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Abstract: This paper considers the task of appearance-based localization: visual place recognition
from omnidirectional images obtained from catadioptric cameras. The focus is on designing an effi-
cient neural network architecture that accurately and reliably recognizes indoor scenes on distorted
images from a catadioptric camera, even in self-similar environments with few discernible features.
As the target application is the global localization of a low-cost service mobile robot, the proposed
solutions are optimized toward being small-footprint models that provide real-time inference on
edge devices, such as Nvidia Jetson. We compare several design choices for the neural network-based
architecture of the localization system and then demonstrate that the best results are achieved with
embeddings (global descriptors) yielded by exploiting transfer learning and fine tuning on a limited
number of catadioptric images. We test our solutions on two small-scale datasets collected using
different catadioptric cameras in the same office building. Next, we compare the performance of our
system to state-of-the-art visual place recognition systems on the publicly available COLD Freiburg
and Saarbrücken datasets that contain images collected under different lighting conditions. Our
system compares favourably to the competitors both in terms of the accuracy of place recognition
and the inference time, providing a cost- and energy-efficient means of appearance-based localization
for an indoor service robot.

Keywords: omnidirectional vision; mobile robot; localization; deep learning; edge computing

1. Introduction

The rapid development of robotics and artificial intelligence applications is leading
to the proliferation of mobile service robots [1,2]. Technological advancements, such as
artificial intelligence and machine learning, have significantly improved the capabilities and
autonomy of these robots, making them more efficient and reliable in performing various
tasks. Additionally, the increasing demand for automation and efficiency in industries such
as healthcare, hospitality, and logistics has created a strong market incentive for developing
and deploying service mobile robots.

Also, the growing need for eldercare robots has become increasingly evident as the
global population ages. These robots can provide valuable assistance and companionship to
older adults, monitoring their health and enhancing their overall well-being [3]. However,
these robots must be affordable to ensure widespread accessibility and adoption among
families and caregivers [4].

A common requirement in these service robots is to be able to localize within their
workspace, which is usually a man-made indoor environment [5]. Although precise
position tracking can be provided by a SLAM (simultaneous localization and mapping)
system using vision or RGB-D data, the issue of global localization remains a problem
when the robot’s previous position data cannot be used [6]. Such a problem in practice
arises, for example, in dynamic environments due to occlusions. There are practical global
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localization algorithms, such as the one proposed in our previous work [7], but they have
two functional limitations, namely, they require long-range sensors to extract features that
are distant from the robot and are computationally expensive. These features make them
unsuitable for a small and inexpensive service robot.

Therefore, we propose a solution to the problem of global localization in a known
(entirely or partially) environment using a passive catadioptric camera and the principle of
recognizing places previously visited by the robot (Figure 1). The applied sensor with a
catadioptric camera is a variant of the biologically inspired sensor with a hybrid field of view
that we introduced in [8]. This sensor uses a catadioptric camera to achieve omnidirectional
vision, an analogue of the peripheral vision found in vertebrates [9]. It allows animals to
orient themselves to changes and hazards in the environment quickly. The sensor described
in [8,9] is complemented by a moving perspective camera that performs the functions
of foveal vision, the more accurate but spatially limited vision mode in animals. This
function is not used in the research presented in this article, as we limit the scope to global
appearance-based localization, i.e., the assignment of the robot’s current location to one
of the previously recognized (visited) places. Our approach yields information about
the similarity of the places observed in the current perception and locations stored in a
reference map.

Figure 1. Overview of the proposed method—a flowchart of the appearance-based localization
system. The service robot is shown with the latest, larger-field-of-view catadioptric camera, but
without the perspective camera, which is not used in this research.

Although appearance-based localization does not provide an accurate metric position
of the robot in a global reference system, the ability to tell if the robot is close to one of
the known locations is often sufficient for indoor navigation [10]. If a map of reference
places is collected at high density (e.g., based on a grid with cells of one meter in size or
smaller), this kind of localization may be sufficient for the service robot’s tasks. In addition,
appearance-based localization can be supplemented by visual odometry or the recognition
of artificial landmarks deployed at a given location [11]. The perspective camera of a hybrid
sensor can be used to perform these functions. The main objectives of this research work
are the following:

• Experimental analysis of neural network architectures in search of an architecture for
an image-based place recognition system suitable for implementation on an embedded
computer of an intelligent vision sensor with limited power and resources.

• Experimental verification of the possibility of using catadioptric camera images in the
appearance-based localization task without developing them into panoramic form
significantly reduces the computational load.

• Analysis of the strategy for creating training sets in a place recognition task, assum-
ing that the obtained solution should be generalized to different image acquisition
conditions, mainly depending on illumination.

We propose a novel approach that adopts a convolutional neural network (CNN)
architecture to directly process the omnidirectional images for real-time place recognition
to meet these objectives. CNNs are specialized for processing grid-like data, particularly
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images, using convolutional layers and parameter sharing to capture spatial patterns
effectively. The proposed system leverages the concept of global image descriptors, which
are already proven to be efficient in place recognition [12]. We employ a CNN to produce the
descriptors in the form of embedding vectors directly from the omnidirectional images, thus
avoiding the processing overhead required for computing undistorted panoramic images,
which are often used in appearance-based localization with catadioptric cameras [13]. The
proposed architecture is optimized for inference on the Nvidia Jetson TX2 edge computing
platform integrated with our sensor. The low-cost Jetson TX2 board is designed for peak
processing efficiency at only 7.5 W power. Regarding energy consumption for image
processing, the Jetson TX2 has a clear advantage over an x86-based platform [14]. While the
exact power consumption will depend on the specific image processing workload, the Jetson
TX2 is designed to provide a good balance between performance and energy efficiency [15].
Hence, by applying an integrated sensor with an edge computing platform and developing
a matching small-footprint neural network architecture, we obtain a self-contained, energy-
efficient, and compact system for real-time appearance-based localization that can be
integrated with practically any mobile service robot, providing this robot with reliable
global localization capabilities at low cost. The contribution of this paper is threefold:

1. A novel, simple-yet-efficient CNN-based architecture of the appearance-based local-
ization system that leverages a lightweight CNN backbone trained to apply transfer
learning to produce the embeddings and the K-nearest neighbours method for quickly
finding an embedding matching the current perception.

2. A thorough experimental investigation of this architecture, considering several back-
bone network candidates and omnidirectional or panoramic images used to produce
the embeddings. The experiments were conducted on three different datasets: two
collected with variants of our bioinspired sensor and one publicly available.

3. An investigation of the strategies for creating the training set and the reference map
for the localization system conducted on the COLD Freiburg dataset. This part
of our research allowed us to test how our neural network model generalizes to
images acquired under different lighting/weather conditions. It resulted in the
recommendation of using data balanced concerning their acquisition parameters,
improving generalization.

The remainder of this article is structured as follows. Most important related works
are reviewed in Section 2. Section 3 introduces the proposed architecture of the localization
system and details the neural networks being used. Next, Section 4 describes the exper-
imental setups and dataset used to test various aspects of the proposed solution, while
Section 5 provides the results of experiments and contributes an in-depth analysis of the
performance of different variants of the investigated system. Finally, Section 6 concludes
the article and proposes future extensions.

2. Related Work

Appearance-based localization from omnidirectional images has garnered significant
attention in computer vision and robotics. Researchers have developed various techniques
to address the challenges posed by the distortion and wide field of view of omnidirectional
cameras. This section reviews the most relevant works that have contributed to the state of
the art in this area.

The application of passive vision sensors for localization was extensively researched
in robotics, resulting in several visual Simultaneous Localization and Mapping (SLAM)
algorithms [16]. However, the applications of visual SLAM on commercially viable mobile
robots are limited by the often-insufficient on-board computing resources of such robotic
platforms and due to problems raised by the changing lighting conditions, rapid changes
of viewpoint while the robot is moving, and the lack of salient local features in some indoor
environments. Moreover, SLAM does not guarantee to solve the global localization problem
whenever the robot loses track of its pose due to any of the issues mentioned above [17].
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Therefore, the appearance-based recognition of locations becomes an exciting addition
to visual SLAM for closing the loops and relocalizing a lost robot [18]. This approach,
in many variants, is also considered a localization method on its own, which is particu-
larly suitable for large-scale outdoor scenarios [10]. Unlike the visual SLAM algorithms,
appearance-based localization methods only determine if the observed scene resembles an
already visited location. However, the place recognition methods scale better for large envi-
ronments than typical SLAM algorithms [19]. In this context, catadioptric cameras yielding
omnidirectional images improve the reliability of place recognition for robot localization in
comparison to the narrow-field-of-view perspective cameras, as demonstrated by the work
on the COsy Localization Database (COLD) dataset [20], which we also use to evaluate our
localization system. An interesting research direction is to use image sequences instead
of individual images, which decreases the number of false positives in place recognition
for environments with self-similarities and increases the robustness of scene dynamics [12].
We applied this idea in our earlier work on place recognition for mobile devices [21], mak-
ing it possible to implement robust place recognition on a smartphone with very limited
computing power, while still using nondistorted perspective images.

In the appearance-based methods, each image is described by descriptors of salient
features contained in this image, or is directly described by a whole-image descriptor.
Although SURF features were used directly in appearance-based localization perform-
ing image retrieval in a hierarchical approach [22], the direct matching of local features
is considered inefficient for place recognition [10] if point feature descriptors are used
(such as the popular SIFT, SURF, and ORB [23]). Hence, the bag of visual words (BoVW)
technique [24] is commonly used, which organizes the features into a visual vocabulary.
Next, images described by visual words can be efficiently matched by comparing binary
strings or histograms. One prominent example of a location recognition algorithm employ-
ing the BoVW technique is FAB-MAP [25,26], which efficiently compares images with a
histogram-based approach.

Global image descriptors have proven effective for capturing the overall appearance of
omnidirectional images [27]. Earlier works focused on adapting existing, general-purpose
feature extraction and matching algorithms. Menegatti et al. [28] proposed using the
Fourier transform to handle geometric distortions in catadioptric images. More recently,
Payá et al. [29] introduced a method based on the Radon transform to extract global envi-
ronmental descriptions from omnidirectional images. These works provided foundations
for subsequent research by addressing the specific characteristics of omnidirectional images.
Examples of hand-crafted descriptors adopted for the global description of omnidirectional
images include HOG (histogram of oriented gradients) [30] and Gist [31], which were
applied to omnidirectional images from a catadioptric camera in appearance-based local-
ization by Cebollada et al. [32]. While both these methods of image description provided
relatively efficient descriptions of the images, allowing the localization system to recognize
the places accurately, the descriptor construction algorithms initially developed for per-
spective camera images required the catadioptric images to be undistorted and converted
to panoramic images, which creates a significant computation overhead.

Machine learning methods have gained popularity in place recognition, also from om-
nidirectional images [33]. Working with typical perspective images, Li et al. [34] proposed
an image similarity measurement method based on deep learning, which combines local
and global features to describe the image and can be used for indoor place recognition for
a robotic agent. Significant progress in appearance-based localization and navigation was
achieved by the NetVLAD approach [35], a CNN-based method that aggregates local fea-
tures for global image representation. The NetVLAD network consists of a CNN for feature
extraction and a layer based on vector of locally aggregated descriptors—VLAD [36]. In this
architecture, VLAD is a feature quantization technique similar in concept to the bag of visual
words idea, as it captures information about the statistics of an image’s local descriptors. The
VLAD is a method for combining descriptors for both instance-level searches [37] and image
classification [38]. Although Cheng et al. [39] used NetVLAD with panoramic images from
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an omnidirectional system, this approach was demonstrated successfully, mainly in outdoor
scenarios working with perspective camera images. For indoor scenarios, [13] introduced
the omnidirectional convolutional neural network (O-CNN) architecture, which, similarly
to our approach, is trained to retrieve the closest place example from the map. Whereas the
O-CNN architecture takes advantage of the omnidirectional view by incorporating circular
padding and rotation invariance, it requires the omnidirectional images to be converted
to their panoramic counterparts. Also, Cebollada et al. [40] demonstrated the benefits of
solving localization problems as a batch image retrieval problem by comparing descriptors
obtained from intermediate layers of a CNN. A CNN processing rectangular panoramic
images reconstructed from the original catadioptric input is used in this work.

As the construction of invariant feature descriptors for omnidirectional images is
problematic, Masci et al. [41] proposed to learn invariant descriptors with a similarity-
preserving hashing framework and a neural network to solve the underlying optimization
problem. Ballesta et al. [42] implemented hierarchical localization with omnidirectional
images using a CNN trained to solve a classification task for distinguishing between
different rooms in the environment and then a CNN trained for regression of the pose
within the recognized room. Although this solution does not require converting the
catadioptric images into panoramic ones, its performance is limited by the employed
two-stage scheme with separated classification and regression steps. More recent work
from the same team [43] solved the appearance-based localization problem by applying
a hierarchical approach with the AlexNet CNN. Assuming an indoor environment, they
first accomplished a room retrieval task and then carried out the fine localization step
within the retrieved room. To this end, the CNN was trained to produce a descriptor,
which was compared with the visual model of the selected room using a nearest neighbour
search. This approach does not require panoramic conversion of the collected catadioptric
images and is overall most similar to the solution proposed in this paper. However, we
introduce a much simpler, single-stage architecture based on a recent, lightweight CNN
backbone, and the concept of direct retrieval of the image stored in the environment
map, which is most similar in appearance to the query image. The efficient process of
constructing the embeddings from a pretrained CNN, followed by a fast comparison
of these embeddings/descriptors in the KNN framework, allowed us to give up with
separated room retrieval in favour of a single-stage architecture, which suits our embedded
computing platform well. We compare it directly to the results shown in [43] on the
COLD Freiburg dataset, demonstrating our approach’s superior performance and real-
time capabilities.

3. Localization System Architecture

In the proposed localization system, the robot figures out its current location by
determining the similarity between the currently captured image (query image) and images
stored in a database (map) describing the environment. This task refers to efficient, real-time
image retrieval [10]. The localization procedure involves comparing a global descriptor
constructed in real time from the image currently captured by the robot with a previously
prepared database of descriptors representing the images of previously visited places and
finding the image with the highest possible similarity in the feature space (Figure 2). Each
location has its representation in the prepared database of images, and the locations where
the images were taken are assumed to cover the entire robot’s workspace. Images from the
database are recorded at known locations, so finding one with the minimum distance (in
the sense of similarity of appearance) to the current perception allows our robotic agent to
approximate its location in the real world.
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Figure 2. Diagram of the CNN-based image description blocks that produce embeddings used
as global descriptors in the localization system. The global map is built from ni images (i1 . . . ini )
converted to embedding vectors~di that are stored in the map Dembeddings of ni embeddings (global
descriptors). Note that panoramic images can be used as well instead of the omnidirectional ones.

The proposed localization system uses a CNN to determine the set of natural features
for a given location, and the K-nearest neighbours (KNN) [44,45] algorithm to find the
closest image from the provided database of images.

CNN and KNN are both machine learning techniques, but differ in their approach and
application. CNN learns hierarchical representations of data through multiple convolu-
tional layers, pooling, and fully connected layers. In contrast, KNN is a simple and intuitive
algorithm for classification and regression tasks. It makes predictions based on the similar-
ity of new data points to the existing labelled data points in the feature space. One can use
CNN to extract features from images and then apply KNN to those extracted features for
classification. This hybrid approach leverages the strengths of both algorithms, with CNN
capturing intricate patterns and KNN using the extracted features for classification [46].
This idea is used in our localization system. The backbone CNN creates descriptors, which
hereinafter are also called “embeddings”, directly from the omnidirectional images, avoid-
ing the additional computations required to obtain undistorted panoramic images. The
KNN algorithm uses the embeddings that encode the most salient features of the observed
places, to find in the database (i.e., the global map) the images that best match the cur-
rent observation. In Section 4, we demonstrate that the accuracy of localization with raw
catadioptric images is at least as good as with the converted panoramic images, while it
demands less computing power.

The preparation of the CNN model is based on training the network to correctly
recognize places, with the specific aim of training the higher layers of the network to extract
feature maps specific to each location properly. Because the CNN used as the backbone of
our system is pretrained on images unrelated to the target domain (ImageNet dataset [47]
was used in pretraining), the network was fine-tuned before use by unfreezing several
layers and training on the target domain images using cross-entropy as a loss function.
Cross-entropy defines the distance between two probability distributions according to
the equation:

H(P(y, 1 − y), P(ypred, 1 − ypred)) = P(y) log
(

P(ypred)
)
+ P(1 − y)log

(
P(1 − ypred)

)
, (1)
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where y—the actual location; ypred—the location obtained via a neural network; P(y, 1 − y)—the
probability distribution of the actual location; P(ypred, 1 − ypred)—the probability distribution
of the location determined via a neural network (prediction).

At first, the images are processed by the trained convolutional neural network, from
which the output layer was removed, to obtain descriptors (in the form of embedding
vectors) that describe the global characteristic features of each image in the database,
i.e., each unique place visited by the robot. In this way, a global map of all locations
based on reference images is created. Not all convolutional network architectures from
the literature can be used on a robotic onboard computer with fewer computational and
memory resources.

This research uses backbone networks from the MobileNet [48] and EfficientNet [49]
families, which are optimized for mobile devices while ensuring high accuracy with a min-
imal number of parameters and mathematical operations. The MobileNet model uses
depth-separated convolution layers consisting of depth-wise convolution and point-wise
convolution. Convolution concerning depth (spatial convolution) is used to apply a single
filter for each input channel. In MobileNet V2, a new module with inverted residual
structure has been introduced, there are two types of blocks. One is an inverted residual
block of width 1. The other one is a block of width 2 to reduce the size of the feature
map. There are three layers for both types of blocks. The first layer is a 1 × 1 convolution
with the ReLU activation function, and the second layer is a convolution against depth. The
third and final layer is another convolution of size 1 × 1, with linear bottlenecks. Residual
blocks connect the beginning and end of the convolutional block via a skip connection.
Adding these two states allows the network to access previous activations not modified in
the convolution block. This approach has proven to be essential for building networks of
large depths. In MobileNet V2, the basic convolutional layer is called MBConv and contains
an inverted residual block with linear bottleneck and depth-separated convolution, with
batch normalization behind each convolutional layer.

The EfficientNet model, which we have selected for our final architecture, can be
seen as a further step towards efficiency compared to the MobileNet model. EfficientNet
uses a complex model scaling technique based on a set of specified coefficients. Instead of
randomly scaling width, depth, or resolution, compound scaling uniformly scales each di-
mension using some fixed scaling coefficient set. Such scaling only increases the predictive
ability of the network by replicating the underlying convolutional operations and structure
of the network. EfficientNet uses the MBConv blocks as in the MobileNet V2 network, but
with a squeeze-and-excitation (SE—[50]) block being added. This structure helps reduce
the overall number of operations required and the model’s size.

The backbone CNN extracts from the image features that uniquely describe different
locations and builds embedding vectors that serve as global image descriptors in our
system. In the next step, the algorithm creates an index from the global map, which is
used for efficient similarity search. The original images collected by the robot are no longer
needed for localization and the obtained global map has a compact form. All operations to
produce the global map are performed offline.

Then, to localize the robot, we need to query the global map (database of embeddings)
with the descriptor/embedding produced from the current perception of the agent, which
boils down to a similarity search task. Similarity search is a typical issue in machine
learning solutions using embedding vectors, and becomes increasingly difficult as the
vectors’ dimensions and/or size increase. Classic methods for finding similarity between
vector-described elements in an extensive database include linear search and search in
K-D-trees [51]. K-D-trees are binary trees used to organize points representing data in
a K-dimensional space and allow for a very efficient search of points in that space, including
a nearest neighbour (NN) search, which we are interested in [52].

Each node in the tree represents a K-dimensional point. Each nonleaf node in the
tree acts as a hyperplane, dividing the space into two parts. Using a K-D tree for nearest
neighbour search involves finding the point in the tree that is closest to a given query
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point. For this purpose, the algorithm traverses the tree and compares the distance between
the query point and points in each leaf node. Starting from the root node, it recursively
moves down the tree until it reaches the leaf node, following the same procedure as when
inserting a node. Many implementations of the nearest neighbour search using K-D-trees
are known in Python, including the very popular SciKit-Learn library. However, for this
project, we selected the Facebook AI Similarity Search (Faiss) library [53], written in C++
with wrappers for Python and support for GPU, which suits our implementation on Nvidia
Jetson well. The Faiss library solves our similarity search problem using indexing and
searching with the KNN method. Once the index type is selected, the algorithm processes
the embedding vectors obtained from the neural network and places them in the index.
The index can be stored on disk or in memory, and searching, adding, or removing items to
the index can be performed in real-time. In addition, the Faiss library has an autotuning
mechanism that scans the parameter space and selects those parameters that provide the
best possible search time at a given accuracy.

Place recognition begins by loading the learned CNN model and index of images (map)
into memory, and then the captured images (queries) are compared with the previously
created image database using the KNN algorithm in the space of embedding vectors. The
embeddings are compared using L2 (Euclidean) distance, which has been shown to be more
computationally efficient than feature binarization followed by the comparison applying
Hamming distance [36,54].

Once the similarity between the query image and the map is determined, the results
are presented in the form of the image retrieval accuracy and the position error between
the query image and the map image determined as the most similar one. As we assume
that ground truth positions for all map images and query images are known, as in the
COLD dataset [55], we simply use the Euclidean distance in metric space to quantify this
error. The averaged Euclidean distance is used to calculate the position error over an entire
experiment involving many queries. The arithmetic mean is calculated over all places
according to the equation:

bL =
∑n

i=1

√
(xgti − xei)

2 + (ygti − yei)
2

n
, (2)

where bL—the average position measurement error; n—the number of query images;
xgti —the x coordinate for the ground truth location of the i-th query image; xei —the x
coordinate for the estimated location of the i-th query image; ygti —the y coordinate of the
estimated location of the i-th query image; yei —the y coordinate for the estimated location
of the i-th query image.

The architecture of the localization system shown in its general form in Figure 1 was
tested in several variants differing in the type of neural network used as an extractor of
image embeddings and the use of catadioptric camera images directly or images converted
to panoramic form. The suitability of the NetVLAD approach in the described system was
also investigated. The investigated variants are described in the next section of this paper.

4. Experiments

To confirm the proposed solution’s effectiveness and determine the best-performing
CNN architecture, experiments were carried out at the Mechatronics Centre of Poznań
University of Technology using two catadioptric cameras with different parameters. Then,
experiments with the publicly available COLD database were carried out to demonstrate
the performance of our approach with respect to selected state-of-the-art solutions in
appearance-based localization on this dataset.

4.1. Experiment 1: Integrated Sensor on a Mobile Robot

A Labbot robot (Figure 3a) with an integrated catadioptric vision sensor was used in
the first scenario. The catadioptric camera in this sensor consists of a Microsoft LifeCam
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and a hyperbolic mirror, which provides a field of view of 360◦ and produces images with
a resolution of 640 × 480. The images are processed by a Nvidia Jetson TX2 computer
integrated with the sensor [8] The Jetson TX2 offers a 256-core Pascal architecture General
Purpose Graphics Processing Unit (GPGPU) to support the real-time operation of the
localization system.

Figure 3. Labbot mobile robot with the integrated sensor with a catadioptric camera (a); robot paths
during image collection—different colours indicate different paths (b).

The considered dataset contains 606 images (Figure 4a,b), which were recorded
on three floors of the Poznań University of Technology Mechatronics Centre building
(Figure 3b). All images were subjected to a masking process (Figure 4c) to remove ar-
eas that did not contain useful information. Using the localization system described in
Section 3, embeddings of 2048 × 1 in size were calculated for each image and registered in a
database of 2048 × n in size, which is a global map based on n reference images (n = 484 in
the experiment). The robot’s main localization task uses the integrated sensor’s Jetson
platform in real time. The configuration of the localization system in this experiment was
the following:

• Raw catadioptric images were used (cf. Figure 4) without converting them to panoramic
images.

• The neural network used to produce the embeddings was EfficientNet, which was
selected upon literature-based analysis.

The EfficientNet architecture has gained prominence as an effective solution for image
processing on edge devices due to its remarkable balance between accuracy and efficiency.
By leveraging techniques like compound scaling, which uniformly scales the network
width, depth, and resolution, EfficientNet optimizes the model’s architecture to maximize
accuracy while minimizing the number of parameters and computations. This enables
real-time inference and efficient utilization of resources on edge devices, ensuring faster and
more responsive image processing capabilities even with limited computing power [56].
Moreover, in the considered application, the input size of the available pretrained Efficient-
Net B5 models matches the resolution of our target images.

The used EfficientNet B5 has 577 layers and the input image size is (456,456,3). This
network has high accuracy with a relatively small number of model parameters, which pos-
itively affects the processing speed of the embedded system. The network was fine-tuned
before use because EfficientNet B5 was pretrained on images from the ImageNet dataset.
This process was implemented using a dataset of about 10,000 augmented omnidirectional
images produced from the previously collected database of 606 original images. Only
standard augmentation methods available in the TensorFlow environment were applied to
the images.
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Figure 4. Omnidirectional images of different locations (a,b) in the Mechatronics Centre and an
example image after masking (c).

A practical problem in the scenario considered in Experiment 1 was the high similarity
of the indoor environment in the Mechatronics Centre building. Images were obtained
approximately every 0.5 m along the robot’s path, and adjacent images in the database are
very similar and often indistinguishable, even by a human. Therefore, the entire dataset
was manually divided into 17 different sections, each describing a topologically different
location (represented by different colours in Figure 3b). Due to this organization of the
dataset, no ground truth positions are provided for particular images, and we can assess
the localization results only in terms of the image retrieval accuracy for particular sections.
The localization process is then performed only for these 17 locations, with each location
represented by 30 to 40 acquired images that partially overlap. In the training process, each
section was divided into training sequences (60%), validation sequences (20%), and test
sequences (20%).

4.2. Experiment 2: Stand-Alone Catadioptric Camera

The good results obtained in the preliminary experiment with the mobile robot moti-
vated us to extend this research with a catadioptric camera of a different mechanical design
and better parameters, as the relatively small horizontal field of view and often blurred
images were the main drawbacks in the previous experiment.

The field of view of a catadioptric camera depends on the shape and size of the mirror
being used [57]. A catadioptric sensor captures a wider field of view by using lenses
and mirrors that need to be arranged carefully. Designing the mirrors is crucial to ensure
a single effective viewpoint, which is necessary for generating pure perspective images
from the sensed images [58]. In the new experiment, the integrated sensor was replaced by
a catadioptric vision sensor consisting of a professional Basler acA2440-35uc camera with
a Kowa 4.4–11 mm lens [59] and a hyperbolic mirror, whose field of view is much larger
than the mirror used in the previous experiment. A hyperbolic mirror allows us to obtain
the single effective viewpoint of the camera–mirror system using typical camera lenses [60],
while the mirror we use in this design is larger than the previous one, and is attached at
a larger distance from the camera. Both these factors contribute to a much larger horizontal
field of view.

Images with a resolution of 1080 × 1440 were taken for two floors of the same Mecha-
tronics Centre building: the first floor was divided into 144 places (Figure 5a) and the
3rd floor into 106 places (Figure 5b). Ground truth positions of the acquired images were
obtained by measuring the position of the sensor manually with tape with respect to the
known floor plan of the Mechatronics Centre building. Due to the augmentation process
(Figure 6), the collection of images for training purposes increased to about thirty thousand
images (details are given in Table 1).
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Figure 5. Blueprint of the first floor (a) and third floor (b) of the Mechatronics Centre building, with
marked places (blue crosses) where images were taken.

Figure 6. Example of omnidirectional image augmentation: (a)—original picture; (b,c)—augmented
images.

In this experiment, the collected set of images was used to compare the quantitative
results of place recognition for panoramic and omnidirectional images for three different
CNN architectures: EfficientNet B7 [61], EfficientNet V2L [62], and MobileNetV2 [48].
Moreover, to investigate different strategies for creating the reference database (global
map), the dataset was tested in three different configurations:

• Configuration A—the entire dataset was divided into a training set (60%), a validation
set (20%), and a test set (20%) for each place. The validation set was then used as the
reference database of embeddings.

• Configuration B—the entire dataset was divided into a training set (60%), a validation
set (20%), and a test set (20%) in such a way that the locations next to the places
represented in the test set were always represented in the map of embeddings. The
global map of embeddings was created from a combination of the training and the
validation set, but the places from the test set, used then as queries, were not directly
represented in the map.

• Configuration C—all images of the places located on the first floor were divided into
a training set (80%) and a validation set (20%). The set of images recorded on the third
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floor was used to test the proposed solution. The 106 places for which images were
recorded on the third floor were divided into the database of embeddings (80%) and
a test set used as queries (20%), in such a way that the locations next to the places
included in the test set were represented in the map of embeddings.

For each network configuration and dataset, the training process was conducted as in
Experiment 1, with the pretrained backbone network, and by fine-training the last layers of
this network on the target training dataset constructed according to the concept defined
above for the given configuration.

Table 1. Number of images in training and validation datasets for Configurations A, B, and C.
Numbers in brackets denote the number of images after augmentation.

Configuration A Configuration B Configuration C

Training Validation Training Validation Training Validation
Dataset Dataset Dataset Dataset Dataset Dataset

omnidirectional 994 (25,844) 250 (6500) 959 (24,934) 241 (6266) 753 (19,578) 288 (7488)
panoramic 2982 (77,532) 750 (19,500) 2611 (67,886) 653 (16,978) 2259 (58,734) 864 (22,464)

As a follow-up of this experiment, we tested with the same dataset the NetVLAD
architecture for comparison with our approach. It was shown in [35] that the NetVLAD
architecture achieves the best-placed recognition results with the AlexNet and VGG-16 used
as backbone networks. Hence, in order to compare our approach to place recognition,
which is relatively simple, to the state-of-the-art NetVLAD architecture, we used a Python
language implementation of NetVLAD [63] with the VGG-16 backbone. The NetVLAD
model was subject to the same training process as in the case of our system, with the
training sets defined in Configurations A, B, and C.

4.3. Experiment 3: COLD Datasets

An important related work to our research is the article by Cabrera Mora et al. [43],
which presents several different configurations of the AlexNet network producing em-
beddings used for appearance-based localization with omnidirectional images without
panoramic conversion. The task of the trained neural network is to perform rough lo-
calization (room identification) and then metric localization for the identified room by
searching for the place closest to the query embedding. The experiments presented in [43]
used images available in the Freiburg dataset, which is part of the publicly available COsy
Localization Database [55]). This inspired us to replicate some of the experiments from [43]
using our approach to localization. Using the same dataset and experiment design gives
a chance for a fair comparison of quantitative results, which is usually not available in the
not-so-common research on localization with omnidirectional images.

Moreover, we consider COLD Freiburg an interesting dataset on its own, as it contains
omnidirectional images captured by a robot that followed a number of different paths
in a building at the University of Freiburg. The robot visited various rooms, such as the
kitchen, corridors, printer areas, bathroom, and offices (Figure 7). These rooms have wide
windows and glass walls, making visual localization a particularly challenging task. The
collection of images was collected under real conditions, e.g., changes in furniture, people
being on the move, changes in lighting conditions (cloudy days, sunny days and nights),
etc. Moreover, the images were captured while the robot was moving; therefore, they
may contain blurring effects or other dynamic changes. What is important is that accurate
ground truth positions of the captured images are provided in this dataset thanks to the
laser scanner localization of the robot. The ground truth positions were used exclusively to
measure the metric localization errors.
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Figure 7. Maps of the two parts of the laboratory in Freiburg with approximate paths followed by
the robot during data acquisition (map and trajectories data adopted from the COLD dataset web
page https://www.cas.kth.se/COLD/cold-freiburg.html).

In order to evaluate the influence of the changing lighting conditions on the localization
task, it was proposed in [43] to use as training data only images recorded on cloudy days,
whose acquisition locations are about 20 cm apart. On the other hand, in order to assess the
robustness of the location to changes in illumination, images captured on sunny and cloudy
days and at night were used for testing. The COLD Freiburg dataset contains images
captured in nine different rooms: a kitchen, a bathroom, a printer area, a stairwell, a long
corridor, and four offices (Figure 8).

Figure 8. Example images from the COLD Freiburg dataset: (a) one-person office (1PO-A); (b) kitchen
(KT-A); (c) stairs area (ST-A); (d) printer area (PA-A).

In order to evaluate the appearance-based localization system proposed in this paper,
a direct comparison was made with the solution presented in [43]. To facilitate a fair
comparison, we made an attempt to replicate the sets of images used in the experiments
described in [43]. However, starting from the same images of the Freiburg dataset, we
used only our own processing pipeline; in particular, each training set was augmented by
darkening random portions of the images, rotating them, and changing the illumination.
In our case, the training set was also the global map of embeddings.

Training dataset number one, which is an exact replication of the dataset from the
work of [43], was obtained from a set of images taken during a cloudy day, and it was
downsampled to obtain a set of images describing locations at an average distance of
20 cm between the acquisition points of successive images along the robot’s path. Detailed
information on the number of images contained in the training set depending on the type

https://www.cas.kth.se/COLD/cold-freiburg.html
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of lighting conditions and room is provided in Tables 2 and 3. Verification of the correctness
of the obtained model for embedding generation was carried out for three test sets of query
images: the first set consists of images captured on cloudy days but not included in the
training set (2595 images); the second test set contains all images captured on sunny days
(2807 images); and the third test set consists of all images captured at night (2876 images).

Table 2. The number of images of each room depending on the weather for three training sets, where
n.i. is the number of images and % is the percentage of images of a particular room depending on
the weather conditions. Dataset 1—a set of images recorded only on cloudy days. Dataset 2—set
1 extended by the missing acquisition points found in the sets for sunny days and nights. Dataset
3—a set of images showing acquisition points located every 20 cm for images recorded in all types of
weather conditions.

Training Dataset 1 Training Dataset 2 Training Dataset 3
(575 Images) (820 Images) (1801 Images)

Cloudy Cloudy Sunny Night Cloudy Sunny Night

n.i. % n.i. % n.i. % n.i. % n.i. % n.i. % n.i. %

Room 575 100 576 70.2 139 17.0 105 12.8 573 31.8 651 36.2 577 32.0

1PO-A 45 100 47 69.1 15 22.0 6 8.8 46 31.3 54 36.7 47 33.0
2PO1-A 52 100 50 79.4 8 12.7 5 8.0 48 36.9 47 36.3 35 26.9
2PO2-A 33 100 30 58.8 8 15.7 13 25.5 34 30.4 40 35.7 38 33.9
CR-A 248 100 249 76.9 43 13.3 32 9.9 247 33.2 267 35.9 229 30.8
KT-A 43 100 41 42.3 31 32.0 25 25.8 40 19.9 79 39.3 82 40.8
LO-A 32 100 31 62.0 12 24.0 7 14.0 34 33.7 35 34.7 32 31.7
PA-A 58 100 58 82.9 8 11.4 4 5.7 58 37.2 55 35.3 43 27.7
ST-A 31 100 33 76.7 5 11.6 5 11.6 31 31.3 36 36.4 32 32.3
TL-A 33 100 37 68.5 9 16.7 8 14.8 35 31.3 38 33.9 39 34.9

Table 3. The number of images of each room depending on its type in a given training set, where n.i.
is the number of images and % is the percentage of images of a given room depending on weather
conditions. Training dataset 1—a set of images recorded only on cloudy days. Training dataset
2—dataset 1 extended by the missing acquisition points found in the datasets for sunny days and
nights. Training dataset 3—a set of images showing acquisition points located every 20 cm for images
recorded in all types of weather conditions.

Training Dataset 1 Training Dataset 2 Training Dataset 3
(575 Images) (820 Images) (1801 Images)

Room. n.i. % n.i. % n.i. %

1PO-A 45 7.83 68 8.29 147 8.16
2PO1-A 52 9.04 63 7.68 130 7.22
2PO2-A 33 5.74 51 6.21 112 6.22
CR-A 248 43.13 324 39.51 743 41.25
KT-A 43 7.48 97 11.83 201 11.16
LO-A 32 5.57 50 6.1 101 5.61
PA-A 58 10.09 70 8.54 156 8.66
ST-A 31 5.39 43 5.24 99 5.50
TL-A 33 5.74 54 6.59 112 6.22

5. Results and Discussion

This section presents and discusses the results of the three experiments described
in this paper. Quantitative results in terms of place recognition (i.e., image retrieval)
accuracy are presented for all experiments. For experiments no. 2 and no. 3, we also
present quantitative results in terms of the metric localization accuracy, as the datasets used
in these experiments provide ground truth for positions of the place images in a global
reference system. Moreover, we discuss qualitative localization results, pointing out the
most common sources of localization errors and providing recommendations for training
strategies of the deep neural networks that make the resulting models robust to changes in
the environment.
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5.1. Experiment 1

As defined in Section 4, in Experiment 1, appearance-based localization was conducted
for 17 sections, each of them containing several image acquisition locations, and being
a description of a larger corridor space. The best network training results were obtained for
the unfrozen last 50 layers of the backbone CNN, a learning rate of 1 × 10−4, and a batch
size of 16, with a learning error of 0.1605, learning accuracy of 0.9596, validation error of
0.1183, and validation accuracy of 0.9796 (Figure 9).

Figure 9. Model training results in Experiment 1.

On the test dataset containing 122 query images, the average accuracy of place recog-
nition was 98%, with very few misclassified queries, as shown by the confusion matrix in
Figure 10. The average processing time of a single query image was 480 ms, with a standard
deviation of 83ms and a maximum time of 1313 ms, allowing for real-time localization.
A qualitative example of place recognition is given in Figure 11. Visual inspection of the
results and the confusion matrix suggest that the most common section mismatch is when
the same place is at the start of a new section and the end of a previous section. However,
errors also are caused by blurred images and bright spots of sunlight or artificial light in
the images.

Figure 10. Confusion matrix for 17 sections.
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This experiment allowed us to conclude that the proposed approach to appearance-
based localization with embeddings produced by a lightweight CNN suits the target
application in terms of both image retrieval accuracy and real-time performance. However,
the used sensor, having rather a small field of view and mechanical structure prone to
decalibration and defocusing (causing blurred images), did not allow us to extend these
investigations to a larger dataset with ground truth positions of images.

Figure 11. Results of sample section predictions. The image in the first column is a query; the other
columns are the four closest neighbours. In square brackets, there is the section number (i.e. [12], [02]),
and next to it, the L2 distances between the query and the presented image are given. An example of
(a) correct place recognition and (b) mismatched sections having slightly overlapping ranges.

5.2. Experiment 2

The conclusions drawn from Experiment 1 were taken into account while designing
the next experiment involving the use of a different catadioptric sensor and a more extended
and diversified dataset of indoor images with ground truth positions.

In Experiment 2, the convolutional neural networks EfficientNet B7, EfficientNet V2L,
and MobileNet V2 were compared for Configurations A, B, and C. The quantitative results
presented in the graphs show the percentage of Cartesian locations found in the given
distance intervals expressed in meters, and the average Euclidean distance measurement
error: for Configuration A—Figure 12; Configuration B—Figure 13; and Configuration
C—Figure 14. Moreover, Table 4 shows the average time of processing a single query image
with the proposed solution based on embeddings and Faiss KNN search.

Table 4. Mean Euclidean distance error (bL) and mean time (t) of location determination on the Jetson
TX2 computing platform for original (omnidirectional) and panoramic images.

Experiment 2

Neural Image Configuration A Configuration B Configuration C

Network Type bL [m] t [s] ttr [h] bL [m] t [s] ttr [h] bL [m] t [s] ttr [h]

EfficientNet B7 omni 0.00 0.52 2.15 3.06 0.48 3.25 4.43 0.47 2.16
EfficientNet B7 panoramic 0.03 0.56 37.21 3.21 0.49 16.24 3.92 0.50 11.30
EfficientNet V2L omni 0.00 0.35 1.98 2.34 0.35 3.84 4.94 0.34 2.07
EfficientNet V2L panoramic 0.00 0.39 14.54 3.11 0.37 15.46 3.60 0.36 12.14
MobileNet V2 omni 0.02 0.08 2.24 3.86 0.07 3.15 5.01 0.07 1.55
MobileNet V2 panoramic 0.36 0.11 16.32 4.33 0.11 15.56 6.87 0.11 11.53

A mismatch of the neighbouring places occurs only when the images overlap signifi-
cantly (note that the catadioptric camera used in Experiment 2 has a much larger field of
view that the previously used one) and are very similar to each other due to the self-similar
nature of the environment. No significant difference was noticed between the results
obtained for omnidirectional and panoramic images, which indicates that for appearance-
based localization with our approach, it is unnecessary to convert the omnidirectional
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images to panoramic images. Hence, we can avoid the time-consuming conversion and
rectification procedure [8], without compromising the results.

Figure 12. Quantitative results for Configuration A: (a)—a percentage of matches that are within
a range of distance from the actual distance (the units on the x-axis are the ranges of distances);
(b)—average distance measurement error.

As a follow-up of Experiment 2, a comparison of localization results was performed
between the NetVLAD approach with VGG-16 and VLAD layer, and our approach with
two variants of the EfficientNet backbone. This comparison was performed for all three con-
figurations of the reference map (A, B, and C) and both the omnidirectional and converted
panoramic images.

Figure 13. Quantitative results for Configuration B. (a)—the percentage of matches that are within
a range of distance from the actual distance (the units on the x-axis are the ranges of distances);
(b)—the average distance measurement error.

Quantitative results of the average Euclidean distance measurement error for all
configurations considered in this test are shown in Table 5. As can be seen in this table,
for the panoramic images, the proposed solution has a smaller average error for distance
measurement than NetVLAD. On the other hand, for original omnidirectional images, the
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proposed solution with EfficientNet and embedding has the same or larger average error
for distance measurement than NetVLAD with VGG-16.

From Experiment 2, we conclude that the CNN architecture performing best in our
system is EfficientNet V2L, a model from a recently introduced family of convolutional
networks that achieve faster training and better parameter efficiency than older network
models [62]. This model, being up to 6.8 times smaller than state-of-the-art models, suits
our embedded computing platform well. Moreover, our approach performs as a pair
with the much more complicated and much bigger NetVLAD architecture. On the other
hand, Experiment 2 shows that NetVLAD can handle raw omnidirectional images without
converting them to panoramic images if it is trained on a representative dataset. As to the
strategy of defining the reference map and the training dataset, the results of Experiment
2 show that it is possible to find a correct neighbouring place, even if the very exact image
of the queried place is not included in the reference map. However, these results also
show that the generalization ability of the investigated deep learning solutions, including
NetVLAD, is somewhat limited if the query images come from a different environment
than the training set. This is suggested by the worse results in Configuration C, no matter if
omnidirectional or panoramic images are being used. Therefore, the generalization ability
of the proposed architecture should be further investigated.

Figure 14. Quantitative results for Configuration C: (a)—the percentage of matches that are within
a range of distance from the actual distance (the units on the x-axis are the ranges of distances);
(b)—the average distance measurement error.

Table 5. Comparison of mean Euclidean distance error for the network architecture presented in this
paper (EfficientNet B7/EfficientNet V2L + embeddings) and NetVLAD network for omnidirectional
and panoramic images.

Experiment 2

Configuration A Configuration B Configuration C

Omni Panoramic Omni Panoramic Omni Panoramic

Neural Network bL [m] bL [m] bL [m] bL [m] bL [m] bL [m]

EfficientNet B7 + embeddings 0.00 0.03 3.06 3.21 4.43 3.92
EfficientNet V2L + embeddings 0.00 0.00 2.34 3.11 4.94 3.60
NetVLAD (VGG16 + VLAD) 0.00 0.10 2.27 3.77 2.24 4.60
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5.3. Experiment 3

Conclusions about the limited generalization ability of the proposed localization
system drawn from Experiment 2 were one of the main motivations behind the concept of
Experiment 3, which applies the publicly available COLD Freiburg dataset and compares
side-by-side to the results obtained on the same dataset and published recently in [43].

In [43], the best results were obtained for the retrained AlexNet, with 97.11% of correct
room identifications obtained for images captured during cloudy daytime, 93.48% for
sunny days, and 96.77% for nighttime.

Following the methodology of replicating the selected experiments from [43] with
respect to the used images, we achieved the following results for appearance-based local-
ization using embeddings with EfficientNet V2L: 98.03% for cloudy days, 97.01% for sunny
days, and 97.77% for nights. The full quantitative results are presented in Figure 15. Thus,
better accuracy of room recognition was obtained for cloudy days by 0.92%, by 3.53% for
sunny days, and by 1% for images recorded at night. The average distance measurement
error for the room was also analysed, and the results obtained are presented in Figure 15b.
The proposed solution achieved a smaller average distance measurement error than in [43]
for cloudy days by 0.05 m, and by 0.24 m for sunny days; only for images taken at night
was the average error increased by 0.04 m.

Figure 15. Success ratio for EfficientNetV2L and the set of embeddings acquired from the training set
for the room search task for the COLD Freiburg dataset. The result obtained under cloudy (blue),
night (black), and sunny (yellow) conditions for the model learned on the training set, namely, a set of
images on cloudy days (a), a set of images on cloudy days extended by missing acquisition locations
found in images for sunny days and night (b), and a balanced set of images obtained on cloudy and
sunny days and at night (c). Average location error in meters for a set of images on cloudy days
(d), a set of images on cloudy days extended by missing acquisition locations found in images for
sunny days and at night (e), and a balanced set of images obtained on cloudy and sunny days and at
night (f).
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During the analysis of the results, it was noticed that the images recorded on sunny
days and nights have different acquisition spots (positions) than those acquired for cloudy
days, and some of them are farther than 20 cm from the acquisition spots for cloudy days,
e.g., for the room labelled CR-A, the farthest acquisition spot on sunny days was 0.5 m
away from the farthest acquisition spot on a cloudy day. For this reason, an extension of
the training set no. 1 was made, only with images taken at the missing acquisition spots for
sunny days and for nighttime (Tables 2 and 3). Note that the images added to the learning
set were removed from the test sets, and never used as queries. The results obtained with
this amendment of the training set are shown in Figure 15c,d. However, neither in the
case of room identification accuracy nor for position determination errors did the results
improve significantly.

Based on the data from Table 2, it was noticed that the training dataset number 2 is
not balanced in terms of images of a given room depending on lighting conditions. In
deep learning, several techniques are commonly used to handle imbalanced datasets of
images. One approach is oversampling, where the minority class samples are replicated to
match the majority class. Another technique is undersampling, where random samples
from the majority class are removed to balance the dataset. Additionally, there are meth-
ods like synthetic data generation, cost-sensitive learning, and ensemble techniques [64].
However, these methods have certain drawbacks. Oversampling can lead to overfitting
and a loss of generalization ability. Undersampling can discard valuable information and
result in underrepresented classes being ignored. Synthetic data generation may intro-
duce unrealistic patterns. Cost-sensitive learning requires careful tuning of class weights.
There is no technique that universally addresses all imbalanced dataset challenges. For
this reason, a third training set was created (no. 3), which contains images representing
acquisition locations about 20 cm apart for each room at night and on sunny and cloudy
days (Tables 2 and 3). Finally, for this illumination-balanced training set, the best results
were obtained for room identification: 98.56% for cloudy days, 97.44% for sunny days, and
98.31% for nights (Figure 15e). Also, the smallest average distance measurement error was
obtained for training with the set no. 3: 0.22 m for cloudy days, 0.27 m for sunny days,
and 0.2 m for nights (Figure 15f). Based on the data from Table 3, it can be seen that the
percentages of the images of each room in each training set are very close to each other,
but only by balancing the set by the lighting conditions (i.e., sunny, cloudy, night) were
satisfactory results obtained.

In order to explore the generalizability of the proposed system to other environments,
we also demonstrate localization results for the Saarbrücken sequence from the COLD
dataset. This is a sequence of images collected in a different location within a building
having different characteristics than the one used for the Freiburg sequence [20]. Both
Freiburg and Saarbrücken sequences from the COLD dataset were used in the research
on mobile robot’s localization presented in [32], although the inaccurate description of
the dataset used in this paper does not allow us to replicate the Saarbrücken sequence
experiment for direct comparison, as it was accomplished for the Freiburg sequence used
in [43]. Therefore, considering the analysis of the influence of an imbalanced training
dataset on the localization accuracy of the system, it was decided to use only part B of the
Saarbrücken sequence, since it is the only one with images for all weather and lighting
conditions. The results presented in Figure 16 confirm that our approach generalizes well
to different indoor environments, achieving a similar success rate of image retrieval and
a similar average localization accuracy as the Freiburg sequence.
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Figure 16. Success ratio for EfficientNetV2L and the set of embeddings acquired from the training set
for the room search task for COLD Saarbrücken dataset for part B. Results obtained under cloudy
(blue), night (black), and sunny (yellow) conditions for the model learned on the training set are
a balanced set of images obtained on cloudy and sunny days and night (a). Average location error in
meters for a balanced set of images obtained on cloudy and sunny days and night (b).

The hierarchical localization of the mobile robot in [43] is divided into two subtasks:
the first one is room recognition, and the second one is accurate localization within the
known room. Accurate localization involves estimating the position in which the test
image was captured using a nearest neighbour search method in the space of global
descriptors obtained from the convolutional network, which is similar to our approach. In
the paper, several experiments with the COLD dataset were performed based on different
configurations of the networks and training sets used in the room classification task. Finally,
the authors of [43] selected the CNN network trained in experiment number 2 and the fully
connected layer numbered 6 in their network as the one producing the global descriptors
from images, because this configuration showed the greatest robustness to changes in
lighting conditions in the preliminary experiments. This configuration is referred to as
CNN2 + FC6. Another configuration considered in [43] is the CNN network trained in
experiment 8 and the output of the sixth layer (CNN8 + FC6).

Table 6 presents the quantitative results and computation times obtained for our
appearance-based localization. The average processing time per image was 0.32 seconds
(achieving 3.13 FPS), making appearance-based localization in real-time in the context of
the typical motion speed of our service robot. For comparison purposes, this table also
contains results for the two selected configurations of the system from [43], and results of
other hierarchical localization methods (not learning-based) investigated in [32] and used
for comparison in [43]. Note that the numerical results from [32,43] are taken from the
respective papers, as we did not attempt to reimplement these systems, replicating only
the training and test sets for Experiment 3.

Table 6. Comparison of results for different approaches to place recognition (appearance-based
localization) using images from a catadioptric camera. Best results shown in bold.

Global Descriptor bL [m] bL [m] bL [m]
Cloudy Sunny Night

EfficientNet V2L
(training dataset 3) 0.22 (t = 0.32 s) 0.27 (t = 0.31 s) 0.20 (t = 0.31 s)

EfficientNet V2L
(training dataset 1) 0.24 (t = 0.32 s) 0.44 (t = 0.32 s) 0.33 (t = 0.32 s)

CNN2 + FC6 [43] 0.29 0.69 0.29
CNN8 + FC6 [43] 0.25 0.93 0.24
HOG [32] 0.31 1.57 0.95
GIST [32] 0.08 1.23 1.31

The appearance-based localization methods studied in [32] include the global HOG
and Gist descriptors. HOG is a feature decoder often used in image processing for object
detection. The Gist descriptor, on the other hand, is used to extract global features of the
environment by combining visual and semantic information through a set of perceptual
dimensions that represent the dominant spatial structure of the scene. Both HOG and
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GIST are descriptors that do not use machine learning algorithms, providing an interesting
reference point for the method proposed in the article.

The results shown in Figure 15 and in Table 6 document that the approach to appearance-
based localization proposed in this paper, despite being simple and lightweight, outper-
forms some recently published results in this area. Considering the fact that our solution
turned out to be similar in performance to the state-of-the-art NetVLAD deep learning
architecture, which requires many more computing resources, we conclude that our re-
search reached its goal, demonstrating a versatile and accurate deep learning architecture
that is suitable for the low-cost Nvidia Jetson TX2 computing platform. However, the
main scientific outcome of Experiment 3 seems to be demonstrating how important it is to
prepare a balanced dataset for training, particularly in the context of generalization over
various image acquisition characteristics.

6. Conclusions

The results of the tests of the place recognition software for catadioptric cameras
and the edge computing platform allow us to conclude that the proposed neural network
architecture and parallel processing make it possible to obtain a real-time localization
system that works with raw catadioptric images, despite their distorted nature.

The extensive study of the algorithm of appearance-based localization and comparison
of results with similar solutions known from the literature demonstrate that the proposed
approach makes it possible to obtain highly descriptive embeddings of the observed
locations, and consequently, efficient appearance-based localization.

The most important conclusions, summarizing the remarks discussed in Section 5,
concern the best performance of the EfficientNet V2L CNN backbone for generating the
embeddings and the pivotal importance of preparing a well-balanced training set for this
network, even if transfer learning with pretraining on a large dataset of general purpose
images is used. A practical conclusion is that the not-so-recent and low-cost Nvidia Jetson
TX2 embedded computer is enough to run a carefully engineered deep learning system
for appearance-based localization. This opens interesting opportunities for developing
affordable service and social indoor mobile robots utilizing a catadioptric camera as the
main localization sensor.

However, a limitation of the proposed appearance-only approach to global localization
is the limited accuracy of the obtained metric position of the robot. This accuracy depends
on the density of the global map, because the obtained position of the robot is defined by
the known location of the most similar image. If the images were collected close to each
other, then the position of the robot can be determined more accurately, but if the distances
between the points where the images were captured are large, the accuracy is decreased.
This limitation will be addressed in our further research by implementing a neural network
that will regress the position of the robot with respect to the reference image retrieved from
the map. Further research on this system will also concern the implementation of triplet
loss with hard negative mining, as this training scheme turned out to be very effective
in a number of localization systems. This training strategy should allow the network to
develop more specific features, thus making the localization system more effective in highly
repetitive indoor environments.
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