their occurrence and documentation;
thus, simulated datasets can present a way to train an ML model on exact labeled error
conditions or to evaluate an already trained ML model, specifically in the case of anomaly
detection where only normal operation data are available [16]. Furthermore, the acquisition
of annotated datasets is especially challenging due to the expenses and time needed for
the sensitive task of labeling, since experienced human labor must be involved, and the
businesses that have carried through these processes understandably need to keep their
data confidential [17].

The present work attempts the development and training of a Deep Learning model
for the case of anomaly detection in a time series using real multivariate temporal data
collected from actual operating production plant equipment via sensor devices, thus
avoiding any concerns regarding synthetic data and their statistical representation and
logical validation [18]. More information about the data in this work is presented in
Section 2 of this article. All data were made publicly available via the Zenodo platform in
https://doi.org/10.5281/zenodo.7994124, accessed on 1 June 2023.

1.3. Model Overview

This work attempts the development of a Deep Learning temporal anomaly detection
model [19], specifically based on the Autoencoder (AE) architecture [20,21] and the utiliza-
tion of Long Short-Term Memory (LSTM) cells. In comparison to traditional methods, the
use of LSTMs in predictive maintenance provides notable advantages by leveraging the
power of recurrent neural networks, enabling the automatic extraction of relevant features
and eliminating the need for manual feature engineering, which can be time-consuming and
prone to human biases. This study introduces a novel dataset obtained from an industrial
blower. The dataset encompasses measurements from both the right and left mounted ball
bearing units, collected over several months under typical operational conditions, as well
as during a encumbered operational state. The primary focus of this study is to develop an
anomaly detection model that could effectively examine the operational behavior of the
two bearing units. Specifically, we successfully trained a stacked sparse LSTM Autoencoder
on the data gathered from the left unit during normal operating conditions. This model
was able to capture the underlying patterns and statistical relationships present in the data
allowing it to distinguish between the two operational states of the system.

Autoencoders are composed of an encoder and a decoder. The inputs proceed through
the encoder, are deconstructed to latent representations, and then the decoder tries to
reconstruct those encodings as close as possible to the given inputs. The evaluation of this
method relies on the reconstruction error of the described technique. Figure 1 presents
a straightforward visualization of a simple Autoencoder architecture. The LSTM cell
constitutes an evolution of the simple Recurrent Neural Network (RNN) cell which can
lead to difficulties on the subject of unstable gradients (vanishing or exploding) and short-
term memory in the DL model’s effort to identify patterns in terms of data periodicity [22].
Consequently, the LSTM cell is the main building block of our AE model for its ability to
process sequential data and retain or discard any input information that may adversely
affect its output by maintaining a memory state. Additionally, due to the limited number
of input variables in the data, a regularization term was implemented to the latent data
representations for the purpose of adding a sparsity penalty to the coding parameters and

https://doi.org/10.5281/zenodo.7994124
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ensuring the most important features are preserved. All of these concepts are explained in
further detail in Section 2 of this article.

encoder decoder

code

input output

Figure 1. Typical Autoencoder Architecture.

1.4. Related Works

The Deep Learning task of anomaly detection via an Autoencoder (AE) architecture
relies on the AE model’s training on normal production data and learning to reconstruct
it with minimal reconstruction error, so any data reconstruction exceeding a predefined
acceptable error is considered an anomaly. Apart from AEs, other main Machine Learning
and Artificial Neural Network (ANN) methods were presented by T.P. Carvalho et al. [23] in
a systematic literature review in the frames of Predictive Maintenance regarding industrial
equipment. It also lists four public datasets to support the testing and assessment of
various PdM methodologies. Additionally, a PdM systematic literature review recently
carried out by O.Ö. Ersöz et al. is available in [24], aiming specifically for the field of
transportation systems.

A detailed survey was also conducted by B. Lindemann et al. [25] focusing on state-of-
the-art anomaly detection techniques using LSTM networks. Besides LSTM-only methods,
Autoencoders utilizing LSTMs were highlighted for their significance in unsupervised
applications, as well as other hybrid architectures. Recent trends of graph-based and
transfer learning approaches were also presented. An unsupervised graph-based approach
was introduced by E.S. Miele et al. [26] that combined a Graph Convolution Network
(GCN) with Autoencoder architecture for anomaly detection in a multivariate time series.
The model of this work was trained on wind turbine data collected by a Supervisory
Control and Data Acquisition (SCADA) monitoring system, and for its evaluation, a four-
stage threshold methodology was implemented to allow warnings only for significant
reconstruction errors. The framework showed great performance by detecting anomalies
before any SCADA alarms and was compared to other promising applications on wind
turbine data, an LSTM-AE and an attention-based Convolutional Neural Network–Long
Short-Term Memory (CNN-LSTM) model [27,28].

Three different AE architectures were developed by M. I. Radaideh et al. [29] utilizing
bi-directorial LSTM units, bi-directorial Gated Recurrent Units (GRUs) and a convolutional
LSTM (convLSTM) approach for univariate time-series anomaly detection. The three mod-
els trained on real experimental waveform signals from a subsystem of a high-voltage
converter modulator [30], a critical power system at the Spallation Neutron Source and
tested on never-seen-before normal and faulty pulses generated by the subsystem. All
Autoencoders achieved the desired outcome, meaning a higher reconstruction error while
performing evaluation of abnormal pulses, with a similar performance among all three.
Additional anomaly detection methods were applied on the training data including Iso-
lation Forest (IF), Support Vector Machine (SVM), Local Outlier Factor (LOF), Random
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Forests (RF), Decision Trees (DT), K-Nearest Neighbors (KNN), Convolutional Neural
Network (CNN), CNN Autoencoder (CNN-AE) and Feed-Forward Neural Network Au-
toencoder (FFNN-AE). In terms of comparison, the three proposed AEs achieved an average
of 0.89 Area Under the Curve (AUC) score, highly prevalent over the 0.68 average of all
the other methods. It is worth noting that all AE techniques had the longest training
computing times.

A novel adaptable predictive maintenance framework was introduced by G. Hajgató et al. [31]
that incorporated a Deep Convolutional Autoencoder (DCAE), a clustering algorithm [32] and a
Principal Component Analysis (PCA) in a case study regarding oil degradation of an industrial
gearbox. Firstly, the DCAE model was trained on multivariate time-series data of the gearbox in
an unsupervised and undercomplete manner; then, its decoder was removed and the test data
were encoded to their latent representations. This practice makes use of a common AE application
regarding non-linear dimensionality reduction and feature extraction. Afterwards, the encodings
were divided into clusters by a K-Means algorithm and the data were once again compressed by
PCA and studied in an explainable manner by the use of visualization techniques.

A novel DL methodology was assessed in [33] based on an LSTM Autoencoder archi-
tecture for the purpose of fault detection and RUL estimation in the frames of a real-world
predictive maintenance application. The study investigated a comparison between pre-
dictive and preventive maintenance strategies by following a DL approach regarding the
condition of a hot rolling milling machine through historical maintenance records. Three
LSTM Autoencoder models were developed, each trained on Temperature and Energy
features corresponding to the different conditions of the machine, mainly a good, a bad
and an intermediate state. A preliminary evaluation of the AE models on data of every
operating condition yielded favorable results in terms of accuracy, successfully recognizing
each machine condition.

In the field of medicine, T. Dou et al. [34] examined the Predictive Maintenance ap-
plication of anomaly detection on proton Pencil Beam Scanning (PBS) delivery systems.
LSTM-based Stacked Autoencoder (LSTM-SAE) models with a dropout rate [35] were
trained and evaluated on temporal beam data including the most essential system op-
erating parameters. Although system performance is monitored through daily Quality
Assurance (QA) before every patient treatment and Preventive Maintenance methods, Pre-
dictive Maintenance could be incorporated providing alarms prematurely, thus allowing
maintenance actions or inspections in cases of underlying system issues. The models, in
terms of identifying anomalous events, were evaluated by the Mahalanobis distance metric,
and aside some skew data distribution, the proposed methods performed satisfactorily on
normal and abnormal beam data.

Another AE architecture for fault detection developed by X. Liang et al. [36] who
studied two cases of a working pump in an oil and petrochemical factory where multivariate
data of fifteen measurements were collected from a system monitoring the speed, flow
and pressure of the pump under two different operating conditions. A time series of
normal operating pump data was used for the training of a Sparse Autoencoder (SAE),
which differs from a typical AE model by implementing a sparsity penalty to its loss
function for the encodings. Another PCA model was also trained for comparison purposes.
The SAE method performed better than the PCA method regarding Receiver Operating
Characteristic (ROC) curve and average Area Under the Curve (AUC) values, as well as in
fault isolation in terms of a variable mapping indicative of each variable’s contribution to
the detected anomaly. Specifically in the first case, a misalignment fault was detected four
days earlier by the SAE model and the cause was significantly more evident in the variable
mapping, finding that that an increase in temperature for four bearings contributed to
the fault.

Our approach is inspired by AE-based architectures for predictive maintenance de-
scribed above. Following the general strategy of employing state-of-the-art anomaly
detection techniques using LSTM networks presented in [25], an Autoencoder was trained
using data from a particular set of measurements of the monitored equipment to model
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the normal operation state of the system. The trained model was in turn used to predict
anomalies in the behavior, and hence possible malfunction, of the machine by comparing
the actual measurements to the estimated outcomes of the AE. However, it should be
made clear that a direct comparison between the approaches available in the literature and
our implementation is not possible. The implementation of the AE was tailored on the
particular set of measurements produced by the machinery equipment of the experiment
operated by our industrial partner in their actual production line. In this sense, it would be
very difficult or even irrelevant to try to use some of the aforementioned approaches as
out-of-the-box solutions.

The rest of the article is organized as follows: Section 2 presents the industrial ma-
chinery and the equipment examined, as well as an overview of the data collected. The
theoretical background of the model architecture, the data preprocessing and its training
are also described in this section. Section 3 analyzes the results of the evaluation of the
model on the various datasets derived from the available data, and Section 4 presents the
conclusions and further research thoughts and proposals.

2. Materials and Methods

This article presents the development of a sequence-to-sequence sparse stacked Au-
toencoder model based on LSTM layers and its training through a self-supervised manner
for the purpose of detecting anomalous behavior on industrial equipment sensor data.
The software stack for the analysis is described in Table 1 and was used in the virtual
environment of Google Colaboratory [37].

Table 1. Implemented Framework.

Software Version Objective

Python 3.10.11 Main Programming Language

Numpy 1.22.4 Array Computations

Pandas 1.5.3 Data Analysis

Matplotlib 3.7.1 Graph Visualization

Scikit-learn 1.2.2 Preprocessing

Keras 2.12.0 Model Training

2.1. Factory Machinery

The system investigated in this work is displayed in Figure 2. It is an industrial
blower, and its basic operation is the air circulation and supply for cooling purposes and
temperature regulation. This specific infrastructure consists of a centrifugal fan, which aims
for a uniform and constant air supply by means of a quiet and energy-efficient operation
compared to that of an axial fan, and its rotational movement is powered by a three-phase
electric motor. Particularly, the working characteristics of fan infrastructure are as follows:

• Nominal Power: 132 kW;
• Airflow: 65.7 m3/s;
• Pressure: ∆p = 1600 Pa;
• Operation Speed: 980 rpm.

The motor is connected to the ventilation system through a rigid shaft on top of
which there are two mounted ball bearing units. During the blower’s operation, air enters
through the inlet nozzle and exits through the outlet with the aim of removing heat through
recirculation. The entire industrial infrastructure is supported by rigid elements, resulting
in the production of vibrations. So far, the maintenance plan for the machinery involves
performing regular and scheduled maintenance in order to keep it running and prevent any
costly unplanned downtime from unexpected equipment failure. Towards the transition
from preventive to predictive maintenance policies, sensors were placed on top of the
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infrastructure’s mounted ball bearing units, mainly the left one closer to the motor, and the
right one next to the centrifugal fan according to ISO 20816-03:2022 [38]. The sensor that was
used was the BMC0001 condition monitoring sensor from Balluff. The data were received
by a Programmable Logic Controller (PLC) and were transported over Message Queuing
Telemetry Transport (MQTT) protocol to a cloud server for postprocessing and archiving.

Figure 2. Industrial Blower for temperature regulation via air circulation.

2.2. Data Analysis

The available data collected from the industrial system presented above describe the
operating behavior of its left and right mounted ball bearing units in terms of velocity,
which is expressed in inch/s, and temperature, which is expressed in degrees of Fahrenheit,
according to their original raw values. However, a conversion was made to the International
System of Units (S.I.) by expressing the velocity in m/sec and the temperature in degrees of
Celsius. To clarify, velocity is provided by the metric of V-RMS (Velocity Root Mean Square
Error) commonly used in vibration analysis, where the term of velocity is defined as the
equipment’s rate of displacement at a given moment during its operation. The calculation
of the V-RMS follows the below formula:

VRMS =

√
1
n
·

n

∑
i=1

v2
i , (1)

where:

• n is the amount of velocity readings,
• vi are each one of the velocity readings.

All the velocity readings are captured by the sensor device within a configured time
window, so the outputted measurement is an indicative average of the bearings’ operating
velocity representing their underlying health condition. The temperature feature and its
contribution is self-explanatory.

Figure 3 presents the V-RMS and Temperature temporal data measurements of both
the left and right mounted ball bearing units during normal machinery operation, while
Figure 4 shows the same unit attributes during an encumbered operating state later
in production.
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Figure 3. Comparative overview of the V-RMS (top) and Temperature (bottom) attributes of the left
and right ball bearing units during normal operation.

Figure 4. Comparative overview of the V-RMS (top) and Temperature (bottom) attributes of the left
and right ball bearing units during encumbered operation.

The samples of the available datasets were captured by sensing devices over a period
of several months. Continuous records of a low V-RMS value, indicative of a powered
down system at the time of the sensor’s captured reading, were filtered out of the datasets,
as well as instances of intentional shutdowns for maintenance purposes. As an interesting
remark, several apparent momentary spikes in V-RMS values were a normal operational
occurrence, mainly due to unexpected power outages that forced the plant machinery to
restart, subsequently causing increased start-up loads producing larger vibration values.
Despite the sizeable difference between the spikes and normal values of the time series, their
instantaneous behavior was within the framework of a conventional industrial operation
and their removal was not mandated so as to not disrupt the data, and the chosen course of
action regarding the spikes was to filter the time series through a rolling median, which is
presented later in this work. Additionally, comparing the opposite spike instances between
the left and right mounted ball bearing units during normal operation in Figure 3, the
higher peaks of the right unit were caused by the unit’s proximity to the centrifugal fan
of the industrial machinery, which is also the cause for its higher V-RMS values at the
encumbered operational state.

At this point, it is worth noting that the encumbered state does not necessarily suggest a
fault condition of the machinery, since its overload was not imperative to cause a shutdown
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due to an equipment defect or failure during the several months of data readings. In
the context of this work, the standard operational condition was used as a foundation
for the development of an Autoencoder model that was trained to recognize overloaded
circumstances, comparable in certain respects to an anomaly detection task. In addition,
the training of the AE model was based solely on the left unit’s V-RMS and Temperature
readings due to the fact of a slightly burdened state, although not necessarily erroneous,
halfway through the right unit’s operation that would most likely affect model training.
However, the right unit’s data served as a means of evaluating the model’s performance
and adaptability on data of similar equipment structure and working condition.

Finally, a naive comparison between the readings captured during standard and
encumbered operation can be realized through each attribute’s statistical mean as depicted
in Table 2, and it is apparent that the increased attribute values confirm the execution of a
more strenuous ball bearing activity.

Table 2. Mean values of V-RMS and Temperature attributes.

Standard Operation Encumbered Operation

V-RMS of left unit 0.002568 0.004556
m/s

V-RMS of right unit 0.002339 0.005906

Temperature of left unit 37.93 43.58
Celsius

Temperature of right unit 37.15 41.80

2.3. Model Development and Training
2.3.1. Machine Learning

Francois Chollet, the creator of the highly popular Keras library, describes Artificial Intel-
ligence (AI) as “the effort to automate intellectual tasks normally performed by humans” [39].
Since 1950s, the prevalent approach to define human decision making and logical problem
solving was made possible through explicit programming rules, but it lacked the capability of
recognizing the principles of more complex problems. Today, the field of AI has evolved to
include many subfields, an overview of which is shown in Figure 5.

Artificial Intelligence
(AI)

Machine Learning
Deep Learning

Predictive Analysis

Expert Systems

Speech
Speech to Text

Text to Speech
Planning, Scheduling &

Optimization

Vision
Image Recognition

Machine Vision

Robotics

Natural Language Processing (NLP)

Translation

Classification and Clustering

Information Extraction

Figure 5. Fields of Artificial Intelligence.

The Machine Learning branch of AI rose to be one of the most popular ones due to
the development of algorithms capable of learning from data through training instead of
hardcoded instructions. The successful training of an ML system implies that the system
under investigation can properly analyze historical data through structured mathematical
calculations and identify the statistical rules and hidden patterns that the data follow in
such a way as to make adequate predictions when new data are introduced. The inference
capabilities of the model, as part of its prediction, depends on the ML application that it
is trained for. The rapid progress of ML in the recent years can be attributed both to the
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increase in dataset availability and in advances in hardware computing power that have
allowed the development of ML algorithms; for this work, the ML technique employed is
the Artificial Neural Network [40].

An essential component regarding the training process of a Machine Learning model
in general as well as a decisive factor to model selection, is the availability in terms of
data annotation. An ML model can be trained in a supervised or unsupervised fashion
with respect to the presence or absence of target outputs in the dataset, respectively. Apart
from these two distinct learning methods, and among others out of the scope of this article,
semi-supervised learning allows an ML model to be trained on both labeled and unlabeled
instances of a dataset, while a model based on a self-supervised learning method utilizes
its inputs to generate targets. In the frame of the present work, a self-supervised approach
is utilized for the purpose of training an Autoencoder model.

2.3.2. Long Short-Term Memory

The fundamental high-level structure of an ANN is reflected through its layer organi-
zation, while the nature of each network layer is dictated by the functionality of its cells,
which can vary depending on the ML task that needs to be accomplished and the data that
need to be processed. In the frame of this work, since our data are in the form of time series,
the LSTM unit is our chosen cell architecture, and, by extension, the LSTM layer.

The LSTM architecture belongs to the class of recurrent neural networks. The simple
RNN unit is distinguished by its ability to handle sequential data, such as time series,
text, audio, etc., where the order of the information matters, by taking into account past
dependencies within the sequence. RNN units implement an internal feedback loop that
allows the processing of a sequence element through the influence of the processed output
of the previous element, thus maintaining a continuous memory state of past information.
Despite their capabilities, RNN’s challenge lies to the handling of longer sequences, which
causes gradients to vanish or become unstable by exploding as the number of stages they
have to go through increases, and the difficulty of maintaining long-term dependencies
becomes apparent. The LSTM cell is one baseline variant of the RNN unit that was
introduced to address the gradient problem [41]. Figure 6 presents the structure of the
LSTM cell, while Figure 7 shows the iterative process within the cell unfolded through time
as each sequence element is introduced.

σ σ tanh σ

× +

× ×

tanh

ct−1

Cell state

ht−1

Hidden state

xtInput

ct

Next cell state

ht

Next hidden state

htOutput

ft it c̃t
ot

Figure 6. Internal architecture of an LSTM cell.
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σ σ tanh σ

× +

× ×

Tanh

ct−2

ht−2

xt−1

ct−1

ht−1

ht−1

σ σ tanh σ

× +

× ×

Tanh

ct−1

ht−1

xt

ct

ht

ht

σ σ tanh σ

× +

× ×

Tanh

ct

ht

xt+1

ct+1

ht+1

ht+1

Figure 7. An LSTM cell unfolded through time.

The data are introduced to an LSTM neural network in a sequential manner as three-
dimensional inputs in the form of (batch_size, time_steps, features), where batch_size refers
to the number of sequences that pass through the network, time_steps is the length of each
sequence, which also defines the number of iterations of the internal cell loop, and features
is the number of data characteristics to be used in the model training, excluding the labels.

The key components of the LSTM cell are two memory states, namely the long-term
memory or carry state c and the short-term memory or hidden state h, and three memory
gates in the form of a sigmoid transformation, namely the forget gate, the input gate and
the output gate (from left to right as shown in Figure 6). The LSTM cell consists of four
simple fully connected one-layer neural networks, each indicated by its utilization of a bias
term, and their outputs for every time step are calculated by the following equations (from
left to right as shown in Figure 6):

ft = σ(W f · [xt, ht−1] + b f ), (2)

it = σ(Wi · [xt, ht−1] + bi), (3)

c̃t = tanh(Wc̃ · [xt, ht−1] + bc̃), (4)

ot = σ(Wo · [xt, ht−1] + bo), (5)

where:

• t is the current time step, or element, of the input sequence,
• ft is the forget gate vector,
• it is the input gate vector,
• c̃tis the temporary cell input vector,
• ot is the output gate vector,
• xt is the current element of the input sequence,
• ht−1is the previous cell’s output,
• Wk are the weight matrices for every one-layer neural network,
• bk are the bias vectors for every one-layer neural network,
• σ is the sigmoid activation function,
• tanh is the hyperbolic tangent activation function.

Out of the four one-layer simple neural networks of the LSTM cell, the one implement-
ing the tanh activation function can be considered as the equivalent of a typical ANN layer
and its activation, thus c̃t acts as the main analyzed input of the cell that is to be considered
for the long-term memory. Additionally, the cell’s outputs in time step t are calculated as
given below:

ct = ct−1 · ft + c̃t · it, (6)

ht= tanh(ct) · ot, (7)

where:

• ct−1 is the previous long-term memory,
• ct is the updated long-term memory,
• ht is the cell’s main output.
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The three gates apply a sigmoid activation function σ to their weighted inputs and
bias, so their outputs are scaled values between 0 and 1, which is indicative of irrelevant
or relevant information with respect to these boundaries, as their next operation is an
element-wise multiplication and these gates are responsible for what information should
be preserved and what should be discarded.

Specifically, the forget gate ft controls the long-term memory state up to the previous
time step ct−1 and what elements should be erased, while the input gate it controls the
current temporary cell input c̃t and what new information from time step t should be
added to the long-term memory ct through Equation (6). The output gate ot controls the
long-term memory state up to the current time step ct, as shown in Equation (7), and what
information should be extracted to act as the short-term memory ht and cell output. All
gates take into account information from the current sequence element xt and the previous
cell output ht−1, and gate values closer to 0 denote irrelevant cell memories to be erased,
while values closer to 1 allow cell memories to be kept as relevant.

Another important distinction to be made regarding the LSTM layer is its output. As
briefly stated, an LSTM layer accepts three-dimensional inputs (batch_size, time_steps,
features), meaning that each sequence of the batch that is being processed through the
layer is a two-dimensional array of shape (time_steps, features). An LSTM layer of size s
can output another two-dimensional array of shape (time_steps, s), where each sequence
element is each cell output hi for every time step i = 1, . . . , time−steps and s is the new
altered feature space, or it can output a vector of size s, which corresponds only to the cell
output of the last time step. The LSTM output depends on the chosen model architecture
and its structure requirements.

2.3.3. Autoencoder

An Autoencoder is a neural network model that depends on reconstructions. It consists
of an encoder that transforms the model’s inputs to codings representative of the most
essential underlying data patterns and a decoder that is tasked to convert those codings to
outputs as close as possible to the original inputs as depicted below:

encoder︷ ︸︸ ︷
X → f (X)→ Y → g(Y)→ X̃︸ ︷︷ ︸

decoder

, (8)

where:

• X is the input to the AE,
• Y is the coding,
• X̃ is the reconstructed output,
• f is the encoder layer transformations,
• g is the decoder layer transformations.

The successful training of the AE is accompanied by the minimization of a loss function
that measures the error between the original input data X and the model reconstructions X̃.
To simplify, an AE learns to copy its inputs to its outputs, although the triviality of an AE
acting as an identity function is not the desired objective and it can be circumvented by
implementing certain restrictions throughout the AE’s architecture.

Notably, the dimensionality of the coding space is of great importance, resulting in
either an undercomplete or an overcomplete AE model [42]. An undercomplete model has
a coding space of lower dimension compared to that of the input feature space, forcing
the model to learn latent feature representations through dimensionality reduction, while
an overcomplete model has a coding space of equal or higher dimension compared to
the input feature space. Despite the fact that an overcomplete model has a higher risk of
copying its inputs without learning anything of importance concerning the data, it can be
regulated by adjusting its capacity regarding the number of encoder and decoder layers,
thus allowing more complex data patterns to possibly be recognized, and, as depicted in
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Figure 1, a stacked Autoencoder is typically realized in a symmetrical manner. Furthermore,
an additional constraint to the overcomplete model can be implemented by adding an
appropriate penalty to the model’s loss function, commonly by imposing restrictions to its
coding layer through a regularizer applied to the layer’s output, encouraging the model to
learn sparse representations of the input data, meaning that the model reduces its available
feature space to keep the most relevant space for its coding.

In terms of anomaly detection, the validity of a trained AE model relies on its recon-
struction error. An AE model that is trained on data of a particular behavior and pattern
returns a small reconstruction error when introduced to never-seen-before data of similar
behavior. On the contrary, when the trained AE model is tasked with reconstructing data
that are significantly divergent from what it has seen during training, the reconstruction
error is notably higher, thus indicating an anomaly condition.

2.3.4. Data Preprocessing

As stated in Section 2.2 of this article, the developed AE model is trained to recognize
the behavior that is presented at the standard operational state of the left mounted ball
bearing unit, but before the data can be fed into the model and utilized for training as well
as validation, they must be preprocessed accordingly.

As a first order of business, out of the 5260 samples of the left unit, the first 80% were
used for training, while the remaining 20% served as a testing dataset to evaluate model
performance and generalization on records of the same behavior; thus, 4208 observations
acted as the training set, while 1052 acted as the testing set. Furthermore, concerning the
time-series spikes, the attribute values were filtered through a rolling median, consequently
eliminating any imbalances during operation since the median can generally smooth out
fluctuations in production data regardless of extreme values. The fixed amount of 24
samples was experimentally selected as the size of the moving window regarding the
calculation of the rolling median, which clearly produced reduced datasets of 4185 and
1029 records for the training and testing set, respectively. In Figure 8, an overview of the
train/test split can be seen, along with the substitute median values.

Figure 8. Segmented training and testing datasets of the left mounted ball bearing unit’s V-RMS
and Temperature attribute values, as well as the respective filtered values of a rolling median with a
moving window of 24 samples.

Afterwards, the V-RMS and Temperature features of the new values were transformed
through a normalization method as both attributes were shifted and scaled to a range with
a minimum of 0 and a maximum of 1, following the transformation below:

Xscaled =
X− Xmin

Xmax − Xmin
· (max−min) + min, (9)
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where:

• X represents each feature’s values,
• Xmin is the feature’s minimum value,
• Xmax is the feature’s maximum value,
• min is the minimun of the new feature range,
• max is the maximum of the new feature range,
• Xscaled represents the new normalized feature values.

As a note, the min and max parameters of the formula, which denote the borders
of the desired feature range, in this occasion are 0 and 1, respectively, and could have
been omitted in Equation (9). The numerical disparity between V-RMS and Temperature
would likely lead to unequal and biased attribute treatment by the model during training in
terms of mathematical calculations, layer parameter configuring or gradient optimization,
resulting in inaccurate model performance and predictions. Feature scaling helps mitigate
these consequences caused by imbalanced numerical attributes by constraining values in
a homogeneous manner and is a recommended practice for the development of stable
and robust DL models. As an important clarification, all datasets used in this work were
transformed after the scaler was fitted to the feature values of the training set, preserving
the training feature Xmin and Xmax values for every subsequent transformation.

In this section, the significance of utilizing LSTM layers in machine learning for train-
ing models capable of analyzing sequential data and recognizing dependencies between
the sequences is explained in detail, so the final step of the current data preparation is
the reshaping of the two-dimensional training dataset to inputs of three dimensions. We
recall that the current shape of the training set is (4185, 2), where 4185 is the number of
observations and 2 is the number of variables (V-RMS and Temperature), while the input
to an LSTM layer is in the form of (batch_size, time_steps, features). A satisfactory course
of action is achieved by producing overlapping windows of 24 consecutive observations,
resulting in a final three-dimensional training set of shape (4162, 24, 2), consisting of 4162 se-
quences of 24 successive records; each sequence element is represented by its two attribute
values. The same sequential transformation applies to every dataset presented in this work.

2.3.5. Modeling and Training

Table 3 presents the final architecture of the Autoencoder model, which was de-
termined empirically after extensive hyper-parameter experimentation, as well as the
dimensionality of each sample as it passes through AE’s layers during training.

Table 3. Proposed Model Architecture.

Input Output

Encoder

LSTM 24× 2 24× 8
LSTM 24× 8 24× 4

LSTM * 24× 4 1× 2

Decoder

RepeatVector 1× 2 24× 2
LSTM 24× 2 24× 4
LSTM 24× 4 24× 8

TimeDistributed (Dense) 24× 8 24× 2
* L1 regularization penalty of 0.00015 applied to layer’s output.

The symmetrical structure, with respect to the feature space of the AE, has a config-
uration of 8-4-2-4-8, where 2 is the feature size of the coding space that holds the latent
representations of the input training data, and since it matches the input feature size, the
model is considered an overcomplete AE. In addition, the AE model falls within the range
of stacked AEs, since the amount of encoder and decoder layers is more than one. The
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capacity of the AE, along with the increased feature space of its layers, allows potentially
more complex patterns to be identified by the model. However, the aforementioned risk of
it being incapable of learning anything of importance and acting as an identity function is
mitigated by the use of a regularizer term in its coding layer.

Furthermore, the first LSTM encoder layer of the proposed AE architecture accepts the
original two-feature input sequences and outputs sequences of an increased feature space of
size 8, which in turn are fed to the next LSTM layer that outputs sequences of four features.
The last LSTM layer of the encoder accepts the previous layers’ outputted sequences and,
after processing the data through its cells, produces only the output of its last cell, meaning
the last time step, which is a two-feature vector that represents the compressed original
input data. The RepeatVector is simply a bridging layer between the encoder and the
decoder, not adding to the model’s parameters, that replicates the encoder’s compressed
representation vector 24 times to form once again a sequence, since the next layer of the
decoder is an LSTM that requires a two-dimensional array as input. Therefore, the first
LSTM layer of the decoder accepts sequences of two features and initiates the reverse
process of unraveling the feature space by outputting sequences of four features, which in
turn are fed to the decoder’s second LSTM layer that outputs sequences of eight features.
Finally, the TimeDistributed (Dense) layer of the AE applies a fully connected linear layer
of a two-feature vector output to every time step of the sequence, meaning to every eight-
feature sequence element, and produces the final model output sequence of the model,
which has a feature space of 2, such as the original inputs.

The loss function which the model would attempt to minimize was chosen to be the
Mean Squared Error (MSE) and is computed by the following formula:

MSE =
1
n
·

n

∑
i=1

(y− ŷ)2, (10)

where:

• y represents the original inputs,
• ŷ represents the model’s outputted reconstructions,
• n is the number of the given samples.

Since the current model’s inputs are batches of sequences of two features, the final error
value is calculated over the mean of each last dimension. Additionally, the loss function
includes a regularization term due to the L1 regularization added to the last LSTM layer of
the encoder for the purpose of penalizing its parameters, consequently modifying the loss
function MSE (10) that the model aims to minimize to the following LF (Loss Function):

LF =
1
n
·

n

∑
i=1

(y− ŷ)2 + λ ·
m

∑
i=1
|zi|, (11)

where:

• λ is the regularization parameter,
• m is the number of parameters in the layer,
• zi are the values of the layer’s parameters.

During each training step, the gradients of the loss function with respect to the model’s
parameters are computed; therefore, the regularized layer’s parameters are impacted by the
added penalty term and the model is encouraged to minimize those that contributed more
to the error, forcing them closer to zero, thus leading to sparse parameters in the model
where those of higher value are indicative of more important features, which is the desired
objective of the Autoencoder’s coding layer. In addition, regularization parameter λ is set
to 0.00015, as presented in Table 3, while the optimization method selected for training
the model, regarding its parameter reconfiguration throughout the training process, after
their respective error contribution is computed, is the Adam optimizer with a learning
rate of 0.001. Both the loss function and the optimizer of the model were chosen through
experimental investigation and by monitoring the training progress.
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After the necessary data preparation and model finalization, the 4162 sequences were
shuffled before they passed through the layers of the model for the training process in
random batches of 32 instances. A total of 100 epochs was selected as the number of
training iterations, and an additional 20% of the training data were randomly reserved
for validation and monitoring model performance during training throughout the epochs
which the model did not train on. Moreover, the metric of Root Mean Squared Error (RMSE)
was also observed throughout the training process as additional useful information for
model evaluation, along with the values of the modified loss function represented by the
average across all the batch computed losses in each epoch. The monitored loss function
and metric values over the 100 epochs are presented in Figure 9.
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Figure 9. Regularized MSE Loss Function (left) and RMSE Metric (right) value progress during
model training.

The training of the model throughout the epochs seems to be successful since it
performs satisfactorily on both the training and the reserved never-seen-before validation
data. The regularized loss function appears to minimize successfully, while the model’s
performance on the validation data, in terms of loss and metric values, follows the pattern
of training data without any significant deviation that would have the validation values
increasing. Specifically the final epoch yielded an average loss of 0.001712 and an RMSE
of 0.040854 on the training data, while the respective values on the validation data were
0.001125 and 0.033024. The training progress is indicative of a well-trained model that
would generalize well on new instances that follow similar data behavior, and, as an
important remark, its evaluation will be validated through the means of the unregularized
MSE loss function of Equation (10).

3. Results
3.1. Evaluation Threshold

As mentioned, an AE trained model for anomaly detection purposes is evaluated on
its reconstruction error of the inputs it processes, and, if that error exceeds a predetermined
threshold, then an anomaly condition is captured indicating dissimilarity to the data on
which the AE model was trained. This work follows a naive threshold approach since the
encumbered operational state of the two mounted ball bearing units was not erroneous for
the industrial machinery, and the term anomaly refers mainly to the bearings’ diverging
reading behavior rather than a fault condition being detected. In that regard, the trained
AE model was used for inference on the entire training set of 4162 sequences as described
in Section 2.3.4, including the reserved validation data that were not utilized in the training
process, and the reconstructed sequences were obtained. Finally, the MSE loss for each
individual sequence and its reconstruction was calculated, and the rounded up maximum
loss value of 0.02142 was selected as the evaluation threshold.
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3.2. Evaluation on the Left Bearing Unit

As an important remark, every subsequent model evaluation process is implemented
on the filtered, normalized and sequential data values, the transformation of which is
presented in Section 2.3.4, and the final dataset dimensionality is summarized in Table 4.

Table 4. Dataset Dimensionality.

Dataset Original
Dimension *

Sequential
Dimension

Left—Normal State (training set) (4185, 2) (4162, 24, 2)

Left—Normal State (testing set) (1029, 2) (1006, 24, 2)

Left—Encumbered State (2618, 2) (2595, 24, 2)

Right—Normal State (5237, 2) (5214, 24, 2)

Right—Encumbered State (2618, 2) (2595, 24, 2)
* after median filtering.

The performance of the AE model was initially evaluated on the reserved testing
dataset of the left mounted ball bearing unit’s normal operational state, as it is segmented
and displayed in Figure 8, for the purpose of confirming its generalization ability to data of
the same behavior, which the model did not see during its training. After the 1006 sequences
of the dataset were processed by the trained AE model and their reconstructions were
obtained, the respective MSE losses were calculated and compared to the predetermined
threshold of 0.02142. An identical process was implemented for the examination of the left
unit’s encumbered operational state and its dataset of 2595 sequences. Figure 10 displays
the MSE loss values of the reconstructions of the two datasets mentioned.
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Figure 10. Reconstruction errors, in terms of MSE, for the left unit’s normal operational state testing
set (left) and encumbered state set (right), compared to a set threshold of 0.02142.

As expected, newly introduced data of the same behavior as the training set are recon-
structed adequately by the trained AE model and their MSE loss values are significantly
below the selected threshold. Moreover, it is apparent that the majority of sequences on the
left bearing unit’s encumbered state dataset have a considerably higher reconstruction error.
Specifically, out of the 2595 sequences, 1739 are characterized as anomalous, while the rest
are considered acceptable in terms of bearing operational behavior. Through several prelim-
inary attempts, regarding model development and training, the accepted reconstructions
of the encumbered state dataset amounted to over 2200 sequences, which is significantly
higher compared to the current result; however, since the encumbered operational state
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was not erroneous to the industrial equipment, a less strict model was investigated and
ultimately implemented.

Additionally, Figure 11 presents two random original input sequences of normal
and encumbered V-RMS values along with their reconstructions produced by the trained
AE model, while Figures 12 and 13 show the mean of each original and reconstructed
sequence for the purpose of a visual overview of the entire time series of both V-RMS and
Temperature attributes for the normal and encumbered operational states.

Figure 11. A random V-RMS sequence of the left mounted ball bearing unit’s normal operational
state (left) and a random one of its encumbered operational state (right), along with their respective
reconstructions as they were produced by the trained AE model, are displayed. The input sequences
consist of 24 consecutive and normalized values, as obtained during the described data preprocessing.
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Figure 12. Each input point of the graphs represents the mean value of every original input sequence,
while each reconstruction point represents the mean value of every respective outputted reconstruc-
tion sequence by the trained AE model. The V-RMS mean sequence values of the left bearing unit
during its normal (top) and encumbered (bottom) operational state are presented, and all sequence
means displayed are obtained through the normalized values.
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Figure 13. Each input point of the graphs represents the mean value of every original input se-
quence, while each reconstruction point represents the mean value of every respective outputted
reconstruction sequence by the trained AE model. The Temperature mean sequence values of the left
bearing unit during its normal (top) and encumbered (bottom) operational state are presented, and
all sequence means displayed are obtained through the normalized values.

3.3. Evaluation on the Right Bearing Unit

Using an identical procedure of model inference and MSE calculation, Figure 14 shows
the respective reconstruction errors of the right bearing unit’s normal and encumbered
operational behaviors.
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Figure 14. Reconstruction errors, in terms of MSE, for the right unit’s normal operational state set
(left) and encumbered operational state set (right) compared to a set threshold of 0.02142.

The trained AE model clearly captured the slightly burdened circumstance halfway
through the right unit’s normal operating condition, which was a fairly probable outcome,
as well as two other occurrences before and after the obvious one mentioned, amounting to
165 anomalous sequences out of 5214. The two unexpected occurrences constitute as false
positive results in terms of anomaly detection when, in fact, there is none since the data
examined are assumed to be indicative of a normal operational behavior, although in the
frames of an actual industrial production, a flagged anomaly would warrant a maintenance
inspection. Furthermore, during the model’s evaluation on the encumbered operational
state, only 165 of the 2595 sequences of the dataset were considered of acceptable operating
condition, likely due to the right unit’s proximity to the centrifugal fan of the industrial
blower which highly affected its readings.
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Similar to the visual overview of the previous subsection for the left bearing unit,
Figure 15 shows two random VRMS sequences and their reconstructions for the right unit’s
normal and encumbered state, while Figures 16 and 17 present an average overview of
the input and reconstructed sequences for the V-RMS and Temperature time series of the
normal and encumbered operational states.

Finally, Table 5 offers a comparative overview of the Reconstruction Errors between
normal and encumbered ball bearing unit operation that are presented in the previous
Figures of Section 3, mainly Figures 11–13 of the left bearing unit and Figures 15–17 of the
right bearing unit.

0 5 10 15 20
Sequence Elements

−0.04

−0.02

0.00

0.02

V-
RM

S
(n
or
m
al
ize

d)

Right Bearing Unit
Normal State
Input Sequence
Reconstruction
Reconstruction Error

0 5 10 15 20
Sequence Elements

1.0

1.5

2.0

2.5

3.0

V-
RM

S
(n
or
m
al
ize

d)

Right Bearing Unit
Encumbered State

Input Sequence
Reconstruction
Reconstruction Error

Figure 15. A random V-RMS sequence of the right mounted ball bearing unit’s normal operational
state (left) and a random one of its encumbered operational state (right), along with their respective
reconstructions, as they were produced by the trained AE model, are displayed. The input sequences
consist of 24 consecutive and normalized values as obtained during the described data preprocessing.

Figure 16. Each input point of the graphs represents the mean value of every original input sequence,
while each reconstruction point represents the mean value of every respective outputted reconstruc-
tion sequence by the trained AE model. The V-RMS mean sequence values of the right bearing unit
during its normal (top) and encumbered (bottom) operational state are presented, and all sequence
means displayed are obtained through the normalized values.
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Figure 17. Each input point of the graphs represents the mean value of every original input se-
quence, while each reconstruction point represents the mean value of every respective outputted
reconstruction sequence by the trained AE model. The Temperature mean sequence values of the
right bearing unit during its normal (top) and encumbered (bottom) operational state are presented,
and all sequence means displayed are obtained through the normalized values.

Table 5. Reconstruction Errors (MSE).

Reconstructed Sample Normal State Encumbered State

Random V-RMS sequence
of Left Bearing Unit 0.0003695 0.0897462

Mean V-RMS time series
of Left Bearing Unit 0.0000993 0.0761422

Mean TEMPERATURE time series
of Left Bearing Unit 0.0000795 0.0096677

Random V-RMS sequence
of Right Bearing Unit 0.0002662 0.8246717

Mean V-RMS time series
of Right Bearing Unit 0.0027108 1.0057427

Mean TEMPERATURE time series
of Right Bearing Unit 0.0002835 0.0652557

4. Discussion

To maintain their edge in their fields, businesses must strive for productivity and
efficiency, thus more and more industries are taking advantage of I4.0 innovations by
integrating them to their maintenance policies since healthy machinery and equipment
failure mitigation allow sustainability as well as minimization of production costs.

In the present work, a sequence-to-sequence sparse stacked Autoencoder model was
developed based on LSTM layers for the purpose of detecting anomalous behavior by
processing consecutive multivariate sensor readings captured throughout production. The
industrial machinery investigated was an industrial blower with sensor devices attached to
its right and left mounted ball bearing units during normal and encumbered operational
states. The available data were appropriately preprocessed and the model was trained on
the left unit’s normal operation data before evaluated against the rest.
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The trained AE model was successful in confirming the normal operational behavior,
especially in the case of the right bearing unit, thus validating the model’s adaptability
to similar equipment readings of the same machinery. Furthermore, the model was able
to detect anomalous sequences in the burdened working condition on both bearing units
despite deeming sequences of the encumbered dataset as acceptable due to its less strict
nature. This was an acceptable outcome since the burdened working state of the actual
machine was not necessary erroneous enough to cause a halt in production.

It should be noted that this research was made possible with the cooperation of industrial
partners and is a part of larger project consisting of modules including data acquisition,
real-time processing, visualization and alerting with the ultimate goal of transitioning from
preventive to predictive maintenance policies. During the project, we had to overcome several
implementation constraints, not only from a technical and scientific point of view but also
practical difficulties concerning the uninterrupted operation routine of the production line.
As a result, certain design decisions were dictated by the need of following non-invasive
procedures in order to avoid disruption of the operation schedule of the plant.

Future work could include the development of a more complex, in terms of its architec-
tural layers and number of nodes, AE model, or a stricter one regarding its regularization
coding penalty. Application of these two future models using the current dataset can be in
turn evaluated and compared to with the current implementation.

5. Conclusions

In conclusion, this study presented a deep learning approach for predictive main-
tenance of machinery using LSTM Autoencoders. The approach was applied to assess
the operational behavior of two bearing units. A stacked sparse LSTM Autoencoder was
trained on data from the left unit under normal operating conditions, allowing the model
to learn the underlying patterns and statistical relationships within the data. The model’s
performance was evaluated using the Mean Squared Error on data from the left unit in
an encumbered state and on data from the right unit. The results showed that the model
performed well on all datasets, demonstrating its ability to generalize and adapt to assessing
the behavior of similar equipment. This approach has the potential to improve predictive
maintenance practices by providing accurate and reliable assessments of machinery behavior.

The proposed prototype was implemented in Python and trained on custom real-
world data. The results of the case study showed the potential for reducing redundant and
preventive stoppages in the production line, thereby decreasing the cost of maintenance
operations. However, further testing with larger datasets of high-quality data over a longer
period is necessary to fully evaluate the performance and accuracy of the prototype. However,
a serious difficulty remains the need for maintenance records to label the datasets with
maintenance events such as component breakdowns, which may not be publicly available.
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