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Abstract: The near-space atmosphere is thin, and the atmospheric refraction and scattering on optical
observation is very small, making it very suitable for wide-area and high-resolution surveillance
using high-altitude balloon platforms. This paper adopts a 9344 × 7000 CMOS sensor to obtain
high-resolution images, generating large-field-of-view imaging through the swing scanning of the
photoelectric sphere and image stitching. In addition, a zoom lens is designed to achieve flexible
applications for different scenarios, such as large-field-of-view and high-resolution imaging. The
optical design results show that the camera system has good imaging quality within the focal length
range of 320 mm–106.7 mm, and the relative distortion values at different focal lengths are less than
2%. The flight results indicate that the system can achieve seamless image stitching at a resolution
of 0.2 m@20 km and the imaging field of view angle exceeds 33◦. This system will perform other
near-space flight experiments to verify its ultra-wide (field of view exceeding 100◦) high-resolution
imaging application.
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1. Introduction

Aerial remote sensing is a comprehensive detection technology that uses optical, radar,
and other technologies to obtain ground information through carrier platforms, such as
manned aircraft, unmanned aerial vehicles, balloons, etc. It is flexible, low-cost, has a better
vibration environment compared to airborne platforms, and is widely used in disaster
monitoring, topographic mapping, military reconnaissance, and other fields [1–3].

Wide-area and high-resolution imaging technology is an important means of obtaining
large, wide, and high-resolution ground information, and is also a key development
direction in the field of remote sensing imaging in various countries around the world [4–6].
Near space generally refers to the space between 20 km and 100 km above the ground. The
atmosphere in the adjacent space is thin, and the influence of water vapor, atmospheric
refraction, and scattering on optical observation is very small, and it is very suitable for
wide area surveillance [7].

As the most important indicators to measure the performance of imaging systems,
width and resolution are two mutually constraining aspects of the technology. Wide-area
and high-resolution imaging systems have broad application requirements, and researchers
all over the world have proposed various new imaging structures and special methods to
achieve wide-field-of-view and high-resolution imaging, including high-resolution camera
scanning, multi-camera imaging, biomimetic optical imaging, and sensor array splicing
imaging. High-resolution camera scanning imaging utilizes a high-resolution camera to
scan and capture a large number of images, which can then be concatenated to obtain
high-resolution images with a wide field of view. This method is a mature technology
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with high engineering reliability and the ability to freely adjust the imaging field of view
and resolution, and it has other advantages due to its lightweight structure and simple
operation control [8–10]. Multi-camera combined imaging indicates that the imager uses
multiple imaging devices to capture spatial scenes at the same time, and each adjacent
imaging device has a certain field of view overlap, a wide-field-of-view high-resolution
image is obtained through the stitching of captured images; this method eliminates the
rotating scanning mechanical structures and solves the time delay problem of the single
camera scanning and shooting method [11,12]. The biomimetic optical imaging system is
similar to multi-camera combination imaging, with the main difference being the design
of the optical lens. It consists of dozens or even thousands of stacked or juxtaposed small
imaging components with its wide-field-of-view decomposition, compact structure, and
good multi-target fast parallel detection and tracking functions [13,14]; however, the pixel
number of a single sensor still cannot meet practical application requirements. Therefore, it
is necessary to integrate and splice multiple sensors to obtain larger pixel scale detectors.
This solution has a high implementation cost and requires high splicing accuracy, and it is
mainly used in large astronomical telescopes [15–17].

The aerial high-resolution camera is based on an optical system with a large aperture
and long focal length. Under the condition of maintaining the spatial resolution, an increase
in the imaging width will result in a rapid increase in the complexity, volume, and weight
of the system, which are limited by the loading capacity of the platform and the attitude
control capability. High-precision pose control and motion compensation technology have
become key technologies that need to be addressed in the development process of large,
wide, and high-resolution aerial camera systems.

In this paper, a high-resolution camera is designed and used for fine imaging of
ground objects, and wide coverage is achieved through swing scanning by a photoelectric
sphere. Due to the significant reduction in the field of view required for single imaging, it is
easier to meet the constraints of camera volume and weight. The swing scanning achieves
large area coverage by swinging the optical axis of the high-resolution camera along the
wingspan direction. During the scanning process, the camera performs multiple exposure
actions to obtain high-resolution images of different orientations in the wingspan direction.
At the same time, the camera system follows the platform forward to achieve coverage
in the flight direction, and then forms a large range of high-resolution images through
stitching methods.

According to different image registration methods, image stitching is generally divided
into three types: grayscale-based stitching methods, transform domain-based stitching
methods, and feature-based stitching methods. The grayscale-based registration method
is used to select a template in a fixed window from the reference image, search from the
image to be registered, and use some evaluation method as the registration measurement
to find the optimal registration position. The main stitching algorithms include the cross-
correlation method, mutual information method, block matching method, ratio matching
method, and grid matching method [18–21]. The mosaic method based on the transform
domain is used to carry out some transformation on the image. The parameters of this
mathematical transformation are separated by the method of parameter separation, and
then the invariant is constructed. After matching the transformation model, the subsequent
mosaic process is carried out. The main algorithms include wavelet transform, phase
correlation, trace transform, and polar coordinate transform [22–25]. The feature-based
stitching method is used to extract certain invariant features, such as interest points, lines,
textures, etc., then match and calculate the transformation parameters between images,
and finally complete the stitching. Feature-based stitching is currently the most widely
used method, including Moravec, Harris, SIFT, SURF, ASIFT, GLOH, PCASIFT, and other
algorithms [26–30].

The second part of this article mainly introduces the design of the wide-area and
high-resolution imaging system. Firstly, the optical design of a high-resolution camera
is introduced, mainly including the optical design, imaging quality analysis, thermal
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analysis, and tolerance analysis—the mechanical and electronic design of the camera are
also introduced. Secondly, this paper introduces the design of the stable platform and the
design of the swing scanning method. The third part of this article mainly introduces the
flight verification results, including the image stitching results and high-resolution results.

2. Wide-Area and High-Resolution System Design

The near-space ball-borne wide-area and high-resolution imaging system mainly
consists of a photoelectric sphere, a high-resolution camera, and a control system. The
high-resolution camera is installed inside the photoelectric sphere and achieves high-
resolution imaging with a large field of view through the rotation of the photoelectric
sphere. The control system mainly generates the image collection and maintains control of
the high-resolution camera, as well as the motion control of the photoelectric sphere. The
composition diagram of the system is shown in Figure 1.
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Figure 1. Near-space-based wide-area and high-resolution imaging system. 
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The ground console sends commands through the RS422 serial port, and the com-
mand data is transmitted to the public IP through the serial server. The ball-mounted se-
rial port server obtains data from the public IP through satellite–Internet communication 
and sends commands to the main control module through the RS422 serial port. The main 
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When the system is powered on, the high-resolution camera and the micro-industrial
computer start working. The camera image data is sent to the micro-industrial computer
automatically, and the micro-industrial computer stores the image data at the specified
address. This address is set as a shared address, and the image data can be captured
through the Internet. The main control module can set the parameters of the camera,
such as the camera focal length, exposure time, and the pitch and azimuth angles of the
photoelectric sphere. It is also possible to control the power up/down of the photoelectric
sphere and the camera.

The ground console sends commands through the RS422 serial port, and the command
data is transmitted to the public IP through the serial server. The ball-mounted serial
port server obtains data from the public IP through satellite–Internet communication and
sends commands to the main control module through the RS422 serial port. The main
control module collects information, such as the angle and attitude of the photoelectric
sphere, transmits it to the onboard serial port server through the RS422 serial port, and
then transmits it to the public IP through satellite communication.

The main indicators of the system are shown in Table 1.

Table 1. Main performance indicators.

Item Data

Resolution 0.2 m@20 km
Azimuth angle of photoelectric sphere −180◦ to 180◦

Pitch angle of photoelectric sphere −140◦ to 140◦
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Section 2.1 mainly introduces the design and analysis of high-resolution cameras,
including their optical design and analysis, thermal analysis, tolerance analysis, and struc-
tural and electronic design. Section 2.2 introduces the design of the photoelectric sphere
and swing imaging schemes.

2.1. High-Resolution Camera Design
2.1.1. Optical Analysis

This paper uses the GMAX3265 CMOS image sensor developed by Gpixel. The sensor
has 65 million pixels, and the size of each pixel size is 3.2 µm. Its characteristics consist of
a large pixel array, low readout noise, and a global shutter function. The main technical
indicators are shown in Table 2 and the quantum efficiency curve is shown in Figure 2.

Table 2. GMAX3265 Image Sensor Index Parameter Table.

Item Data

effective number of pixels 9344 × 7000
pixel size 3.2 µm × 3.2 µm

photosensitive area 29.9 mm × 22.4 mm
image mode monochrome camera

image data bit 12 bit (max)
maximum of frame rate 31 frame/s

dynamic range 66 dB
peak quantum efficiency 65.3%@500 nm

number of saturated electrons >9.0 ke−
read noise 2.0 e−

dark current 5.3 e−/p/s@40 ◦C
nyquist frequency 156 lp/mm

consumption <2.1 W
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In order to improve the adaptability and performance of the high-resolution camera,
the optical part is designed as a zoom lens. The optical system needs to design a set of high-
resolution imaging lenses, and the primary optical parameters are calculated according to
the requirements, as shown in Table 3.
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Table 3. High-resolution camera optical parameters.

Item Data

long focal length f ′L = 20000 m 3.2 µm
0.2 m = 320 mm

short focal length f ′S = 320 mm
3 = 106.7 mm

horizontal field of long focal 2ω = 2× arctan
(

29.9 mm
2 × f ′L

)
≈ 5.3 ◦

vertical field of long focal 2ω = 2× arctan
(

22.4 mm
2 × f ′L

)
≈ 4◦

horizontal field of short focal 2ω = 2× arctan
(

29.9 mm
2 × f ′S

)
≈ 16.0◦

vertical field of short focal 2ω = 2× arctan
(

22.4 mm
2 × f ′S

)
≈ 12◦

2.1.2. Optic System Design

For the purpose of high-resolution imaging, the long focal length of the optical system
is relatively large. Considering the limitations of the photoelectric sphere platform on load
size in this project, the design process needs to compress the lens structure size as much
as possible. Through the complex design of the initial structure, a three-fold zoom optical
system with a long focal length of 320 mm, a short focal length of 106.7 mm, and F/# 4.3
was ultimately obtained. The optical path structure is shown in Figure 3, including two
moving components. The movement of the zoom moving component from the short to
long focal length is 33.1 mm, and the compensation moving component from the short
to long focal length is 27.5 mm. The total length of the optical path is 310 mm, with a
maximum aperture of 90 mm. There are 20 optical lenses, with a total weight of less than
1.8 kg.
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The evaluation of the imaging quality of an optical system mainly considers the
modulation transfer function (MTF), point plot, and distortion curve. According to the task
requirements, the imaging quality of the optical system on the five preset focal segments
are examined separately.

1. f = 320 mm

From the data of the telephoto endpoint of the optical system, the maximum RMS
radius of the diffuse spot within the field of view is about 1.8 µm, as shown in Figure 4,
which is less than a pixel size. From the MTF curve, the system has ideal image quality. At
a Nessler frequency of 156 lp/mm, the full field MTF is close to 0.4, corresponding to an
optical angular resolution of:

σ =
1

Nq f
= 20 µrad (1)

When the resolution requirement of 20 µrad is met, the relative distortion curve of the
system is as follows—with a maximum relative distortion of less than 0.4% in the full field
of view.
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2. f = 260 mm

From the data of the telephoto endpoint of the optical system, the maximum RMS
radius of the diffuse spot within the field of view is about 2 µm, as shown in Figure 5,
which is less than a pixel size. From the MTF curve, the system has ideal image quality. At
a Nessler frequency of 137 lp/mm, the full field MTF is close to 0.4, corresponding to an
optical angular resolution of:

σ =
1

Nq f
= 28 µrad (2)
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When the resolution requirement of 28 µrad is met, the relative distortion curve of the
system is as follows—with a maximum relative distortion of less than 0.3% in the full field
of view.

3. f = 213 mm

From the data of the telephoto endpoint of the optical system, the maximum RMS
radius of the diffuse spot within the field of view is about 2.3 µm, as shown in Figure 6,
which is less than a pixel size. From the MTF curve, the system has ideal image quality. At
a Nessler frequency of 137 lp/mm, the full field MTF is close to 0.4, corresponding to an
optical angular resolution of:

σ =
1

Nq f
= 34 µrad (3)
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When the resolution requirement of 35 µrad is met, the relative distortion curve of the
system is as follows—with a maximum relative distortion of less than 0.5% in the full field
of view.

4. f = 160 mm

From the data of the telephoto endpoint of the optical system, the maximum RMS
radius of the diffuse spot within the field of view is about 2.6 µm, as shown in Figure 7,
which is less than a pixel size. From the MTF curve, the system has ideal image quality. At
a Nessler frequency of 130 lp/mm, the full field MTF is close to 0.4, corresponding to an
optical angular resolution of:

σ =
1

Nq f
= 48 µrad (4)
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When the resolution requirement of 50 µrad is met, the relative distortion curve of the
system is as follows—with a maximum relative distortion of less than 1.0%.

5. f = 106.7 mm

From the data of the telephoto endpoint of the optical system, the maximum RMS
radius of the diffuse spot within the field of view is about 3.0 µm, as shown in Figure 8,
which is less than a pixel size. From the MTF curve, the system has ideal image quality. At
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a Nessler frequency of 104 lp/mm, the full field MTF is close to 0.4, corresponding to an
optical angular resolution of:

σ =
1

Nq f
= 90 µrad (5)
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When the resolution requirement of 90 µrad is met, the relative distortion curve of the
system is as follows—with a maximum relative distortion of less than 2.0% in the full field
of view.

2.1.3. Thermal Analysis

When the temperature environment changes, the image quality of the optical system
will change due to the influence of temperature defocusing. The reason for this result is
that the temperature effect of ultra-low chromatic aberration glass is obvious, making the
focal plane position of the system more sensitive to temperature. The continuous zoom
lens uses a front motion group for temperature compensation to eliminate the influence
of temperature effects. Within the temperature range of +60 ◦C to −45 ◦C, the transfer
function curve remains basically constant, as shown in Figure 9.
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2.1.4. Tolerance Analysis

For the optical system that has been designed, a tolerance analysis is conducted to
fully consider the impact of processing and assembly on the imaging quality of the system.
The optical lens group adopts the centering machining process, and the tolerances are
selected based on the experience values of medium- and high-precision objective lenses.

In order to predict the comprehensive effect of all tolerances during the overall as-
sembly process of the system, a Monte Carlo method was used to analyze the influence of
tolerances based on the design software. The MTF value of the optical system was used as
the image quality evaluation index, and the spatial frequency was selected based on the
optical angular resolution of the short and long focal ends.

As is shown in the tolerance analysis result in Figure 10, according to the selected com-
ponent processing and assembly tolerances, the lens can be processed and adjusted, with a
60% probability of achieving a full field of view range with a selected spatial frequency MTF
greater than 0.15, and a high one-time pass rate, which can meet production requirements.
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2.1.5. Electrical and Mechanical Design

The electronic system of a high-resolution camera consists of CMOS sensors, an image
data processing interface, signal processor, power converters, control input, and image
output interfaces. The composition of the camera system is shown in Figure 11.

The development of the detector has gone through multiple stages, including scheme
design, structural design, PCB design, prototype debugging, and overall testing. The PCB
circuit stack installation structure of the detector is shown in Figure 12.

To ensure the implementation of optical design, the mechanical structure of the camera
mainly includes three parts: a front mirror component, a focusing mirror component, and a
detector component, as shown in Figure 13.

The front mirror component contains the five optical lenses of the camera. In order to
meet the requirements for the co-axiality of the optical path, structural stability, and ease of
assembly and adjustment, the assembly adopts an integral cylindrical structure. The front
mirror component mainly includes the mirror tube, protective cover, pins, compression
rings and washer fixing parts, spacers, mirror boxes, trimming pads, etc. The lens barrel
mainly provides support and positioning for various optical lenses and is fixedly connected
to the focusing lens component.
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The focusing mirror component includes the four optical lenses of this camera. Con-
sidering the optical design requirements and structural simplification, the component is
designed as an I-type straight-through lens tube structure; this component is in the middle
of the entire camera, and square flange plates are placed at both ends to connect the front
mirror component and detector component. Since there is a lens in the optical system that
is sensitive to changes in ambient temperature, a focusing module is placed in the focusing
mirror assembly. The focusing module consists of a stepping motor, big and small gears,
and photoelectric travel switches—and its corresponding structural parts. Through the
design of the number of teeth, modulus, and pressure angle of the big and small gears, a
reasonable reduction ratio is optimized. With the help of the electronic control system, the
optical focusing requirements are met.

The temperature environment during camera operation fluctuates greatly, and a higher
temperature will affect the imaging quality of the CMOS sensor. To ensure that the CMOS
sensor operates in an ideal temperature environment, thermal conductivity cooling is used
to timely dissipate the heat generated by the CMOS sensor during operation. There is a
thermal conductivity plate on its back, with one end fixed to the back of the CMOS chip
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and an insulation pad added at the fixed position. The other end is led out, and then
heat is transmitted to the thermal control component to achieve conducting cooling. The
thermal conductivity plate is made of red copper (T3) with high thermal conductivity. To
improve the thermal conductivity efficiency and increase the contact area, a combination
of mechanical pressing and thermal adhesive bonding is used to fix it. The CMOS base is
made of titanium alloy material, which has a certain strength and low thermal conductivity,
which is conducive to the thermal control of CMOS chips.

2.2. Photoelectric Sphere and Swing Imaging Design

The design of the photoelectric sphere adopts a two axis and two frame stable system
structure, and the high-resolution camera is loaded into the pitch frame. The design of the
photoelectric platform adopts a spherical structure. On the one hand, the aerodynamic
resistance of the spherical structure is smaller than that of other structures (plate, square,
diamond, etc.) under the same conditions (same speed, same windward area); on the
other hand, the product has good symmetry. During flight, when the azimuth and pitch
frames move, the changes in their angular positions cause small changes in the driving
torque, making system control easy to implement; thirdly, under certain conditions of
stable platform rotation space, the internal space contained by the sphere is larger than
that of other structures, and its load-bearing capacity is strong. The installation of the
high-resolution camera in the photoelectric sphere is shown in Figure 14.
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Figure 14. The installation of the high-resolution camera in the photoelectric sphere.

In the process of wide-area high-resolution imaging, the high-resolution camera oper-
ates in telephoto mode, with a photoelectric sphere azimuth angle of 90◦—perpendicular
to the flight direction—and an initial pitch angle of −90◦, indicating ground imaging. The
pitch direction of the photoelectric sphere provides different imaging fields of view for high-
resolution cameras to take photos through steeper motions, as shown in Figure 15. Due
to the very slow flight speed of high-altitude balloons, which is about 10 m/s, there is no
need to consider the image shift in the direction of flight when performing swing imaging.
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Due to the significant distortion caused by large angle squint, in order to reduce the
level of image distortion, the sweep width coverage is 33.3◦, the step angle is 3.5◦, and the
overlap rate in the span direction is 35%. The optical axis roll angle of each image frame in
a single scanning cycle is uniformly distributed within the width range, and the values are
shown in Table 4.

Table 4. Photoelectric sphere rotation angle.

Position Number Rotation Angle (◦) Horizontal Angle Coverage (◦)

1 −14.0 −16.65~−11.35
2 −10.5 −13.15~−7.85
3 −7.0 −9.65~−4.35
4 −3.5 −6.15~−0.85
5 0 −2.65~2.65
6 3.5 0.85~6.15
7 7.0 4.35~9.65
8 10.5 7.85~13.15
9 14.0 11.35~16.65

The SIFT algorithm is very robust in complex geometric images and radiative condi-
tions and is currently the most commonly used registration algorithm. The process of SIFT
is mainly divided into four stages: feature point detection, key point localization, direction
allocation, and feature point description. Firstly, the scale space of the image is constructed
by establishing a Difference of Gaussians (DOG) pyramid to extract feature points and
obtain the first layer image through Gaussian blur.

L(x, y, σ) = G(x, y, σ)× I(x, y) (6)

I(x, y) is the original image, and G(x, y, σ) is the Gaussian kernel, while (x, y) are the
pixel coordinates, and σ is the scale factor, wherein the larger the σ, the clearer the image
contour, and the smaller the σ, the more obvious the image details. The Gaussian kernel
function is:

G(x, y, σ) =
1

2πσ
e−

x2+y2

2σ2 (7)

The difference of Gaussians pyramid performs the DOG operation between two
adjacent layers of images, which is shown as:

D(x, y, σ) = [G(x, y, kσ)− G(x, y, σ)]× I(x, y) = L(x, y, kσ)− L(x, y, σ) (8)

When locating key points, it is necessary to filter out low-contrast extreme points and
edge responses. It is necessary to obtain a 2 × 2 Hessian matrix by taking the derivative of
the Gaussian convolution formula.

H =

[
Dxx Dxy
Dyx Dyy

]
(9)

The direction matching of feature points mainly estimates the direction of neighboring
pixels of key points through the grayscale histogram of the image.

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (10)

θ(x, y) = tan−1(L(x, y + 1)− L(x, y− 1))/(L(x + 1, y)− L(x− 1, y)) (11)

m(x, y) where represents the gradient value and θ(x, y) represents the gradient direction.
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3. Results

In May 2022, a flight experiment was conducted to verify the functionality of the
wide-area high-resolution imaging system. The focal length of the camera is set to 320 mm
to achieve a resolution of 0.2 m@20 km, as shown in Figure 16. The car in Figure 16 occupies
approximately 9 × 22 pixels, based on the resolution, and the actual size is approximately
1.8 m × 4.4 m, which is consistent with the actual situation.
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and high-resolution imaging system has a good image stitching effect, and the overlap 
rate meets the seamless stitching requirements. 
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Figure 16. Result of the flight experiment image resolution.

We adopted the SIFT method to achieve the image stitching, where the coverage is
33.3◦ and the image stitching result is shown in Figure 17, indicating that the wide-area
and high-resolution imaging system has a good image stitching effect, and the overlap rate
meets the seamless stitching requirements.
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4. Conclusions

This paper adopts a 64 M pixels CMOS sensor to obtain high-resolution images and
generates a large-field-of-view image through the swing scanning of the photoelectric
sphere. The flight results indicate that the system can achieve seamless image stitching at a
resolution of 0.2 m@20 km and coverage of 33.3◦.

In addition, the high-resolution camera adopts zoom lenses (focal length range of
320 mm–106.7 mm) to achieve flexible applications. For application scenarios with ultra-
wide (field of view exceeding 100◦) high-resolution imaging, ground resolution sharply
decreases with an increase in the scanning angle, and the resolution of the edge area is
about half of the center area, seriously affecting the image stitching effect. The zoom
swing scanning wide-area and high-resolution imaging system in this article can adjust
the camera focal length in real-time during the swing scanning process, ensuring that the
imaging resolution remains unchanged. It provides a new solution for ultra-wide and
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high-resolution imaging. This system will be used in other near-space flight experiments to
verify its application.
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