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Abstract: Continuous, real-time monitoring of occupational health and safety in high-risk workplaces
such as construction sites can substantially improve the safety of workers. However, introducing
such systems in practice is associated with a number of challenges, such as scaling up the solution
while keeping its cost low. In this context, this work investigates the use of an off-the-shelf, low-cost
smartwatch to detect health issues based on heart rate monitoring in a privacy-preserving manner.
To improve the smartwatch’s low measurement quality, a novel, frugal machine learning method is
proposed that corrects measurement errors, along with a new dataset for this task. This method’s
integration with the smartwatch and the remaining parts of the health and safety monitoring system
(built on the ASSIST-IoT reference architecture) are presented. This method was evaluated in a
laboratory environment in terms of its accuracy, computational requirements, and frugality. With an
experimentally established mean absolute error of 8.19 BPM, only 880 bytes of required memory, and
a negligible impact on the performance of the device, this method meets all relevant requirements
and is expected to be field-tested in the coming months. To support reproducibility and to encourage
alternative approaches, the dataset, the trained model, and its implementation on the smartwatch
were published under free licenses.

Keywords: heart rate monitoring; frugal AI; measurement correction; occupational health and safety;
IoT; scalable IoT

1. Introduction

The construction industry is one of the most challenging sectors in terms of ensuring
workers’ safety and health. According to the Eurostat, the highest incidence of non-
fatal accidents at work in 2020 was observed in construction, with 2987 such accidents
per 100,000 employed persons [1]. Construction is a multi-risk work environment that,
according to the categorization provided by the European Agency for Safety and Health at
Work [2], includes eleven groups of risks of accidents, with slips, trips, and falls constituting
the largest group. Increased fatigue in construction workers due to the intensive physical
workload, work in a hot microclimate, and direct exposure to UV radiation, all contribute
to a rise in the number of human errors and dangerous behaviors [3–6]. The consequence is
an increased number of injuries and accidents. Therefore, special measures are needed that
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will provide both blue-collar workers and occupational safety and health (OSH) managers
with real-time hazard monitoring and trustworthy recommendations toward improving
safety and health at the construction site. In the case of physical fatigue and thermal load,
heart rate (HR) is considered to be an effective indicator for early detection of potential
hazards to workers’ health [7–9].

The rapid development of Internet of Things (IoT) technologies has enabled a funda-
mental paradigm shift in how OSH is approached in high-risk, dynamic environments.
By leveraging the recent achievements in the areas of wearable sensors and actuators,
integrated with the smart personal protective equipment (PPE) used in the workplace,
it has become possible to rapidly detect hazards and manage occupational risks. This is
particularly applicable to workplaces in which the environmental conditions are subject
to dynamic changes that can have serious consequences for human health and life [10].
This paradigm shift consists of moving away from the traditional methods for carrying out
collective risk assessments for specific groups of workers to assessment methods that allow
for the determination of the level of risk individually for each worker. Furthermore, the ex-
isting periodical risk assessment approaches are replaced by the continuous monitoring of
hazards in the work environment, in real or near-real time [11], and facilitate the application
of time-series-oriented anomaly detection methods to monitor dangerous events [12].

1.1. Requirements for IoT Systems in Safety and Health Monitoring

The potential for the adoption of IoT-based systems in the construction sector for
improving worker safety and health has already been noticed by several researchers.
Kanan et al. [13] proposed an autonomous system that is able to monitor, locate, and
warn construction workers entering danger zones. The specific issue of the safety of road
repair workers was undertaken by Ma Li [14], who proposed an IoT-based system with
the use of a robotic arm, aimed at preventing accidents due to thermal stress and vehicle
traffic. In the paper, several types of notifications for workers were proposed, including a
recommendation to drink some water, a warning of the possibility of slipping on the wet
floor, as well as a “no entry” instruction, generated when too many workers are on site.
Akinosho et al. [15] focused on the early detection of tiredness or fatigue, e.g., by means of
a video monitoring system.

However, successfully implementing such systems in the construction sector requires
overcoming several technical issues, such as scalability of the solution, energy efficiency,
reliability of data, ease of implementation, maintaining workers’ privacy, and trustworthi-
ness. The accuracy of the data and of the models based on them may significantly influence
the reliability and overall usefulness of the system’s recommendations. In safety-related
applications, predictions cannot have a high false positive rate of alarms, so as not to
distract the user, creating a hazard by themselves. IoT systems often use wearable devices
to monitor various physiological parameters of workers, which constitutes a particular
challenge in relation to privacy, ethics, and security [16,17]. Moreover, the construction
site is a very demanding and rapidly changing work environment with harsh working
conditions. The presence of a large number of power tools and heavy machinery causes
noticeable electromagnetic interference. Another challenge is ensuring the continuity of
real-time data flow with minimal latency to allow the IoT system to respond to hazards
reliably and quickly. Akinosho et al. [15] also draw attention to challenges such as the
black-box nature of machine learning solutions and the cost of adopting these techniques.

The problem of high costs of wearable safety devices, seen as a key barrier to their
adoption in the construction sector, was also indicated by Ibrahim et al. [18]. At the same
time, a higher accuracy of the measured data is often associated with the considerably
higher costs of wearable devices. Therefore, in relation to predicting physical fatigue, Anwer
et al. [19] highlighted the need to compare the measurements obtained from wearable
sensors with those obtained using a professional apparatus to refine the measurements
delivered by the wearables.
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The presented requirements for IoT systems in safety and health monitoring are
not easy to address and require a system-wide approach to the design of the solution.
Robust tools are needed for real-time processing of the data in a secure, privacy-aware, and
performant manner. Here, the ASSIST-IoT reference architecture [20] aims to provide the
necessary groundwork for building scalable, intelligent systems that span the continuum
from the cloud to the edge and to the IoT devices. It was specifically designed to tackle the
tough requirements for building next-generation IoT systems. One of the key concepts of
ASSIST-IoT is the enabler, which is a set of encapsulated software or hardware components
that, together, provides a set of well-defined functionalities. Some enablers are specifically
designed to address the aforementioned requirements; for example, resilient and low-
latency data routing on the edge is delivered by the Edge Data Broker enabler. ASSIST-
IoT also provides rugged hardware components that can be used in the construction
environment, namely the Gateway Edge Node (GWEN) and the location tags using Ultra
WideBand (UWB) communication. The GWEN can be used for processing data with low
latency on the edge and for interfacing with other devices. The UWB location tags provide
real-time location information in indoor and outdoor environments.

1.2. Problem Statement

According to our recent findings [21], the use of a low-cost, off-the-shelf heart rate
monitoring smartwatch (the PineTime, see Figure 1) to predict fatigue and thermal stress
should be possible. However, it would require implementing additional algorithms to
increase the reliability of the collected heart rate measurements. Specifically, it was observed
that the sensor was susceptible to various anomalies (i.e., sudden peaks in measurement
were present) and that the quality of the readings depended on the dynamics of the user’s
movements. The established inadequate quality of the heart rate measurement can be
partially associated with the low cost of the device. However, this low cost also makes
the solution scalable (devices for all construction workers can be purchased), which is a
crucial requirement for this use case. Therefore, it would be beneficial if the quality of
the measurement could be increased by employing improved software while keeping the
hardware unchanged.

Figure 1. The PineTime smartwatch measuring the user’s heart rate.

Therefore, the objective of this work is to improve the quality of heart rate measure-
ments by employing a machine learning model tasked with correcting the sensor’s readings.
The model will take as its input a time series of the original heart rate measurement and the
readings from the smartwatch’s acceleration sensor, as context information. The output of
the model will be the corrected heart rate of the user (a regression problem). Here, the mean
absolute error (MAE) of the model must be no higher than 10 BPM to allow for reliable
monitoring of the user’s health and safety. In the final application, the overall trend of
the user’s heart rate will be used to determine whether it is consistently higher or lower
than a certain threshold (e.g., higher than 90 BPM at rest [9]), which may indicate a risk
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to the worker’s health [7,8]. The 10 BPM target was chosen as it makes such a health risk
assessment viable, at least on a basic level. Obviously, the method should be as accurate
as possible, and the certainty of the prediction will depend on its accuracy. In the end
application, the confidence of the result should be estimated, to allow for its responsible use.

It has to be stressed that the model needs to be integrated with the smartwatch which
has very limited compute capabilities: 64 kB of RAM and a low-power ARM® Cortex®-M4
processor running at 64 MHz (see detailed hardware specifications: https://wiki.pine64.org/
wiki/PineTime#Specifications, accessed on 10 July 2023). Most of the device’s resources
are already used by its real-time operating system (RTOS), which uses ~54 kB of RAM. The
smartwatch also includes the HRS3300 photoplethysmographic (PPG) heart rate sensor. The
limited resources place strict requirements on the size and complexity of the proposed method.
Furthermore, the smartwatch must have a long battery life, a fact that also restricts the compute
complexity of the solution. Both of these requirements call for a lightweight, frugal approach.
Frugal machine learning emphasizes working with scarce data and computational resources.
This frugality can be estimated with a measure chosen depending on the specific application,
which embodies the accuracy/resource use trade-off [22]. In the presented use case, the most
important source of frugality is the limited amount of memory and computing resources that
can be used by the model.

The presented formulation of the problem is directly motivated by the characteristics
of the selected hardware platform, the low-cost PineTime smartwatch. Moreover, the
solution is intended to be general, requiring only readings from two very common types
of sensors, included in many types of smartwatches (an accelerometer and a heart rate
sensor), making it potentially applicable to a wide variety of existing devices. Note that
this is a vital aspect of the developed system, as it allows one to switch hardware vendors
if the need arises, making the developed solution sustainable in the long term.

Here, it should be noted that PineTime, in contrast to many other commercial smart-
watches or health trackers, does not connect to a proprietary service to store or process
the user’s data. This allows for all data processing to occur locally, increasing the user’s
privacy and facilitating data sovereignty.

1.3. Structure of This Contribution

This work is organized as follows. A review of the related literature is presented in
Section 2. Section 3 introduces the used dataset, its collection procedure, and the applied
post-processing steps. Next, in Section 4, the proposed method is presented, including
the data sampling strategies, the structure of the machine learning model, the tuning of
the model’s architecture, the implementation in the smartwatch, and the integration of
the model with the rest of the OSH monitoring system. Section 5 provides a thorough
evaluation of the solution’s accuracy, performance, and frugality. The significance of
the obtained results and their implications are discussed in Section 6, followed by the
concluding remarks in Section 7.

2. Related Works

The PPG measurement method has been widely discussed in the literature. Of partic-
ular interest are the sources of errors in the measurements. In one evaluation of multiple
consumer-grade smartwatches with heart rate sensors [23], the accuracy of measurement
was found to depend on the type of performed activity. Specifically, walking yielded a
higher error than running or cycling. Moreover, more intensive variants of the same activity
resulted in a higher error. In a different study [24], the authors found the measurement
error to be significantly higher when the user is performing movements. Particularly
detrimental were rhythmic movements, interfering with the cardiovascular signal, which is
also periodic. In an overview article [25], it was noted that PPG sensor measurements are
affected by body movements and the contact force between the sensor and the skin [26].
Colvonen et al. [27] reported that the PPG measurement can be affected by the user’s skin
tone. However, this subject is heavily disputed [28] with no clear scientific consensus [29].

https://wiki.pine64.org/wiki/PineTime#Specifications
https://wiki.pine64.org/wiki/PineTime#Specifications
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To the best of the authors’ knowledge, this contribution is the first attempt at address-
ing the issue of correcting the measurements of inexpensive, consumer-grade heart rate
sensors. The closest problem widely discussed in the literature is the estimation of heart
rate using the raw PPG signals collected directly from the sensor. These works largely focus
on laboratory environments and rarely discuss implementing the algorithms in real health
trackers, or smartwatches. Over the years, numerous approaches have been proposed
for this problem [30,31], spanning from adaptive filters to deep neural networks. Here, a
large fraction of the research is focused on alleviating the effects of motion artifacts, i.e., the
interference resulting from the user’s movements [32–34]. The dominant approach is to
use an additional sensor (e.g., an accelerometer) and apply its measurements to filter out
the motion artifacts from the PPG signal. However, alternative approaches have also been
tried, such as using two PPG sensors.

Deep PPG [35], which uses a deep convolutional network, is a particularly influential
work that takes as its input the PPG and the accelerometer signals transformed into spectra
using the fast Fourier transform. The resulting model is very large, with 8.5 million
parameters. The authors also proposed a constrained version of the model for embedded
devices with only 26 thousand parameters. However, they have not integrated this solution
within an actual embedded device. This is in contrast to Tiny-HR [36], which is a deep
learning method integrated with an ESP32 microcontroller. The complete machine learning
pipeline was reduced with TensorFlow Lite [37] to fit in 39 kB of memory. However, the
work can be seen only as a proof of concept, as the heart rate estimation algorithm was the
only workload running on the embedded device. In reality, a smartwatch or a health tracker
will be running a full real-time operating system, together with multiple heterogeneous
applications, making the integration considerably more challenging.

Only one work with a similar problem statement to the one presented above could be
found [38]. Here, the authors focused on correcting the errors in the data collected with
a chest-mounted heart rate monitor. The solution used a simple statistical analysis and
hand-written rules for cleaning the data. However, the discussed algorithm is very use-case
specific, making several strong assumptions about the device and the intended use of the
collected data. Thus, it is not applicable to the problem presented here.

In summary, although no directly comparable works can be found in the literature,
the past research does provide useful insights into the possible approaches to the problem.
Specifically, it was found that accelerometers are often used as an additional data source for
reducing errors in PPG sensors. Moreover, neural networks have been successfully used
for similar tasks.

3. Dataset

To address the stated problem, a new training, testing, and validation dataset was
needed. The dataset had to include measurements collected from the actual PineTime
smartwatch (which was the designated target device) and from a laboratory-grade heart
rate monitoring device. The first was needed to obtain a set of measurements with errors
typical to the specific device. The second was needed to provide a high-quality reference
(i.e., the regression target variable).

3.1. Data Collection

The data collection was carried out with the involvement of six volunteers, in con-
trolled environmental conditions, in the Research and Demonstration Laboratory SMART
PPE TESTLAB on the premises of CIOP-PIB. The study participants included three women
and three men. The average age, height, and weight of the participants were 32.17 ± 6.11,
(174.50 ± 10.99) cm, and (67.40 ± 11.73) kg, respectively. The tests were carried out in an
environment with an ambient temperature of 25 °C and a relative humidity of 65%. The
research procedure involved performing various physical activities, such as walking on
a treadmill at 5 km/h and 3 km/h (Figure 2), as well as exercises using the upper lift
(Figure 3). The exact test procedure is presented in Table 1. The test procedure was planned
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so as to include exercises involving hand movements to be able to analyze the impact of
hand movement on the correctness of the smartwatch’s indications.

Figure 2. Test volunteer walking on a treadmill.

Figure 3. Test volunteer during upper lift exercises.

Table 1. Research procedure.

Type of Activity Duration (min)

Break 5
Activity I—walk at a speed of 5 km/h 15
Break 5
Activity II—walk at a speed of 3 km/h 15
Break 5
Activity III—walk at a speed of 5 km/h 15
Break 5
Activity IV—upper lift exercises, dynamic movements 5
Break 5
Activity V—upper lift exercises, calm movements 5
Break 5

During the data collection, the heart rate of the participants was measured using both
target devices. One of them was the PineTime smartwatch (Figure 1), which measures heart
rate from the wrist, using the PPG method. In addition, the data from the smartwatch’s
accelerometer were collected. Measurements were sent wirelessly via Bluetooth Low
Energy (BLE) to a computer and saved to a file using custom laboratory software. In
order to obtain the reference target value, the heart rate was additionally measured using
the Equvital system eq02+ LifeMonitor. The Equvital device measures the heart rate
using ECG electrodes built into the vest. This system also measures other physiological
parameters, such as skin temperature and respiratory rate. Data from the system was sent
wirelessly to a computer to be monitored in real time and saved to a file using the eqView
Professional software.

Participation in the research was voluntary. Before the research, all participants were
thoroughly informed about the test procedure and its purpose. In addition, each participant
was familiarized with an Information Sheet that included information about the project,
research, data collected during research, and privacy policy. Prior to the start of the
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experiment, the participants expressed their willingness to participate in this study by
means of signing the Informed Consent Statement. All collected data were anonymized to
preserve the privacy of research participants.

3.2. Dataset Post-Processing

The raw data collected from the Equivital and from the PineTime devices were con-
verted to a common format—Feather [39] (based on Apache Arrow). The data from the
two devices were then cleaned and aligned in the time dimension to produce a single
table of measurements. As the PineTime collected heart rate measurements more often
than Equivital, the alignment was completed on a nearest temporal match basis, taking
the PineTime measurements as the primary time series. In the final table, each pair of
heart rate measurements (from PineTime and Equivital) is associated with a series of ac-
celeration measurements from PineTime, collected just before the given heart rate value
measurement. The original timestamps from both devices were kept for reference. The
selected data format was chosen to be convenient for machine learning tasks. However, the
train/validation/test split is not included in the dataset, as the number of samples depends
on the sampling algorithm that is used. The sampling method is detailed in Section 4.1,
along with the dataset split used in this study.

Figure 4 presents a fragment of the collected data with the three-axis acceleration
data summarized as an overall acceleration magnitude. The errors in the measurements
from the PineTime device are clearly visible, as are the differences between the activities
performed (for instance, the subject was walking at 5 km/h between 12:36 and 12:51, took a
break, and then started walking again at 12:56).
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Figure 4. A fragment of the collected heart rate and acceleration data (study participant 1).

3.3. Dataset Summary

The dataset contains a total of 510 min of usable laboratory data collected from six
participants. The heart rate data from the Equivital device was collected every 15 s. The
heart rate data from PineTime was collected on average every 12 s. Finally, the acceleration
data from PineTime was collected on average every 0.25 s.

The raw and processed data were published on Zenodo under a permissive license
(CC BY 4.0) [40]. These can be used to reproduce the results presented in this contribution
or to attempt alternative approaches to the same problem. The raw dataset also includes
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additional data collected from the Equivital device (such as thoracic motions, acceleration,
and heart interbeat measurements) that were not used in this study but may be of value in
other future research. Relevant anonymized laboratory notes, including the study protocol
for each participant, are also included.

4. Proposed Approach

This section presents the machine learning approach, designed for the heart rate
measurement correction problem. First, the data sampling procedure is presented. Second,
the machine learning model’s architecture, training process, and final characteristics are
described. Then, the model’s implementation on the smartwatch is detailed, including
its integration with the device’s RTOS. Finally, the overall architecture of the solution is
presented, explaining the context in which the proposed method is to be used.

4.1. Data Sampling

On the PineTime smartwatch, new heart rate readings are obtained on average only
every 12 s, while the acceleration readings are much faster at around 4 Hz in the dataset
(the smartwatch itself can collect acceleration data with a higher frequency, but the entirety
of these data could not be transmitted due to bandwidth limitations). Bearing in mind the
limited processing capabilities of the smartwatch, and the need to conserve its battery, it
would not be feasible to perform inference every time a new acceleration value is read.
Therefore, inference is only performed whenever a new heart rate value is read from the
sensor, while the past acceleration readings are downsampled and fed into the model.

The following sampling method was used: let A, |A| = n be the set of acceleration
magnitude values recorded by the accelerometer in the time window between two heart
rate measurements (hi−1 and hi). Then, hi is associated with three statistical parameters of
A—its median (amed

i ), maximum (amax
i ), and interquartile range (aiqr

i ). These three parame-
ters were chosen primarily due to their very low computational requirements; they can all
be obtained by sorting A and then applying a few O(1) operations (indexing). Secondly,
these parameters intuitively capture multiple characteristics of the acceleration signal—its
most common values (amed

i ), extremes (amax
i ), and variability (aiqr

i ).
The sampled values can then be used to build a feature vector for the machine learning

model. The model may use a sliding window of past k acceleration samples and m heart
rate samples as its input to obtain the necessary context. The vector can be expressed as:

v = 〈h1, . . . , hm, amed
1 , . . . , amed

k , amax
1 , . . . , amax

k , aiqr
1 , . . . , aiqr

k 〉 (1)

and has a length of |v| = m + 3k. The parameters m and k can be adjusted independently
with higher values increasing the memory and processing time requirements of the solution.

4.2. Machine Learning Model

The selection of the model’s architecture was guided by the use-case-driven constraints.
Specifically, the final model was limited to having at most 100 parameters, due to computa-
tional and energy consumption limitations (see the explanation in Section 1). Consequently,
the model was composed of fully connected layers only, resulting in a compact dense
neural network (DNN). To determine the number and dimensions of the layers, a set of
experiments was carried out during the architecture tuning phase (described in Section 4.3).
The hidden layers use the rectified linear unit (ReLU) activation [41], which is formulated
as follows:

Relu(x) = max(0, x). (2)

The output layer uses the linear activation function. These choices were motivated
by the very low computational requirements of both activation functions and the high
effectiveness of the ReLU activation reported in practice [42]. The inputs to the network
were normalized, and the target value was set to the heart rate value, as measured by the
Equivital device.
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The model was implemented using the TensorFlow framework [43] and the Keras
API [44]. During training the Adam optimizer was used [45] with a starting learning rate
of 0.001. As the task being solved is a regression problem, the mean squared error (MSE)
loss function was chosen :

MSE(y, ŷ) =
∑N−1

i=0 (yi − ŷi)
2

N
. (3)

To mitigate possible overfitting on the limited training dataset, L2 regularization was
applied to the kernels of the layers, using a regularization factor of 0.01. The batch size
for the training was set to 16. Train/validation/test data split was 70/10/20, respectively.
To avoid data leakage, the sample windows were picked in such a way that there are no
overlapping regions between the train, validation, and test datasets.

4.3. Neural Architecture Tuning

Due to the small target size of the final network, architecture tuning was performed
to find the optimal number of additional hidden layers and the number of units in every
hidden layer. The input data size (i.e., the sampling strategy) was also a part of the tuning
procedure, aimed at finding the optimal window sizes for both the heart rate and the
acceleration data. The following parameters were examined during tuning:

• Size of heart rate window: [1, 3, 5, 7];
• Size of acceleration window: [1, 3, 5];
• Number of units in the first hidden layer: [1–6];
• Number of additional hidden layers: [0–2];
• Number of units in the additional hidden layers: [1–4].

The Keras Tuner library [46] was used for conducting the grid search as it provides a
convenient implementation of parameter search and utilities for aggregating performance
metrics. Each unique parameter set was evaluated five times, with different random starting
weights, to reduce the variance of the results obtained on a specific set of parameters. In
total, 648 different neural network architectures were tried and evaluated using the mean
absolute error (MAE) metric, defined as:

MAE(y, ŷ) =
∑N−1

i=0 |yi − ŷi|
N

. (4)

Figure 5 illustrates the performance grids for two pairs of tuned parameters with
respect to the MAE score on the validation dataset. The grids show the location of the
model with one of the lowest validation MAE scores. They also indicate that more complex
models with more input data tend to achieve a better performance.
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Figure 5. (a) Hidden layers size tuning results. (b) Heart rate and acceleration windows size
tuning results.
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The final choice of parameters was dictated by the model size, as related to the best
MAE. As a consequence, the best model has 97 parameters in total, with the first hidden
layer having five units, and the second hidden layer having three units. A heart rate window
of size 5 and an acceleration window of size 3 were also selected based on the defined
selection multicriteria. The final model is presented in Figure 6. The model’s weights were
published in Zenodo [47]. This final model was then used in the implementation in the
smartwatch and the evaluation in Section 5.
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Figure 6. The final neural network selected during neural architecture tuning.

4.4. Implementation

The PineTime smartwatch comes with an open-source real-time operating system
(RTOS) written in C++, called InfiniTime. The RTOS provides features such as a graphical
user interface (GUI), sensor drivers, and BLE connectivity. The final trained model was
integrated into the RTOS by rewriting the original service for measuring the user’s heart
rate, offering seamless compatibility with the original BLE service for obtaining the heart
rate and with the existing GUI for presenting the heart rate to the user.

To deploy the model in the smartwatch, the model saved in the Keras .h5 file was
converted to C code, using the keras2c library [48]. The generated code is minimal with
no need for a full runtime. The library implements in an optimized manner the functions
needed to perform the inference of Keras models. It includes representations of dense
and convolutional layers, different activation functions, and utilities such as matrix multi-
plication. A large portion of these library functions were not needed for the built model.
Therefore, to minimize the smartwatch’s resource consumption, only the required subset of
the library was integrated into the RTOS.

To further minimize the performance impact of the method on the smartwatch’s per-
formance, a number of optimizations were applied to the routines for the input data prepro-
cessing (data sampling). The acceleration data are inserted into a buffer using insertion sort,
which causes the insertion operation to be O(n) but removes the need to run any sorting
algorithm afterward. The standard deviation and the mean values, needed for normalizing
the inputs, were precomputed using the training data. The standard deviation values were
also pre-inverted, to avoid having to perform floating point division during runtime, as
this is an expensive operation on the smartwatch’s processor (ARM® Cortex®-M4). Instead,
only multiplication is needed, which is a much faster operation. Finally, to minimize the
use of the smartwatch’s RAM, rolling buffers were used to store the already preprocessed
data. The integrated method has a constant size in memory, avoiding dynamic memory
allocation, which would introduce additional overhead.

The modified RTOS source code and the built images are available in Zenodo [47]. The
modified RTOS is fully functional and can be uploaded to any off-the-shelf PineTime device.
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4.5. Overall Solution Architecture

The smartwatch is only a single element of the overall architecture of the solution
needed to deliver the use case. Figures 7 and 8 present an overview of the hardware and
software layers of the integrated solution that utilizes the ASSIST-IoT reference architec-
ture [20]. Starting with the hardware layer, the smartwatch of each worker communicates
via BLE with the worker’s location tag, which, in addition to tracking the worker’s location
also serves as a wireless communication relay. The location tag connects to the nearest
ASSIST-IoT Gateway Edge Node (GWEN) [20] via UWB. In this architecture, the GWENs
are the main providers of compute capability, hosting the ASSIST-IoT enablers and other
software components. They are connected to each other and a local server via Wi-Fi or
Ethernet. The hardware diagram includes also a mobile device of the OSH manager. The
manager uses it to monitor the safety of the construction site. Finally, the system includes a
weather station, which collects environmental measurements that are used as context in
the decision-making processes.

UWB

USBGWEN

Wi-FiWi-Fi

Wi-Fi

Ethernet

GWEN

Wi-Fi

GWEN

Local server

OSH manager's
mobile device

5G

Cloud

Weather station

WS

Worker's location tag

location tag

PineTime

BLE

UWB Worker's location tag

location tag

PineTime

BLE

Legend: ASSIST-IoT Gateway
Edge Node (GWEN)

Figure 7. Overall hardware architecture of the solution. The network connections are represented in
a simplified manner for clarity. The number of devices varies depending on the specific deployment.

Regarding the software layer (Figure 8), the setup is comprised a mix of embedded
software, ASSIST-IoT enablers [20], and custom components. The enablers and custom
components run in the virtualized environment of ASSIST-IoT, using K3s (a lightweight
distribution of Kubernetes [49]). The workloads are run as close to the worker as possible
(in the GWENs on the edge). This allows for preservation of the network bandwidth.
Moreover, this approach provides an additional layer of privacy for the workers, as the
data are not transmitted to or stored in a central location.

The information flows from the smartwatch, which measures the acceleration and the
user’s heart rate and then infers the corrected heart rate value locally. This measurement
is then relayed to the location tag and the Location Tracking enabler, which is responsi-
ble for interfacing with the UWB network. The Location Tracking enabler outputs the
measurements as an MQTT stream that is routed by the Edge Data Broker enabler to the Se-
mantic Annotation enabler. The Semantic Annotation enabler annotates non-semantic data
(e.g., JSON files) into semantic knowledge graphs (in RDF [50]), using the RDF Mapping
Language (RML) [51]. The semantic information from various sensors is integrated and
processed in the Workplace safety controller, which makes the appropriate decisions about
the safety of the workers (e.g., assessing if the worker is in danger of a heat stroke). The
Semantic Repository enabler plays a supporting role here by serving as a central “nexus”
for storing data models used by the system, such as RDF ontologies or RML mappings. If
needed, the Workplace safety controller issues alerts to workers and notifications to the
OSH manager to warn them about an OSH hazard. The alerts and notifications are routed
through the Edge Data Broker enabler to the appropriate recipients in the network. The
worker alerts are sent back via the Location Tracking enabler and the location tag to the
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smartwatch. The OSH manager’s notifications, informing them only about immediate
hazards to the worker’s health, are displayed on their mobile device, with the help of the
Tactile Dashboard enabler. For obvious privacy reasons, the worker’s heart rate patterns
are not stored permanently, and the OSH manager cannot view them. The system makes
only the necessary information available to the OSH manager.

measuments

PineTime

measurements

notifications alerts & 
notifications

Workplace safety
controller

alerts

measurements

Edge Data
Broker 

semantic measurements

Semantic
Annotator

OSH manager's
mobile device

user interface
Tactile

Dashboard

RML config

ontologies

Semantic
Repository

alerts

measurements
Location
Tracking

measurements
location tag

Worker's tag (other sensors)UWBLE

alerts

Edge Data
Broker 

Legend: ASSIST-IoT
enabler

Custom
component Device

Figure 8. Overall software architecture of the solution in the context of the use case.

5. Experimental Results

This section offers an in-depth evaluation of the proposed solution, in terms of its
prediction quality, performance characteristics, and frugality.

5.1. Prediction Quality

The limited size of the collected dataset imposed restrictions on how the final model
should be chosen among those that were trained (see Section 4.3). To better assess the
generalization capability of the trained models, their performance was evaluated on both
the training and the validation datasets. Histograms of both training and validation MAE
were explored to assess the impact of the small dataset on the models’ performances
(Figure 9). Each histogram represents the distribution of MAE for a given constant dataset,
across all models considered during the tuning phase. This illustrates how many among
the examined models fell into a particular MAE range.
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Figure 9. Histograms for train and validation MAE for models explored during the tuning phase.
Final model’s results are indicated with dashed vertical lines.
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It can be observed that the validation MAE is usually lower than the training MAE,
which may be a sign of an insufficient dataset size. It is also apparent that the final chosen
model has low MAEs for both the train and the validation datasets. The final model’s
performance is presented as dashed lines of respective colors in Figure 9, illustrating that it
is one of the best-performing models. Additionally, the difference between the final model’s
training and validation performance is only 0.27, whereas the median difference between
the training and the validation performance, across all presented models, is 0.65. In the
presence of limited source data, the balanced performance on both the training and the
validation subsets may better represent the generalization capability of the resulting model.
This can also be seen as another tool for detecting overfitting while training the model on a
small dataset.

After choosing the final model, the test dataset was used to assess the performance
of the model on previously unseen data (green dashed line in Figure 9). The test dataset
does not have a respective histogram, due to its absence during the tuning stage; it was
used exclusively for the final model performance estimation. The resulting test MAE is
8.19 BPM, while the train and validation MAEs are 7.85 and 8.12, respectively. The final
model has a low error on all three datasets, and the maximum difference between the
model’s performance on the train, validation, and test datasets is 0.34. This shows that
the model’s performance on previously unseen data closely aligns with the performance
observed during the model tuning phase. The final MAE of 8.19 BPM is also lower than the
target MAE of 10 BPM, as required by the use case.

The final model was also compared on the test dataset against two baselines—the
simple moving average, which takes the mean of the last five heart rate measurements,
and the raw, unmodified measurement. In the comparison, MAE and MSE (mean squared
error) metrics were used. The results are presented in Table 2, showing that the proposed
approach is significantly better than the moving average baseline. Figure 10 shows the
distribution of errors in the raw measurement, the moving average, and the proposed
method. Additionally, Figure 11 presents an example prediction of the model, compared to
the ground truth and the raw measurements.

Table 2. Comparison of the proposed method’s accuracy against the baselines, on the test dataset.
The error values are in BPM.

Method MAE MSE

Raw measurement 19.39 727.19
Moving average 13.72 337.29
Proposed method 8.19 119.30

80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110
Error (BPM)

Raw measurement

Moving average

Proposed method

M
et
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d

Figure 10. The errors of the raw measurement, the moving average, and the proposed method, in
relation to the ground truth, on the test dataset. The boxes show the quartiles of the error distribution.
The whiskers show the extent of the distribution, except the outliers, indicated with diamonds.
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Figure 11. Predictions of the model compared with the ground truth (data from the Equivital device)
and the raw measurements from the smartwatch’s sensor. Data from the validation and test datasets
was used for this example (study participant 4).

5.2. Performance Characteristics

The impact of the implemented method on the smartwatch’s performance was evalu-
ated by measuring its memory consumption and CPU usage. The memory consumption is
summarized in Table 3. Overall, the RAM usage of the method does not exceed 1 kB (out of
64 kB available), ensuring that enough memory is available for other functionalities of the
smartwatch.

Table 3. Memory usage of the method implemented on the smartwatch.

Memory Region Total Used Used by Method Total Size

FLASH 420,516 B 2992 B 474,632 B
RAM 55,256 B 880 B 65,536 B

The time required to preprocess the data and perform inference was measured over
500 samples. The smartwatch measures time using an onboard counter-based clock, which
ticks at a frequency of 1024 Hz. This is the most precise measurement of execution time
available programmatically on this device. The mean processing time over the 500 measure-
ment samples is 0.184 smartwatch ticks (σ = 0.431), or approximately 0.18 ms. Considering
that heart rate measurements are collected only every 12 s, the model’s impact on the
performance of the smartwatch is negligible.

5.3. Frugality Score

In recent years, the term “frugality” has been very influential in machine learning
research, due to the popularization of paradigms such as TinyML [52], which strive to adapt
machine learning to edge and IoT environments. However, there have been no universally
accepted metrics of model frugality that would consider both its resource consumption
and capabilities. The lack of such a metric impedes easy comparison with other methods,
developed for the specific problem. In order to promote open and reproducible research in
frugal machine learning, a variant of the frugality score proposed by Evchenko et al. [22]
was computed for the final model. Several changes were applied to the original definition
of the score, to adapt it to the problem presented in this work. Firstly, resource consumption
is expressed in a form that considers both memory and CPU usage. This is a variant of the
RAM-Hours metric [22,53]. Secondly, the original performance metric of AUC is replaced
with mean absolute error, as AUC cannot be used to assess a model’s performance in
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regression problems. The final equation used to compute the frugality score, forming the
frugality curve of the final model, is as follows:

Frugsmartwatch
DNN = MAEtest −

w
1 + 1

URAM∗TCPU

(5)

Here, MAEtest is the mean absolute error computed for the model on the test dataset.
The values of the RAM usage URAM and the CPU time TCPU are represented in bytes and
milliseconds, respectively. The coefficient w expresses the importance of resource frugality
in the final value of the score, with 0 indicating no resource scarcity and 1 indicating
extremely scarce resources. The frugality score was plotted for different values of w
(Figure 12), forming the frugality curve. The RAM and CPU time consumption used to
compute the frugality curve were measured on the PineTime smartwatch. The case of
RAM consumption includes only the memory used by the method. The curve can be used
to compare the frugality score of the method described in this work with those of other
methods. The scores may be analyzed for a given level of resource frugality needed for the
problem indicated in the form of the w coefficient. The authors encourage modification of
this frugality score and the reuse of the frugality curve for research purposes.
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Figure 12. The frugality curve of the final model.

6. Discussion

The presented method of correcting heart rate measurements in an off-the-shelf, low-
cost smartwatch is, to the best of the authors’ knowledge, the first attempt at solving this
particular problem. The method was found to meet the requirements of the construction
site use case. Firstly, the target of prediction performance (MAE of 10 BPM) was met, with
a final MAE of 8.19 BPM. Secondly, the computational requirements of the method are
very low, with only 880 bytes of RAM needed for the whole, integrated method, and a
negligible impact on CPU time. This indicates that it may be possible to develop even more
complex methods for correcting heart rate measurements in the smartwatch, possibly by
using longer feature vectors or by increasing the neural network’s size. The prediction
performance results (see Section 5.1) clearly indicate that the method would benefit from a
larger dataset.

In the context of the real-life use case, the method fulfills an important need and can
be expected to contribute significantly to improving the safety of workers in construction
sites and other demanding environments. Here, it is worth noting that the proposed
system architecture (Section 4.5) is a holistic solution for detecting health-related hazards
to workers, exemplifying how the ASSIST-IoT reference architecture may be used to tackle
a demanding problem using a mix of cloud, edge, and IoT resources. It also illustrates how
ASSIST-IoT enablers can be used as blocks of reusable features that can be easily added to
a system.
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It is important to stress that significant efforts were made to ensure the reproducibility
of this study and to invite future research contributions to this topic. First, the collected
dataset, trained model weights, and the method’s implementation were open-sourced and
made available under free licenses. Second, the obtained frugality curve (Section 5.3) allows
for making reliable comparisons of the accuracy/computational requirements trade-off
between different methods attempting to tackle this problem.

Nevertheless, this study has some limitations that must be acknowledged. The dataset
size could be increased to make it more representative. People of diverse height, build,
and skin tone should be included. In particular, some studies found darker skin tones
to negatively influence the quality of measurement using the PPG method [29]. It is not
known whether this effect applies to the sensor in the PineTime smartwatch, and it remains
a subject for future research. Furthermore, the performance of the method was evaluated
in a laboratory setting, whereas a construction site is a much harsher environment, with
excessive vibrations, electromagnetic interference, dust, and moisture. This may affect
the results significantly, and, thus, a real-life study of the system’s performance should
be conducted.

7. Concluding Remarks

In this work, a novel frugal method for correcting heart rate measurements is presented.
The method is motivated by a real use case of monitoring health hazards to workers
in an active construction site, where scalability and cost effectiveness are some of the
primary concerns. Therefore, the method allows one to employ low-cost, off-the-shelf
smartwatches for this task. Not only is a machine learning model presented but also its
seamless integration with the smartwatch’s RTOS, making the solution readily applicable
in the field. Furthermore, a design for a wider, end-to-end solution to health and safety
monitoring in a construction site is presented, making use of the modular ASSIST-IoT
reference architecture. The presented method was evaluated in terms of its prediction
quality, impact on the smartwatch’s performance, and frugality. In all of the evaluated
aspects, the method was found to meet the relevant requirements, as dictated by the use
case. Even more importantly, the developed solution can easily generalize to multiple other
scenarios involving workers’ health monitoring, e.g., in ports and logistics centers, factories,
mines, etc.

Finally, due to the requirements of the ASSIS-IoT project, the presented method and
its integration with the ASSIST-IoT reference architecture are scheduled to be field-tested
in the coming months in an active construction site in Poland. The method’s usability,
accuracy, and reliability will be comprehensively tested in a number of realistic scenarios.
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