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Abstract: Localization is one of the essential problems in internet of things (IoT) and wireless sensor
network (WSN) applications. However, most traditional range-free localization algorithms cannot
fulfill the practical demand for high localization accuracy. Therefore, a localization algorithm based
on an enhanced flower pollination algorithm (FPA) with Gaussian perturbation (EFPA-G) and the
DV-Hop method is proposed.FPA is widely applied, but premature convergence still cannot be
avoided. How to balance its global exploration and local exploitation capabilities still remains an
outstanding problem. Therefore, the following improvement schemes are introduced. A search
strategy based on Gaussian perturbation is proposed to solve the imbalance between the global
exploration and local exploitation search capabilities. Meanwhile, to fully exploit the variability
of population information, an enhanced strategy is proposed based on optimal individual and
Lévy flight. Finally, in the experiments with 26 benchmark functions and WSN simulations, the
former verifies that the proposed algorithm outperforms other state-of-the-art algorithms in terms of
convergence and search capability. In the simulation experiment, the best value for the normalized
mean squared error obtained by the most advanced algorithm, RACS, is 20.2650%, and the best
value for the mean distance error is 5.07E+00. However, EFPA-G reached 19.5182% and 4.88E+00,
respectively. It is superior to existing algorithms in terms of positioning, accuracy, and robustness.

Keywords: wireless sensor network; flower pollination algorithm; Gaussian perturbation; node
location; optimization

1. Introduction

Over recent decades, as the technologies of the internet of things (IoT) have become
more and more sophisticated, the intelligent perception and management of objects can be
realized through the connection of things and people [1]. Wireless sensor networks (WSNs)
have been playing an increasingly significant role in the IoT with their functions such as
real-time sensing, collecting, and processing of information. The inherent characteristics of
the node location make it an essential prerequisite for many functions. With the demand
for location-based services developing rapidly, the accuracy of node localization affects
numerous practical application areas, such as smart homes [2], city surveillance [3], fault
diagnosis [4], etc.

The localization methods can be classified into range-based [5] and range-free [6]
localization methods based on whether the actual measurement of the distance between
nodes is necessary. The former achieves the estimation of the distance between nodes
based on the angle of arrival [7], time of arrival [8], and time difference of arrival [9] of
the signal or based on the received signal strength. Although this type of method has
high positioning accuracy, it requires additional equipment to achieve the corresponding
measurement, which is costly and not suitable for monitoring of large areas. The latter
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method estimates the location of unknown nodes by the connectivity between neighboring
nodes. Although the accuracy of this type of algorithm is low, it can basically meet the
practical needs. This paper focuses on the DV-Hop method, which is one of the typical
range-free based localization methods [10]. To satisfy the increasing demand of positioning
accuracy, many scholars have conducted research related to the DV-Hop method. For
example, Xue [11] proposed an improved DV-Hop algorithm based on hop refinement and
distance correction for the shortcomings of the traditional DV-Hop-based wireless sensor
network localization algorithm with large errors. Messous et al. [12] proposed an improved
recursive DV-Hop localization algorithm by minimizing the localization error of the esti-
mated distance between the anchor node and the unknown node. Cheikhrouhou et al. [13]
proposed an enhanced DV-Hop method by transforming the localized nodes into anchor
nodes to improve the localization accuracy. Messous et al. [14] proposed an improved DV-
Hop method by receiving the signal strength and polynomial approximation to estimate
the distance between the anchor node and the unknown node. Zhao et al. [15] proposed a
DV-Hop algorithm based on locally weighted linear regression (LWLR-DV-Hop), using a
kernel approach to improve localization accuracy by increasing the weights of neighboring
anchor nodes. Liouane et al. [16] proposed an improved method of the DV-Hop algorithm
for wireless sensor networks based on the Tikhonov regularization method. Liu et al. [17]
proposed an improved DV-Hop algorithm based on neural dynamics (ND-DV-Hop) for
improving the accuracy of the DV-Hop algorithm. Although the above algorithms can
obtain satisfactory localization accuracy, with the continuous development of metaheuristic
optimization algorithms, such as the cuckoo search algorithm (CS) [18], beluga whale
optimization (BWO) [19], and golden jackal optimization (GJO) [20], how to better utilize
the advantages of both methods is a hot research topic.

The flower pollination algorithm (FPA) [21], as one of the typical metaheuristic opti-
mization algorithms, has attracted much attention by virtue of its effective applicability to
real-world problems. Although the FPA can achieve satisfactory performance in solving
regular problems, for complex problems it remains limited by its low search capability and
convergence speed [22]. Therefore, scholars have conducted much innovative research.
Kaya [23] proposed a quick flower pollination algorithm based on parameter adaptive and
arithmetic crossover. Cao et al. [24] proposed a robot calibration method using an extended
Kalman filter (EKF) and an artificial neural network (ANN) based on the butterfly and
flower pollination algorithms (ANN-BFPA) to improve the absolute pose (position and
orientation) accuracy of the robot. Ozsoydan et al. [25] proposed a species-based flower
pollination algorithm with increased selection pressure and enhanced reinforcement in abi-
otic local pollination. Mergos [26] applied the FPA for the first time to compute challenging
optimal designs of real-world three-dimensional reinforced concrete (RC) building frame
structures after a series of appropriate modifications. Dao et al. [27] proposed to hybridize
the FPA with a sine–cosine algorithm (called HSFPA) to avoid the drawbacks of the FPA
for microgrid operation planning and global optimization problems. Sasikumar et al. [28]
proposed a population intelligence-based approach for op-amp optimization sizing. A
hybrid version of the flower pollination algorithm (HFPA) is introduced to effectively solve
the analog circuit transistor sizing problem and reduce the design search space. Ozsoydan
et al. [29] introduced several FPA modifications using chaotic maps and further enhanced
the exploited search capabilities by using an enhanced step quantification procedure. All
the mentioned studies relevant to the FPA have achieved satisfactory results. However,
most of them are parametric algorithms and hybrid algorithms that lack innovative research
on the FPA’s search mechanism. Therefore, this paper focuses on relevant studies on global
exploration and local exploitation search mechanisms.

With respect to the mentioned problems, an enhanced flower pollination algorithm
with Gaussian perturbation (EFPA-G) is proposed in this paper. In the global exploration
of the traditional FPA, the optimal search process of the population is achieved only by
relying on Lévy flight, which can mean the algorithm becomes trapped in local extremes in
the late iterations. Therefore, in the FPA proposed in this paper, an enhanced strategy based
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on Lévy flight is proposed to improve the search capability of the algorithm. An imbalance
in the search capability exists between the global exploration and local exploitation of the
traditional FPA, which results in the local exploitation struggling to contribute to a faster
convergence speed of the algorithm during the iterations. Therefore, this paper proposes a
Gaussian perturbation strategy for improving the search ability of the local exploitation.
Extensive experimental results on the benchmark optimization problems show that the
proposed EFPA-G algorithm outperforms other state-of-the-art improved metaheuristic
optimization algorithms. Satisfactory localization accuracy is also achieved in the WSN
simulation experiments.

The major contributions of this article are stated as follows:

(1) A localization algorithm based on the enhanced flower pollination algorithm with
Gaussian perturbation and the DV-Hop method is proposed. The superiority and
robustness of the proposed algorithm are verified by extensive simulation experiments.

(2) An enhancement strategy based on Lévy flight is proposed to improve the search
capability of the algorithm.

(3) A Gaussian perturbation strategy for balancing global exploration and local exploita-
tion search capabilities is proposed.

The remainder of this paper is presented as follows: The FPA and the DV-Hop method
are described in Section 2. The proposed EFPA-G algorithm is described in detail in
Section 3. The simulation results and comparisons of the approaches are shown in Section 4.
Finally, conclusions are presented in Section 5.

2. Background
2.1. DV-Hop Method

The distance vector hop (DV-Hop) localization algorithm is based on the distance vec-
tor exchange protocol to obtain hop counts for node localization. The DV-Hop algorithm is
widely used in WSN node localization because of its relatively simple implementation [30],
which only requires the use of hop counts and distance vector estimates to calculate the
nodes’ positions. No additional hardware or measurement costs are necessary, making it
easy to implement and apply in large-scale wireless sensor networks, including dense and
sparse networks. Additionally, it can handle situations such as partial node failures com-
pared to other algorithms. The algorithm uses hop counts and distance vector estimates to
calculate the nodes’ positions, which can be measured and transmitted by multiple nodes,
thereby improving the measurement’s reliability and accuracy. Combining the proposed
algorithm with the DV-Hop algorithm increases the algorithm’s robustness and improves
its localization accuracy.

2.1.1. Calculating the Minimum Number of Hops

The anchor node broadcasts its own packet to the whole network by flooding, and the
packet contains the anchor node’s location information and hop value. The unknown node
receives the packet from the anchor node and updates its hop count information, adds 1 to
the packet’s hop value and saves it. To ensure that all nodes in the network have access
to the minimum hop count hui information of each anchor node, the node receiving the
packet only needs to keep the packet with the smaller hop count.

2.1.2. Estimating the Distance between Anchor Nodes and Unknown Nodes

After each anchor node receives the coordinates of other anchor nodes and the min-
imum number of hops, it calculates its average hop distance according to Equation (1).

Hopsizei =
∑i 6=j

√(
xi − xj

)2
+
(
yi − yj

)2

∑i 6=j hij
(1)
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where (x, y) represents the coordinates of the anchor nodes, hij represents the number of
hops between anchor nodes i and j, and Hopsizei represents the average hop distance of
anchor node i.

2.1.3. Estimating Unknown Node Coordinates

The estimated distance dui is calculated using Equation (1), and then combined with
the least squares method to estimate the position of the unknown node, as shown in
Equation (2). 

(x1 − x)2 + (y1 − y)2 = d2
1

(x2 − x)2 + (y2 − y)2 = d2
2

...
(xn − x)2 + (yn − y)2 = d2

n

(2)

where (x, y) denotes the coordinates of the unknown node and d denotes the distance
between the unknown node and the anchor node. By subtracting the first term from the
previous term and splitting it, the form AX = B is obtained, where A, B, and X are shown
in Equations (3)∼(5), respectively.

A =


2(x1 − xn) · · · 2(y1 − yn)

... ...
2(xn−1 − xn) · · · 2(yn−1 − yn)

 (3)

B =

 x2
1 − x2

n + y2
1 − y2

n + d2
n − d2

1
...

x2
n−1 − x2

n + y2
n−1 − y2

n−n + d2
n − d2

n−1

 (4)

X =

[
x
y

]
(5)

Finally, the estimated coordinates of the unknown nodes are obtained by Equation (6).

X̂ =
(

AT A
)−1

AT B (6)

2.2. Flower Pollination Algorithm

The flower pollination algorithm (FPA) is a metaheuristic optimization algorithm
based on the pollination process in nature. The FPA uses adaptive parameters and adaptive
operators, which can dynamically adjust parameters according to the characteristics of
the problem and the search process, thereby improving the robustness and adaptability
of the algorithm. It is highly robust, and can handle noisy data and complex problems
with multiple variables and constraints by using probabilistic methods to explore different
regions of the search space. It can quickly converge to a satisfactory solution, reducing
calculation time and cost. Because its implementation is relatively simple and can be quickly
applied to the solution of various practical problems, it is widely used in various fields
such as optimization, classification, and clustering. It mainly consists of global pollination
and self-pollination, which can also be called global exploration and local exploitation.

2.2.1. Global Pollination

Global pollination, that is, cross-pollination, is usually based on biology. Pollen is
spread over long distances by pollinators such as birds, insects, bees, or bats. Its spread can
be modeled using the Lévy distribution, as shown in Equation (7).

xt+1
i = xt

i + lévy ·
(
xbest − xt

i
)

(7)
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where xbest represents the optimal solution, xt
i represents the i-th solution of the t-th

generation, and lévy represents the Lévy flight step length, as shown in Equation (8).

lévy ∼ λΓ(λ) sin(πλ/2)
π

· 1
s1+λ

(s� s0 > 0) (8)

where Γ(λ) represents the standard gamma function, λ = 1.5, parameter s is calculated
using Equation (9), and µ and v are random numbers subject to Gaussian distribution. µ
is the distribution with the mean zero variance of σ2. The parameter σ is calculated using
Equation (10).

s =
µ

|v|1/λ
, µ ∼ N

(
0, σ2

)
, v ∼ N(0, 1) (9)

σ =

[
Γ(1 + λ)

λΓ(1 + λ/2)
· sin(λπ/2)

2λ−1/2

] 1
2λ

(10)

2.2.2. Local Pollination

Local pollination, that is, self-pollination, is pollination by abiotic and other factors,
so the spread range is small, and pollination is often completed around itself, as shown in
Equation (11).

xt+1
i = xt

i + ε ·
(

xt
j − xt

k

)
(11)

where xt
j and xt

k are pollen from different flowers of similar flowering plants, i.e., two
solutions randomly selected from the population, and ε is a random variable that follows a
uniform distribution.

2.2.3. Transition Probability

The algorithm randomly switches between the two processes of exploitation and
exploration by transition probability P to determine the type of flower pollination (i.e.,
global or local search process) to ensure the quality of the search. When the random
probability is less than the transition probability, self-pollination is performed, otherwise
the cross-pollination process is performed.

3. Proposed EFPA-G Approach

An enhanced flower pollination algorithm with Gaussian perturbation (EFPA-G)
is proposed to avoid premature convergence of the FPA algorithm and to improve the
performance of the FPA algorithm on complex optimization problems.

3.1. Enhanced Strategy

In traditional FPAs, global exploration relies only on Levy flights to carry out global
optimization, but the search capability is not sufficient to accomplish high-precision opti-
mization in late iterations. In addition, the Lévy flight only exploits the difference between
the optimal solution and the candidate solution, without utilizing the global search in-
formation of the population as a whole, resulting in a waste of information. Therefore,
an enhanced strategy based on Lévy flight is proposed in this paper to accommodate the
requirements of the algorithm for high-precision search optimization in the late iterations,
as shown in Equation (12).

xt+1
i = xt

i + δ ·
(
rand ·

(
xbest − xt

i
)
+ lévystep

)
(12)

where δ represents the iteration-based weights, as shown in Equation (13), and lévystep is
the leap distance based on the Lévy flight, as shown in Equation (14).

δ = rand · (1− t/Iter) (13)
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lévystep = α · lévy ·
(
xt

k − xt
i
)

(14)

where t and Iter denote the current iteration number and the maximum iteration number,
respectively. α is a constant, and α = 0.05, xt

k represents the randomly selected individuals
in the t-th generation.

3.2. Gaussian Perturbation

The enhanced strategy based on Levy flight further improves the search capability
of the FPA’s global exploration, but cannot satisfy the needs of large-scale optimization
problems, and further increases the imbalance between global exploration and the local
development search capability. Therefore, how to enhance the search capability of local
exploitation becomes particularly more significant.

In Equation (11), x performs a modification of its own information based only on
the information difference with the other two candidate solutions in the population. In
addition, the Gaussian distribution alters its curve according to the variation in the mean
and variance, which indicates the stability while being random. Therefore, employing a
Gaussian distribution in the iteration to achieve perturbation of the population is practicable.
In this paper, an optimal search strategy based on Gaussian perturbation is proposed, as
shown in Equation (15).

xt+1
i = G

(
xt

i
)
+ ε ·

(
xt

j − xt
k

)
(15)

where G(·) is defined by Equation (16).

G
(
xt

i
)
=

1√
2πζ2

e
(
−(xt

i−xt
best)

2/
2ζ2
)

(16)

where xt
best represents the t-th generation optimal solution and ζ is defined by Equation (17).

ζ = 1 + log(t)
/

t ·
(
xt

i − xbest
)

(17)

where xbest represents the global optimal solution.
With respect to the designed Gaussian perturbation, it is designed to maintain stability

throughout the iterations while further perturbing x over a large range, thus permitting the
algorithm to leap out of local extremes.

3.3. Objective Function

For the proposed EFPA-G algorithm to be more applicable to WSN node localization,
the localization problem is transformed into the problem of minimizing the difference
between the estimated and actual locations, i.e., the localization error minimization problem,
as shown in Equation (18).

min f (x, y) =
Na

∑
i=1

√
a
[
(x− xi)

2 + (y− yi)
2 − d2

i

]
(18)

where Na is the number of anchor nodes, and a is the reciprocal of the minimum number of
hops between the estimated unknown (x, y) and the anchor node (xi, yi). d2

i denotes the
actual distance between the unknown node and the anchor node.

3.4. EFPA-G Algorithm

According to the previous theory, this section focuses on detailing the framework of
the proposed enhanced flower pollination algorithm with Gaussian perturbation, as shown
in Algorithm 1.
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Algorithm 1 Proposed EFPA-G Algorithm

Input:
The maximum number of iterations Iter, population size N, transition probability P;

Output:
Optimal solution;

1: Initialize: x0
i = xmin + rand · (xmax − xmin);

2: Calculate the fitness of the initial population x0
i ;

3: Record the current optimal solution best;
4: t = 1;
5: while t ≤ Iter do
6: for i = 1 to N do
7: if rand < P then
8: δ = rand · (1− t/Iter);
9: Update newx using Equation (12);

10: else
11: β = log(t)

/
t ·
(
best− xt

i
)
;

12: Update newx using Equation (15);
13: end if
14: Calculate the fitness of newx;
15: if f it(newx) < f it

(
xt−1

i

)
then

16: xt
i = newx;

17: end if
18: if f it(newx) < f it(best) then
19: best = newx;
20: end if
21: end for
22: t = t + 1;
23: end while
24: output result.

3.5. Complexity Analysis

This section focuses on the complexity analysis in two parts, the DV-Hop method
and the EFPA-G algorithm. In the DV-Hop method, the total number of nodes is n and
the number of anchor nodes is m. The complexity of the minimum hop count estimation
between nodes is O

(
n3), the complexity of the actual distance calculation between nodes is

O(n×m), the complexity of the distance between unknown nodes and anchor nodes is N,
and the complexity of the likelihood estimation method is O

(
(n−m)4

)
. In the EFPA-G

algorithm, the dimension of the objective function is D. The complexity of the proposed
algorithm is O(Iter× N × D). By replacing the likelihood estimation method in DV-Hop
by the proposed EFPA-G algorithm, the complexity of the final WSN node localization
method is O

(
n3)+ O(n) + O(n×m) + O(Iter× N × D).

4. Numerical Results and Discussions

The performance of the proposed algorithm is verified using 26 well-known bench-
mark functions, and the superiority of the proposed algorithm is confirmed by comparison
with other state-of-the-art metaheuristic optimization algorithms. In addition, the per-
formance of the EFPA-G algorithm is tested in a WSN simulation for real optimization
problems.

4.1. Parameters Settings

In this section, we discuss the performance of the proposed EFPA-G and other state-
of-the-art optimization algorithms as follows.

(1) Flower pollination algorithm (FPA): transition probability P = 0.5;
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(2) Flower pollination algorithm based on cloud mutation (CMFPA) [31]: transition
probability P = 0.5;

(3) Modified particle swarm optimization (MPSO) [32]: inertia weight ω = 0.9∼0.4,
acceleration factors c1 = c2 = 2;

(4) Marine predators algorithm (MPA) [33]: fish aggregating devices FADs = 0.2, constant
number p = 0.5;

(5) Ranking-based adaptive cuckoo search algorithm (RACS) [34]: the maximum size of
the archive AN = N, exponent parameter αmin = 0.5, αmax = 2.5, the pre-determined
number of cycles limit = N · D, initial crossover rate CRm = 0.5;

(6) Proposed EFPA-G algorithm: transition probability P = 0.5.

For the sake of fairness, the mentioned algorithms are all run 30 times independently
with the same population size N = 50 and the termination condition is the maximum
number of iterations. The maximum number of iterations is set to 1000 for the numerical
experiments and to 200 for the WSN simulation experiments.

4.2. Benchmark Test

To test the proposed EFPA-G apporach, 26 benchmark functions are available which
are divided into unimodal functions ( f1∼ f12) and multimodal functions ( f13∼ f26). The
former reveals the exploitation performance of the algorithm, while the latter challenges
the exploration capability of the algorithm. Details of the benchmark functions are shown
in Table 1. In addition, to test the optimization performance of the proposed algorithm for
benchmark functions of different dimensions, experiments are conducted using D = 30
and D = 50.

Table 1. The information of the benchmark functions used in this paper.

Name Function Range fopt

Sphere f1 = ∑D
i=1 x2

i [−100, 100] 0
Schwefel 2.22 f2 = ∑D

i=1 |xi|+ ∏D
i=1 |xi| [−10, 10] 0

Schwefel 1.2 f3 = ∑D
i=1

(
∑i

j=1 xj

)2
[−100, 100] 0

Schwefel 2.21 f4 = max1≤i≤D|xi| [−100, 100] 0
Rosenbrock f5 = ∑D−1

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30] 0

Step f6 = ∑D
i=1 (b|xi|c) [−100, 100] 0

Quartic f7 = ∑D
i=1 ix4

i + random[0, 1) [−1.28, 1.28] 0

Zakharov f8 = ∑D
i=1 x2

i +
(

0.5 ∑D
i=1 ixi

)2
+
(

0.5 ∑D
i=1 ixi

)4
[−5, 10] 0

Sum Squares f9 = ∑D
i=1 ix2

i [−10, 10] 0

Ridge f10 = x1 + d
(

∑D
i=2 x2

i

)α
, d = 1, α = 0.5 [−5, 5] −5

Xin-She Yang 3 f11 = e−∑D
i=1 (xi/β)

2m
− 2e−∑D

i=1 (xi)
2
·∏D

i=1 cos2(xi) [−2π, 2π] −1
Dixon&Price f12 = (x1 − 1)2 + ∑D

i=2 i
(
2x2

i − xi−1
)2

[−10, 10] 0
Schwefel 2.26 f13 = − 1

D ∑D
i=1 xi sin

√
|xi| [−500, 500] 0

Rastrigin f14 = ∑D
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 0

Ackley 1 f15 = −20e−0.02
√

D−1 ∑D
i=1 x2

i − eD−1 ∑D
i=1 cos(2πxi) + 20 + e [−35, 35] 0

Griewank f16 = ∑D
i=1

x2
i

4000 −∏D
i=1 cos

(
xi√

i

)
+ 1 [−100, 100] 0

Generalized pen-
alized function 1

f17 = π
D

{
10sin2πx1 + ∑D

i=1

(
(xi − 1)2(1 + 10sin2πxi

))
+ (xD − 1)2

}
+ ∑D

i=1 u(xi, 10, 100, 4)
[−50, 50] 0

Generalized pen-
alized function 2

f18 = 1
10

{
sin23πx1 + ∑D−1

i=1

(
(xi − 1)2(1 + sin23πxi+1

))}
+

1
10

{
(xD − 1)(1 + sin 2πxD)

2
}
+ ∑D

i=1 u(xi, 5, 100, 4)
[−50, 50] 0

Periodic f19 = 1 + ∑D
i=1 sin2(xi)− 0.1e−∑D

i=1 x2
i [−10, 10] 0.9
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Table 1. Cont.

Name Function Range fopt

Ackley 4 f20 = ∑D−1
i=1

(
e−0.2

√
x2

i + x2
i+1 + 3(cos(2xi) + sin(2xi+1))

)
[−10, 10] −4.59

Xin-She Yang 2 f21 =
(

∑D
i=1 |xi|

)
e−∑D

i=1 sin(x2
i ) [−2π, 2π] 0

Xin-She Yang 4 f22 =
[
∑D

i=1 sin2(xi)− e−∑D
i=1 x2

i

]
e−∑D

i=1 sin2
√
|xi | [−10, 10] −1

Styblinski-Tank f23 = 1
2 ∑D

i=1
(
x4

i − 16x2
i + 5xi

)
[−5, 5] 0

Salomon f24 = 1− cos
(

2π
√

∑D
i=1 x2

i

)
+ 0.1

√
∑D

i=1 x2
i [−100, 100] −39.16599 · D

Happy Cat f25 =

[(
‖x‖2 − D

)2
]α

+ 1
D

(
1
2‖x‖

2 + ∑D
i=1 xi

)
+ 1

2 , α = 0.5 [−2, 2] 0

Qing f26 = ∑D
i=1
(
x2

i − i
)2

[−500, 500] 0

4.2.1. D = 30

To highlight the superiority and robustness of the proposed EFPA-G algorithm, this
section compares the convergence curves and search accuracy of the algorithm from two
aspects. The computational accuracy results of the proposed EFPA-G algorithm and the
compared algorithms are shown in Table 2. The mean and standard deviation are compared
to reflect the robustness of the algorithms. Lower values of the mean and standard deviation
indicate better robustness. The optimal results are highlighted in bold and marked. The
convergence curves are shown in Figures 1 and 2.

Table 2. Results for unimodal and multimodal functions (D = 30).

Function
Algorithm

Function
Algorithm

FPA CMFPA MPSO MPA RACS EFPA-G FPA CMFPA MPSO MPA RACS EFPA-G

f1
Ave 2.11E+01 1.19E+02 6.69E-62 9.61E-50 8.34E-15 0.00E+00

f14
Ave 8.45E+01 1.68E+02 1.17E+01 0.00E+00 1.19E-08 0.00E+00

Std 1.26E+01 7.99E+01 3.66E-61 1.05E-49 6.55E-15 0.00E+00 Std 1.38E+01 1.39E+01 1.32E+01 0.00E+00 8.19E-09 0.00E+00

f2
Ave 6.21E+00 1.00E+01 1.39E-35 1.33E-27 2.75E-09 1.77E-178 f15

Ave 3.81E+00 4.26E+00 2.96E-15 3.08E-15 1.78E-01 0.00E+00
Std 2.03E+00 2.06E+00 4.54E-35 1.72E-27 8.79E-10 0.00E+00 Std 1.03E+00 8.13E-01 1.35E-15 1.23E-15 4.26E-01 0.00E+00

f3
Ave 1.86E+01 8.07E+01 2.60E+02 7.83E-13 1.16E+03 0.00E+00 f16

Ave 6.30E-01 1.02E+00 0.00E+00 0.00E+00 1.53E-13 0.00E+00
Std 9.71E+00 3.31E+01 1.54E+02 2.82E-12 5.61E+02 0.00E+00 Std 1.40E-01 4.63E-02 0.00E+00 0.00E+00 6.53E-13 0.00E+00

f4
Ave 7.71E+00 9.89E+00 3.13E-25 2.70E-19 1.30E-01 7.58E-177 f17

Ave 2.26E+01 3.14E+01 6.54E-02 5.95E-11 5.02E-14 7.64E-01
Std 1.49E+00 1.75E+00 7.68E-25 2.34E-19 3.43E-02 0.00E+00 Std 7.89E+00 1.54E+01 1.24E-01 2.55E-11 3.08E-14 4.24E-01

f5
Ave 5.45E+02 4.47E+03 3.19E+01 2.24E+01 2.38E+01 2.78E+01 f18

Ave 6.96E+01 1.29E+02 4.33E-02 7.40E-10 3.34E-14 7.22E-02
Std 4.30E+02 3.15E+03 3.17E+01 6.19E-01 3.96E+00 4.98E+00 Std 3.36E+01 8.84E+01 3.80E-02 3.21E-10 3.06E-14 3.70E-02

f6
Ave 1.87E+01 5.26E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 f19

Ave 1.46E+00 3.51E+00 1.59E+00 1.00E+00 1.03E+00 9.00E-01
Std 5.46E+00 1.48E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Std 6.81E-02 5.06E-01 5.13E-01 2.01E-03 6.42E-03 4.52E-16

f7
Ave 4.27E-02 5.71E-02 5.73E-04 4.08E-04 1.53E-02 9.56E-05 f20

Ave 1.15E+01 2.14E+01 −3.93E+01 −4.71E+01 −4.81E+01 −4.69E+01
Std 1.36E-02 1.90E-02 2.95E-04 2.30E-04 4.10E-03 6.88E-05 Std 9.23E+00 9.55E+00 3.02E+00 1.94E+00 1.21E+00 4.47E+00

f8
Ave 4.70E+00 1.03E+01 6.02E+00 4.05E-09 3.81E+01 0.00E+00 f21

Ave 5.87E-12 6.34E-12 4.23E-11 7.30E-12 3.66E-12 7.98E-11
Std 2.84E+00 5.64E+00 8.05E+00 4.15E-09 1.27E+01 0.00E+00 Std 2.32E-12 2.91E-12 4.29E-11 2.84E-12 2.07E-13 2.30E-10

f9
Ave 2.20E+00 1.37E+01 4.78E-66 1.68E-50 7.77E-16 0.00E+00 f22

Ave 3.35E-13 5.58E-12 1.62E-12 7.93E-21 3.59E-16 −1.00E+00
Std 1.08E+00 6.90E+00 1.09E-65 3.13E-50 3.31E-16 0.00E+00 Std 5.79E-14 1.57E-12 1.43E-12 3.42E-21 1.72E-16 0.00E+00

f10
Ave −4.59E+00 −3.85E+00 −5.00E+00 −5.00E+00 −5.00E+00 −1.50E+00 f23

Ave −1.01E+03 −8.47E+02 −1.03E+03 −1.11E+03 −1.17E+03 −6.73E+02
Std 1.09E-01 2.63E-01 0.00E+00 1.77E-12 6.26E-10 8.97E-01 Std 1.27E+01 2.47E+01 3.96E+01 2.12E+01 1.79E-13 3.93E+01

f11
Ave −2.56E-01 −2.98E-01 9.95E-01 1.99E-01 9.95E-01 −1.00E+00 f24

Ave 2.49E+00 2.55E+00 9.99E-02 1.10E-01 3.55E-01 1.33E-159
Std 8.96E-01 8.64E-01 3.39E-16 9.91E-01 3.39E-16 0.00E+00 Std 3.29E-01 4.23E-01 6.30E-09 3.05E-02 4.97E-02 7.29E-159

f12
Ave 8.63E+00 4.28E+01 6.67E-01 6.67E-01 6.67E-01 2.55E-01 f25

Ave 5.31E-01 5.48E-01 2.06E-01 2.16E-01 1.68E-01 8.92E-01
Std 3.97E+00 2.59E+01 1.96E-07 1.06E-09 4.35E-05 6.84E-03 Std 9.33E-02 6.84E-02 7.30E-02 4.65E-02 2.33E-02 2.02E-01

f13
Ave −2.70E+02 −1.79E+02 −3.15E+02 −3.36E+02 −4.19E+02 −1.41E+02

f26
Ave 9.19E+04 2.88E+06 3.52E+03 5.40E-01 1.98E-01 3.24E+03

Std 6.91E+00 7.94E+00 2.01E+01 1.71E+01 1.00E+00 2.09E+01 Std 7.72E+04 3.60E+06 1.11E+04 1.66E+00 8.29E-02 8.43E+02

Bold values indicate that the function is optimal in experimental comparisons.
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Figure 1. Comparison of proposed EFPA-G and other state-of-the-art algorithms for convergence
performance (D = 30).



Sensors 2023, 23, 6463 11 of 18

0 200 400 600 800 1000

Generation

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(a) f16

0 200 400 600 800 1000

Generation

-15

-10

-5

0

5

10

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(b) f17

0 200 400 600 800 1000

Generation

-15

-10

-5

0

5

10

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(c) f18

0 200 400 600 800 1000

Generation

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(d) f19

0 200 400 600 800 1000

Generation

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(e) f22

0 200 400 600 800 1000

Generation

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(f) f23

0 200 400 600 800 1000

Generation

-160

-140

-120

-100

-80

-60

-40

-20

0

20

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(g) f24

0 200 400 600 800 1000

Generation

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(h) f25

0 200 400 600 800 1000

Generation

-2

0

2

4

6

8

10

12

F
it

n
e
s
s

FPA

MPA

MPSO

RACS

CMFPA

EFPA-G

(i) f26

Figure 2. Comparison of proposed EFPA-G and other state-of-the-art algorithms for convergence
performance (D = 30).

Based on the results from the 12 unimodal functions in Table 2, it is observed that
the proposed EFPA-G algorithm can match 0.00E+00 (the optimal values) for all the six
unimodal functions tested ( f1, f3, f6, f8, f9, and f11). The other functions ( f2, f4, f7) are
ahead of the other comparison algorithms even though they do not achieve the optimal
values. However, in the f10 function, the optimal values are obtained for the MPSO,
MPA, and RACS algorithms, The mean reached −5.00E+00, and the standard deviations
were 0.00E+00, 1.77E-12, and 6.26E-10, respectively. The presence of a large number of
local extremes in the multimodal functions provides a better evaluation of the search
performance of the proposed EFPA-G algorithm. From the experimental results of the
14 multimodal functions ( f13∼ f26) in Table 2, the performance of the proposed EFPA-G
algorithm outperforms the other comparison algorithms obviously. For the five multimodal
functions ( f14∼ f16, f19, and f22), the proposed EFPA-G algorithm is able to obtain the
optimal values. The proposed EFPA-G algorithm obtains the first rank in both average and
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standard deviation for all the nine multimodal functions ( f13∼ f16, f19, f20, and f22∼ f24).
Therefore, in the testing of 26 benchmark functions, the mean and standard deviation of
EFPA-G in 30 experiments were mostly optimal. This indicates that EFPA-G has superior
robustness compared to the compared algorithms.

The convergence curves of the 10 unimodal functions in Figures 1 and 2 show that
the proposed EFPA-G algorithm outperforms the other compared algorithms in terms
of convergence speed. The proposed EFPA-G algorithm converges much more quickly
than the other compared algorithms in the seven unimodal functions ( f1∼ f4, f6, f8, and f9).
In the six multimodal functions ( f14∼ f16, f19, f23, and f24), the convergence speed of the
proposed EFPA-G algorithm obtains the first rank. In the other benchmark functions, the
proposed EFPA-G algorithm obtained a satisfactory ranking.

From Table 2 and Figures 1 and 2, it can be observed that the proposed EFPA-G
algorithm exerts the exploitation capability in dealing with single-peaked functions and
the exploration capability in dealing with multi-peaked functions.

4.2.2. D = 50

To test the sensitivity of the proposed EFPA-G algorithm in solving the same problem
with different dimensions, this paper modifies the dimension D to 50 for the experiment,
and the corresponding experimental results are shown in Table 3. Comparing the experi-
mental results in Tables 2 and 3.

For unimodal functions ( f1, f3, f6, f8, f9, and f11) and multimodal functions ( f14∼ f16,
f19, and f22) the optimal value of 0.00E+00 is achieved. The MPSO, MPA, and RACS
algorithms all obtained optimal values for unimodal functions only ( f6, f10). Compared
with the RACS algorithm, it outperforms the proposed EFPA-G algorithm in five benchmark
functions ( f10, f18∼ f20, and f26). The MPA algorithm outperforms the proposed EFPA-
G algorithm and other algorithms in functions ( f17, f21, and f26) as the dimensionality
increases. It is observed that with the increase in dimensions, the proposed EFPA-G
algorithm can still obtain the first rank in most of the benchmark functions, including
unimodal and multimodal functions.

Table 3. Results for unimodal and multimodal functions (D = 50).

Function
Algorithm

Function
Algorithm

FPA CMFPA MPSO MPA RACS EFPA-G FPA CMFPA MPSO MPA RACS EFPA-G

f1
Ave 3.50E+02 1.26E+03 1.43E-45 3.84E-46 7.23E-08 0.00E+00

f14
Ave 1.78E+02 3.33E+02 1.53E+01 0.00E+00 1.40E+00 0.00E+00

Std 1.25E+02 4.98E+02 7.41E-45 7.34E-46 2.93E-08 0.00E+00 Std 1.97E+01 2.21E+01 3.36E+01 0.00E+00 9.42E-01 0.00E+00

f2
Ave 1.61E+01 2.20E+01 5.64E-32 3.88E-26 5.07E-05 1.80E-178 f15

Ave 4.49E+00 4.35E+00 4.19E-01 3.32E-15 1.23E+01 0.00E+00
Std 1.70E+00 2.81E+00 2.11E-31 4.70E-26 1.03E-05 0.00E+00 Std 1.22E+00 1.06E+00 1.91E+03 9.01E-16 4.33E+00 0.00E+00

f3
Ave 3.77E+02 7.17E+02 2.84E+03 2.48E-08 1.17E+04 0.00E+00 f16

Ave 1.08E+00 1.35E+00 0.00E+00 0.00E+00 1.26E-08 0.00E+00
Std 1.22E+02 2.57E+02 1.91E+03 1.02E-07 1.94E+03 0.00E+00 Std 2.88E-02 9.60E-02 0.00E+00 0.00E+00 1.83E-08 0.00E+00

f4
Ave 1.25E+01 1.35E+01 3.54E-22 1.36E-17 2.33E+00 1.74E-175 f17

Ave 3.23E+01 3.58E+01 2.50E+00 2.52E-09 9.05E-07 1.63E+00
Std 1.91E+00 1.58E+00 1.39E-21 9.06E-18 4.29E-01 0.00E+00 Std 8.86E+00 1.56E+01 3.24E+00 6.82E-10 5.27E-07 6.35E-01

f5
Ave 1.26E+04 1.03E+05 4.92E+03 4.34E+01 5.76E+01 4.85E+01 f18

Ave 1.51E+02 1.85E+02 1.22E+00 4.90E-03 3.59E-07 1.12E-01
Std 8.62E+03 6.20E+04 2.00E+04 5.44E-01 2.00E+01 6.88E-03 Std 6.45E+01 7.93E+01 1.41E+00 7.86E-03 1.22E-07 5.15E-02

f6
Ave 9.58E+01 1.71E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 f19

Ave 3.11E+00 6.80E+00 2.30E+00 1.01E+00 1.35E+00 9.00E-01
Std 1.38E+01 2.75E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Std 2.02E-01 6.73E-01 6.13E-01 7.12E-03 5.44E-02 4.52E-16

f7
Ave 1.52E-01 1.81E-01 8.88E-04 6.65E-04 3.05E-02 8.43E-05 f20

Ave 5.09E+01 7.40E+01 5.64E-32 −7.44E+01 −6.85E+01 −7.95E+01
Std 5.13E-02 5.37E-02 3.87E-04 3.84E-04 6.91E-03 9.02E-05 Std 1.37E+01 1.17E+01 6.51E+00 2.74E+00 1.45E+00 6.96E+00

f8
Ave 5.52E+01 8.81E+01 9.81E+01 6.66E-05 2.88E+02 0.00E+00 f21

Ave 1.96E-20 1.92E-20 8.90E-17 1.97E-20 3.71E-20 9.85E-19
Std 1.66E+01 2.01E+01 5.53E+01 6.29E-05 5.32E+01 0.00E+00 Std 8.23E-21 7.09E-21 4.87E-16 6.74E-21 2.56E-21 2.37E-18

f9
Ave 6.94E+01 2.37E+02 9.73E-56 1.77E-46 1.43E-08 0.00E+00 f22

Ave 5.31E-21 3.44E-19 3.35E-20 3.93E-22 9.24E-22 −1.00E+00
Std 2.26E+01 7.41E+01 5.32E-55 2.91E-46 4.21E-09 0.00E+00 Std 5.86E-22 1.32E-19 5.13E-20 2.15E-21 1.15E-22 0.00E+00

f10
Ave −3.47E+00 −1.48E+00 −5.00E+00 −5.00E+00 −5.00E+00 −1.41E+00 f23

Ave −1.57E+03 −1.25E+03 −1.71E+03 −1.77E+03 −1.96E+03 −1.07E+03
Std 2.93E-01 5.64E-01 1.65E-16 1.77E-11 2.99E-06 1.01E+00 Std 2.42E+01 4.17E+01 4.41E+01 3.19E+01 2.41E-07 7.78E+01

f11
Ave −1.83E-01 6.93E-02 9.92E-01 −5.22E-02 9.92E-01 −1.00E+00 f24

Ave 4.66E+00 4.84E+00 9.99E-02 1.43E-01 7.64E-01 3.57E-159
Std 8.98E-01 8.79E-01 3.39E-16 9.94E-01 3.39E-16 0.00E+00 Std 5.32E-01 5.70E-01 1.26E-08 5.04E-02 7.15E-02 1.90E-158

f12
Ave 2.26E+02 1.14E+03 5.24E+00 6.67E-01 6.80E-01 2.56E-01 f25

Ave 6.41E-01 6.84E-01 4.38E-01 4.46E-01 3.75E-01 9.90E-01
Std 1.56E+02 4.97E+02 2.51E+01 3.00E-09 2.79E-02 1.49E-02 Std 6.72E-02 5.15E-02 8.45E-02 5.99E-02 4.25E-02 2.73E-01

f13
Ave −2.39E+02 −1.41E+02 −2.64E+02 −3.22E+02 −4.18E+02 −1.55E+02

f26
Ave 9.06E+06 8.09E+07 2.31E+06 8.69E+01 9.28E+01 1.87E+04

Std 7.17E+00 7.54E+00 2.58E+01 1.27E+01 1.27E+00 5.49E+01 Std 5.34E+06 5.29E+07 8.35E+06 1.25E+02 2.08E+01 2.11E+03

Bold values indicate that the function is optimal in experimental comparison results.

Overall, the proposed algorithm EFPA-G still has stable performance and the best
robustness in development and exploration with dimension D = 50.
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4.3. Simulation for WSN

In this section, two different WSN models of general-shape networks and O-shape net-
works are adopted to test the sensitivity of the proposed EFPA-G localization algorithm to
different node distributions, as shown in Figure 3, both with 100 nodes in a 100 m × 100 m
square area. Firstly, the localization accuracy and robustness of the proposed EFPA-G
algorithm are demonstrated by a general simulation. Then, the localization accuracy of the
proposed algorithm is tested for different anchor node proportions and node communica-
tion radii. The normalized root mean square error (NRMSE) and the mean distance error
(MDE) are considered as metrics to evaluate the performance of the proposed algorithm, as
shown in Equations (19) and (20).

NRMSE =
∑Nr

i=1

√
(xi − x̂i)

2 + (yi − ŷi)
2

Nr × R
(19)

where (xi, yi) and (x̂i, ŷi) denote the real and estimated coordinates of regular node i,
respectively. R and Nr denote the communication radius and the number of unknown
nodes, respectively.

MDE =
∑Na

k=1 ∑Nr
i=1

∣∣∣dki − d̂ki

∣∣∣
Na × Nr

(20)

where dki and d̂ki are the real distance and estimated distance between anchor node k and
unknown node i, respectively. Na denotes the number of anchor nodes.
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Figure 3. General-shaped and O-shaped networks.

4.3.1. General Simulation

In this subsection, the proportion of anchor nodes is set to 30%, the number of un-
known nodes is 70, and the node communication radius is 25 m. The experimental results
are shown in Table 4, and the optimal solutions are marked in bold. The comparison results
between the proposed EFPA-G and other comparison algorithms for the localization error
of each unknown node are shown in Figures 4 and 5.

From the experimental results in Table 4, it can be seen that under different node
distribution conditions, the NRMSE and MDE obtained by the traditional DV-Hop po-
sitioning method achieved the worst positioning accuracy, of 31.2086% and 7.80E+00,
respectively, which indicates that the performance of the metaheuristic optimization al-
gorithm is better than the least squares method. For networks of different shapes, the
EFPA-G algorithm obtains the first rank of mean and optimal values on NRMSE and MDE,
with the lowest reaching 19.5182% and 4.88E+00. The “std” values of MPA and RACS
are smaller than EFPA-G, which means that the former is more stable in 30 experiments.
However, the proposed algorithm for node location pays more attention to positioning ac-
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curacy. Figures 4 and 5 also intuitively observe that the EFPA-G algorithm has the smallest
positioning error, especially at low anchor ratios.

Table 4. Comparison of proposed EFPA-G and other state-of-the-art algorithms for location error.

General-Shaped Network O-Shaped Network

Algorithm Average Best Std Algorithm Average Best Std

Normalized Root Mean
Square Error (NRMSE %)

DV-Hop 30.1224% 24.4230% 2.94E-02 DV-Hop 31.2086% 25.3410% 3.23E-02
FPA 20.2731% 20.2595% 1.86E-04 FPA 24.9798% 24.9442% 3.60E-04
CMFPA 20.2648% 20.2629% 8.87E-06 CMFPA 25.0067% 24.9509% 3.25E-04
MPSO 20.1720% 19.3034% 3.39E-03 MPSO 25.0103% 24.8910% 4.42E-04
MPA 20.2650% 20.2649% 6.17E-08 MPA 25.0280% 25.0280% 4.20E-07
RACS 20.2650% 20.2650% 2.71E-15 RACS 25.0159% 24.9552% 2.76E-04
EFPA-G 19.5182% 19.0583% 2.21E-03 EFPA-G 24.5535% 24.0744% 1.56E-03

Mean Distance Error (MDE)

DV-Hop 7.53E+00 6.11E+00 7.35E-01 DV-Hop 7.80E+00 6.34E+00 8.07E-01
FPA 5.07E+00 5.06E+00 4.64E-03 FPA 6.24E+00 6.24E+00 9.01E-03
CMFPA 5.07E+00 5.07E+00 2.22E-04 CMFPA 6.25E+00 6.24E+00 8.13E-03
MPSO 5.04E+00 4.83E+00 8.48E-02 MPSO 6.25E+00 6.22E+00 1.10E-02
MPA 5.07E+00 5.07E+00 1.54E-06 MPA 6.26E+00 6.26E+00 1.05E-05
RACS 5.07E+00 5.07E+00 6.79E-14 RACS 6.25E+00 6.24E+00 6.91E-03
EFPA-G 4.88E+00 4.76E+00 5.52E-02 EFPA-G 6.14E+00 6.02E+00 3.90E-02

Bold values indicate that the algorithm achieves the best in the experimental comparison results.
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Figure 4. Comparison of proposed EFPA-G and other state-of-the-art algorithms for location error of
general-shaped network.
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Figure 5. Comparison of proposed EFPA-G and other state-of-the-art algorithms for location error of
O-shaped network.

4.3.2. Effect of the Proportion of Anchor Nodes

In this subsection, the performance of the proposed algorithm is tested by gradually
changing the proportion of anchor nodes (10%, 20%, 30%, and 40%) without changing
the WSN model and the communication radius of the nodes. The experimental results
are shown in Table 5. As the proportion of anchor nodes increases, the NRMSE of WSN
node localization decreases, but this does not necessarily mean that a higher number of
anchor nodes in the WSN model will result in higher localization accuracy. For example, in
a general-shaped network, the NRMSE of the DV-Hop method increases from 30.12% to
30.48% as the proportion increases from 30% to 40%. In an O-shaped network, the NRMSE
values of all metaheuristic localization methods first decrease and then increase as the
proportion of anchor nodes increases. Overall, the proposed EFPA-G algorithm performs
better in terms of overall performance for different networks when the proportion of anchor
nodes is 30%.

4.3.3. Effect of Node Communication Radius

The sensitivity of the proposed EFPA-G algorithm to different communication radii is
tested by gradually changing the communication radius of the nodes (15 m, 20 m, 25 m,
and 30 m) without changing the WSN model and the proportion of anchor nodes.

Table 6 shows the experimental results for different communication radii. As the
communication radius of the nodes increases, the NRMSE values generally decrease in
a general-shaped network. In an O-shaped network, the NRMSE values first decrease
and then increase, indicating that blindly increasing the communication radius cannot
guarantee an improvement in node localization accuracy. Instead, it places higher demands
on hardware equipment and leads to wastage of resources. However, for both a general-
shaped network and O-shaped network, the other compared methods obtain very close
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NRMSE values. This indicates that the FPA, CMFPA, MPA, and RACS algorithms have
similar local exploitation capabilities in solving real optimization problems. The NRMSE
obtained by the proposed EFPA-G algorithm ranked first with the changing radius of node
communication, which suggests that the algorithm has superior performance in solving
practical problems. Overall, EFPA-G outperforms state-of-the-art algorithms in terms of
accuracy and robustness against network anisotropy.

Table 5. Results of different proportions of anchor nodes.

Algorithm
Proportion of Anchor Nodes (%)

10 20 30 40

General-shaped network

DV-Hop 39.38% 31.29% 30.12% 30.48%
FPA 26.85% 20.50% 20.27% 18.97%
CMFPA 26.84% 20.44% 20.27% 18.97%
MPSO 26.85% 20.49% 20.17% 18.47%
MPA 26.84% 20.44% 20.27% 18.97%
RACS 26.84% 20.44% 20.27% 18.97%
EFPA-G 25.94% 20.45% 19.52% 18.02%

O-shaped network

DV-Hop 37.66% 31.49% 31.21% 29.70%
FPA 34.14% 25.50% 24.98% 25.79%
CMFPA 33.91% 25.51% 25.01% 25.79%
MPSO 34.10% 25.52% 25.01% 25.78%
MPA 33.92% 25.51% 25.03% 25.79%
RACS 33.97% 25.51% 25.02% 25.79%
EFPA-G 33.41% 25.45% 24.56% 25.14%

Bold values indicate that the algorithm achieves the best in the experimental comparison results.

Table 6. Results of different node communication radius.

Algorithm
Communication Radius of Nodes (m)

15 20 25 30

General-shaped network

DV-Hop 158.78% 43.64% 30.12% 29.42%
FPA 72.53% 22.31% 20.27% 21.74%
CMFPA 71.83% 22.31% 20.27% 21.74%
MPSO 71.90% 22.68% 20.17% 21.58%
MPA 71.83% 22.31% 20.27% 21.74%
RACS 71.84% 22.31% 20.26% 21.74%
EFPA-G 71.43% 22.14% 19.52% 20.98%

O-shaped network

DV-Hop 156.64% 42.18% 31.21% 29.71%
FPA 48.12% 38.45% 24.98% 23.16%
CMFPA 48.12% 38.22% 25.01% 23.16%
MPSO 47.97% 39.05% 25.01% 23.17%
MPA 48.12% 38.23% 25.03% 23.15%
RACS 48.12% 38.12% 25.02% 23.16%
EFPA-G 46.53% 37.17% 24.55% 22.33%

Bold values indicate that the algorithm achieves the best in the experimental comparison results.

5. Conclusions

This paper proposed a localization algorithm based on an enhanced flower pollination
algorithm with Gaussian perturbation (EFPA-G) and the DV-Hop method. Firstly, the
highly adaptive and parallel computing capabilities, and ease of implementation and appli-
cation of the flower pollination algorithm were utilized to achieve sensor node localization.
Subsequently, an enhanced strategy based on Lévy flight was proposed to address the
problems of the difficulty in escaping from local extreme values, sensitivity to initial values,
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and possible over-exploration in the later iterations. By leveraging the diversity of the
Lévy flight step length and the ability to avoid the influence of noisy data by jumping
over long distances, the robustness of the flower pollination algorithm was improved.
Then, a Gaussian perturbation strategy was proposed to address the critical imbalance
between global exploration and local exploitation search capabilities of the flower pollina-
tion algorithm. The Gaussian distribution alters its curve according to the variation in the
mean and variance, to improve the search capability, a large-scale population perturbation
was implemented. Benchmark function experiments and WSN simulation experiments
were conducted. The benchmark function experiments demonstrated that the proposed
algorithm can achieve good search accuracy and convergence speed in different modes of
benchmark functions. In the WSN simulation experiments, the proposed EFPA-G algorithm
achieved lower localization error compared to similar algorithms such as PACS and MPA,
which have been used in recent years, indicating better robustness. The main drawback of
the proposed algorithm is that it depends on multiple complicated calculations, which may
increase the overheads and power costs. Therefore, the proposed algorithm is more suitable
for applications where there is little restriction of power consumption and overheads.
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