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Abstract: Ultrasonic-assisted inner diameter machining is a slicing method for hard and brittle
materials. During this process, the sawing force is the main factor affecting the workpiece surface
quality and tool life. Therefore, based on indentation fracture mechanics, a theoretical model of the
cutting force of an ultrasound-assisted inner diameter saw is established in this paper for surface
quality improvement. The cutting experiment was carried out with alumina ceramics (99%) as an
exemplar of hard and brittle material. A six-axis force sensor was used to measure the sawing
force in the experiment. The correctness of the theoretical model was verified by comparing the
theoretical modeling with the actual cutting force, and the influence of machining parameters on the
normal sawing force was evaluated. The experimental results showed that the ultrasonic-assisted
cutting force model based on the six-axis force sensor proposed in this paper was more accurate.
Compared with the regular tetrahedral abrasive model, the mean value and variance of the proposed
model’s force prediction error were reduced by 5.08% and 2.56%. Furthermore, by using the proposed
model, the sawing processing parameters could be updated to improve the slice surface quality
from a roughness Sa value of 1.534 µm to 1.129 µm. The proposed model provides guidance for the
selection of process parameters and can improve processing efficiency and quality in subsequent
real-world production.

Keywords: normal sawing force model; six-axis force sensor; inner diameter sawing; ultrasonic-
assisted machining; alumina ceramics

1. Introduction

There are two main processing methods for hard and brittle material slicing: diameter
sawing [1–3] and wire sawing [4–7]. The diameter sawing methods broadly include inner
diameter sawing [8–10] and external diameter sawing [11,12]. Compared with wire sawing
and external diameter sawing, inner diameter sawing technology has greater advantages
in small batch production and wafer roundness control, and it is more suitable for the
processing of ceramics with moderate or short lengths [13]. The inner diameter sawing
technology realizes the slicing of ceramics using a thin and high-speed rotating diamond
sawing blade with a center hole and a layer of emery plated on the inner edge of the
center hole. However, existing research has shown that the surface roughness of slices
obtained with traditional inner diameter sawing technology cannot meet the needs of
market applications.

Ultrasonic vibration can considerably improve the surface quality of parts and is one
of the most effective machining methods to reduce cutting force and cutting temperature.
Yang Z. et al. found that ultrasonic vibration can effectively improve the surface quality
of ZrO2 ceramic slices by comparing the surface quality of ultrasonic vibration-assisted
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grinding with that of ordinary grinding [14]. Wu H. Q. et al. found that ultrasonic vibration
machining improved the surface quality and material removal rate for Ti-6Al-4V titanium
alloy and discussed the mechanism by which ultrasonic vibration improved the machining
performance [15]. Zhu X. X. performed ultrasound-assisted micro-hole drilling with a DD6
nickel-based superalloy. Compared with conventional drilling, ultrasound-assisted micro-
hole drilling reduced the burr height, improved the processing accuracy, and increased the
life of the bit [16]. Chen Y. ground sapphire and found that ultrasonic-assisted grinding
improved the surface finish of the sapphire in the axial and tangential direction compared
with ordinary grinding [17]. Muhammad Riaz applied ultrasonic vibration to a turning
tool to study the influence of processing parameters on the surface roughness of titanium
alloy and confirmed that the ultrasonic-assisted process could significantly reduce the
cutting force and improve the sawing surface quality [18]. Sui H. et al. combined ultrasonic
vibration-assisted machining and boring and found that the combined approach was
effective in reducing the boring force and improving the accuracy of the boring. After
processing the surface residual stress from the tensile state to the compression state, the
surface anti-fatigue performance was greatly improved [19]. Zhao Y. et al. simulated and
analyzed the dynamic cutting process of ultrasonic vibration-assisted drilling technology
to improve rock-breaking efficiency for deep wells, and the results showed that the average
cutting force was reduced by 50% [20]. The above findings indicate that ultrasonic-assisted
machining can effectively reduce the sawing force in the cutting process and help to
improve the surface quality of slices.

As an advanced production technology, ultrasonic vibration-assisted machining has
been widely used in the manufacture of hard and brittle material components. However,
limited work has been undertaken in real-world settings to improve the mechanism by
which ultrasonic vibration affects cutting force. It is important to model the sawing process
and address the uncertainty and extreme scenarios in real-world settings while optimizing
process parameters to further reduce cutting force. Ultrasonic vibration-assisted inner
diameter machining has been studied, and the relationship between the sawing force and
other parameters was described based on a regular tetrahedron model [21]. However, the
shapes of the abrasive grains electroplated on the inner diameter sawing blade do not have
a regular geometry, so the cutting force model error with regular tetrahedral abrasive grains
is larger and needs further study. Differently from in previous work, the shape obtained by
abrasive electroplating on the inner diameter saw blade was not a regular hexahedron, as
shown in Figure 1.
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Figure 1. Ultrasonic-assisted inner diameter sawing schematic diagram.

Ceramics are typically hard and brittle materials with the advantages of being lightweight
and having high temperature resistance, oxidation resistance, and corrosion resistance. There-
fore, ceramic materials are widely used in aerospace components, such as insulation tiles,
turbine blades, and inner combustion engine parts [22,23]. Ceramic matrix composite materi-
als are a key issue restricting the development of aerospace vehicle manufacturing technology
in the future. Therefore, how to efficiently obtain a ceramic matrix with high quality and high
surface accuracy is particularly important.
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The objective of this study was to develop an intelligent sensor-based ultrasonic-
assisted inner diameter saw cutting force system. With the development of sensors, temper-
ature sensors [24], image sensors [25], and force sensors have appeared [26] more and more
frequently, allowing performance and quality improvements in industrial applications. A
six-axis force sensor was integrated for force measuring. In Section 2, the normal sawing
force model was built for ultrasonic vibration-assisted precision machining using inner
diameter sawing with ceramics. The material removal process is shown in Figure 2. The
theoretical relationship between the normal sawing force and other process parameters was
obtained, and how key sawing parameters affect the maximum normal sawing force was
identified. The differences between the simulation results from the theoretical model and
the experiment test results were measured and analyzed. Finally, the association between
the normal sawing force and the surface quality of alumina ceramic slices was analyzed
and evaluated.
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Figure 2. Schematic diagram of ceramic processing.

In this study, a new ultrasonic-assisted sawing force model for an internal diameter
sawing machine was established by using a six-axis force sensor to measure the sawing
force in the experiment and associating the cutting force with the slice surface quality
according to the experimental data obtained.

2. Development of the Model of the Inner Diameter Sawing System

There is no plastic deformation for an ideal hard and brittle material. Therefore, the
workpiece is modified through the expansion and crossing of the diamond abrasive grain
against the inner diameter of the sawing blade. To establish the normal sawing force, the
model assumptions were set as follows.

The properties and dimensions of the alumina ceramic materials involved in the
experiment were consistent. Brittle fracture was the main removal method for hard and
brittle materials. The diamond abrasive grain on the inner diameter edge of the inner
diameter sawing blade was considered an ideal rigid sphere. All these properties affected
the cutting.

2.1. Sawing Depth Modeling

In this study, the Hertz equation was used to estimate the normal sawing force and
the relationship between the cutting depth and the magnitude of the normal sawing force,
as shown in Equation (1). The relationship between the maximum sawing depth and the
normal sawing force was established as follows [27]:

γ =

 9
16

(Fhn)
2

rm
(

1 − ν2
t

Et
+

1 − ν2
j

Ej
)

2
1/3

(1)

where γ is the sawing depth (in mm); Fhn is the maximum impact force between a single
diamond abrasive grain and the workpiece (in N); rm is the radius of rigid spherical abrasive
particles (in mm); νj is the Poisson ratio for alumina ceramics; νt is the Poisson ratio for
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diamond abrasive grains; Ej is the elastic modulus of the alumina ceramics (MPa); and Et is
the elastic modulus for the diamond abrasive grains (in MPa). As the elastic modulus of
diamond abrasive grains was much higher than that of alumina ceramics (Et >> Ej) and
1 − v2

j ≤ 1, Formula (1) was simplified to:

γ =

 9
16

(Fhn)
2

rm
(

1 − ν2
j

Ej
)

2
1/3

(2)

2.2. Normal Sawing Force

In the process of ultrasonic vibration-assisted inner diameter sawing, the existence of
ultrasonic vibration makes the blade and the workpiece intermittently enter into contact
with each other; therefore, the cutting force is reduced during the cutting process. The
normal sawing force increases and potentially reaches its maximum with the increase in
sawing depth. With the deepening of the inner diameter sawing blade, the number of
active abrasive particles involved in cutting constantly changes. The normal sawing force
of a single abrasive particle was first estimated using Formula (3).

Fhm = ∆t fl Fhn (3)

where Fhm is the normal sawing force of a single abrasive particle, which is the force (in
N) in the X-axis direction in Figure 3; ∆t is the effective sawing time (in seconds); and fl
is the frequency of ultrasonic vibration in the normal direction (in Hz). The movement of
the diamond abrasive grain electroplated on the inner diameter sawing blade is mainly
determined by the amplitude of ultrasonic vibration Af (in mm) and the frequency of the
ultrasonic vibration fl, and the trajectory of the ultrasonic vibration can be described as a
sinusoidal wave. The average position of the abrasive particles relative to themselves can
be expressed by the following formula:

y = A f sin(2π flt) (4)
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According to Figure 3, the effective cutting time ∆t represents the position of the
diamond abrasive grain from x = Af − γ to x = Af. The specific expression is as follows:

∆t = 2(t2 − t1) =
1

π fl

[
π

2
− arcsin(1 − γ

A f
)

]
(5)

2.3. Active Abrasive Particle Modeling

According to the definition of abrasive particle concentration, the number of abrasive
particles on the inner diameter sawing blade can be theoretically estimated. The concentra-
tion of abrasive particles was calculated based on their weight. If the abrasive concentration
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is 100, then every cubic millimeter of the volume contains 0.88 × 10−3 abrasive grains. The
number of active abrasive particles on the cutting edge of the inner diameter blade was
calculated according to the diamond abrasive particle size, abrasive particle concentration,
and blade size. In our model, the abrasive particles were simplified as rigid spheres, so
the volume of a single abrasive particle was 4

3 πr3
m. The abrasive particles were considered

evenly distributed on the inner diameter sawing blade based on the previous assumption,
and the number of abrasive particles on the inner edge of the inner diameter sawing blade
could be determined with the following formula:

Nh =

[
0.88 × 10−3

(4/3)πrm3ρ

Ca

100

]2/3

Ap (6)

In Formula (6), Ca is the concentration of abrasive particles on the inner edge of the
inner diameter blade, and ρ is the density of the diamond abrasive particles (g/mm3). The
density of the spherical diamond abrasive particles ρ = 3.52 × 10−3 g/mm3. Ap is the area
(in mm2) of the inner diameter sawing blade insert involved in the cutting.

With the continuous increase in the sawing depth in the process of ultrasonic vibration-
assisted inner diameter machining, the area of the inner diameter sawing blade participating
in the sawing changed. Therefore, a theoretical calculation of the area of the inner diameter
sawing blade participating in the cutting was carried out. Firstly, we derived the central
angle during the sawing process using the law of cosines [2]:

θj = arccos
[

1 − 2δ(1 − δ)η2

1 + (2δ − 1)η

]
(7)

where δ is the degree of cutting, 0 < δ(t) < 1, and η is a dimensionless parameter
determined by the radius of the workpiece and the diameter of the blade that is numerically
equal to the ratio of the two, 0 < η < 1, as shown in Figure 4. It was further deduced that
the sawing area of the inner diameter sawing blade was as follows:

Ap = πrnθjhn (8)

where hn is the thickness of the inner diameter sawing blade (in mm) and rn is the inner
diameter of the inner diameter sawing blade (in mm). Inserting Formulas (7) and (8) into
Formula (6), the number of active abrasive particles on the inner edge of the inner diameter
sawing blade can be obtained as follows:

Nh = πrnhn

[
0.88 × 10−3

(4/3)πr3
mρ

Ca

100

]2/3

arccos
[

1 − 2δ(1 − δ)η2

1 + (2δ − 1)η

]
(9)

Figure 4. The central angle of a single abrasive particle during the sawing process with ultrasonic-
assisted inner diameter sawing.
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2.4. Fracture Removal Volume

To understand this sawing process, it is necessary to analyze the interaction between
the abrasive particles and the workpiece. Figure 5a presents the brittle fracture material
removal mode. The permanent plastic deformation zone is first formed by the load at
the contact area between the spherical abrasive particles and the workpiece. As the load
increases up to a certain critical value, the permanent plastic deformation zone gradually
increases. Then, two transverse cracks are generated. When the spherical abrasive particles
move to the next position, the cracks continue to expand, which eventually causes the
material to fall from the workpiece. In this case, material removal is caused by plastic
deformation and transverse cracks and mainly involves a brittle fracture mechanism.
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cles. (a) Model of indentation produced by spherical abrasive particles; (b) model of spherical
abrasive particles.

The abrasive particles on the section of the inner diameter sawing blade move along a
sine wave. Within the effective sawing time ∆t, the indentation of the ultrasonic vibration
abrasive particles increases from 0 to γ and then decreases to 0. With the rotation of the
tool, the abrasive particles slide a distance Ln on the surface of the workpiece, as shown in
Figure 6. The length and width of the fracture zone of the lateral crack also increase from 0
to the maximum and then decrease to 0. Until transverse cracks are formed, the material
will be removed. The fracture area of a single abrasive grain is shown in Figure 6. The
removed area can be simplified to a semi-elliptical volume with lengths Cl, Ch, and Ln/2
with three semi-axes. Therefore, the removal volume Vq for a single abrasive particle can
be calculated with the following formula:

Vq =
1
3

πClChLn (10)

where Cl is the length of the lateral crack (in mm), Ch is the depth of the lateral crack
(in mm), and Ln is the effective cutting distance (in mm) of the abrasive particles in the
effective cutting time. The effective cutting distance Ln (in mm) can be calculated with the
following formula:

Ln =
rnW
30 fl

[
π

2
− arcsin(1 − γ

A f
)

]
(11)

where W is the spindle rotation speed; that is, the rotation speed of the inner blade (in
r/min). The length of the lateral crack Cl and the depth of the lateral crack Ch can be
determined using Formulas (12) and (13) [28]:

Cl =

(
Fhn
kc

)3/4
(12)

Ch = (
Fhn
Hv

)
1/2

(13)
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where kc is the plane strain fracture toughness coefficient (in MPa m1/2), and Hv is the
Vickers hardness of the material (in HV). Inserting Formulas (11)–(13) into Formula (10),
the theoretical material removal volume Vq can be obtained as follows:

Vq =
π

90 fl

rnWF5/4
hn

k3/4
c H1/2

v

[
π

2
− arcsin(1 − γ

A f
)

]
(14)

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 6. A fracture zone produced by an abrasive particle in ultrasonic-assisted inner diameter 

sawing. 

1

3
q l h nV C C L=

 
(10) 

where Cl is the length of the lateral crack (in mm), Ch is the depth of the lateral crack (in 

mm), and Ln is the effective cutting distance (in mm) of the abrasive particles in the effec-

tive cutting time. The effective cutting distance Ln (in mm) can be calculated with the 

following formula: 

arcsin(1 )
30 2

n
n

l f

r W
L

f A

  
= − − 

    

(11) 

where W is the spindle rotation speed; that is, the rotation speed of the inner blade (in 

r/min). The length of the lateral crack Cl and the depth of the lateral crack Ch can be de-

termined using Formulas (12) and (13) [28]: 

3 4

hn
l

c

F
C

k

 
=  
   

(12) 

1 2=( )hn
h

v

F
C

H
 

(13) 

where kc is the plane strain fracture toughness coefficient (in MPa m1/2), and Hv is the 

Vickers hardness of the material (in HV). Inserting Formulas (11)–(13) into Formula (10), 

the theoretical material removal volume Vq can be obtained as follows: 

5 4

3 4 1 2
arcsin(1 )

90 2

n hn
q

l c v f

r WF
V

f k H A

   
= − − 

    

(14) 

Once the indentation volume for each cycle of a single abrasive particle has been 

obtained, the relationship between the fracture volume and the indentation volume is 

known and the material removal rate can be predicted. Due to the complexity of this re-

lationship and the diversity of factors affecting it, this relationship is not discussed in the 

literature. In this paper, these influencing factors are integrated into a single parameter, 

and the expression for the actual removal volume is as follows: 

z v qV K V=  (15) 

The proportional constant may be a function of material properties, process param-

eters, and the probability of causing a fracture. In order to further estimate the material 

Figure 6. A fracture zone produced by an abrasive particle in ultrasonic-assisted inner diameter
sawing.

Once the indentation volume for each cycle of a single abrasive particle has been
obtained, the relationship between the fracture volume and the indentation volume is
known and the material removal rate can be predicted. Due to the complexity of this
relationship and the diversity of factors affecting it, this relationship is not discussed in the
literature. In this paper, these influencing factors are integrated into a single parameter,
and the expression for the actual removal volume is as follows:

Vz = KvVq (15)

The proportional constant may be a function of material properties, process param-
eters, and the probability of causing a fracture. In order to further estimate the material
removal rate, for a given material, Kv must be kept constant within a wide range of process
parameters; that is, Kv is regarded as a constant in this paper.

The material removal rate can be theoretically calculated from the sum material
removal rate MRR of all abrasive particles on the end face of the tool:

MRR = Nh flVz (16)

In addition, according to the definition of the material removal rate, the material
removal rate in ultrasonic vibration-assisted inner diameter sawing can also be expressed
in terms of contact length, inner diameter sawing blade thickness, and feed speed. The
specific expression is as follows:

MRR = 2 f jrnθjhn (17)

where fj is the feed rate of the machine tool (in mm/s). Combining Formulas (16) and (17),
another expression of Fhn (in N) can be obtained:

Fhn = C2
f 4/5
l r8/5

m ρ8/15k3/5
c H2/5

v

K4/5
v r4/5

n W4/5C8/15
a

[
π

2
− arcsin(1 − γ

A f
)

]− 4
5

(18)

where C2 is 1.0885 × 104. Considering the influence of all active abrasive particles, the
normal sawing force Fh (in N) can be calculated with the following formula:

Fh = FhmNh (19)



Sensors 2023, 23, 6444 8 of 17

By incorporating Formulas (2), (3), and (9) into Formula (19):

Fh = C3
rnhnC2/3

a γ3/2Ej

r3/2
m ρ2/3(1 − v2

j )

[
π

2
− arcsin(1 − γ

A f
)

]
arccos

[
1 − 2δ(1 − δ)η2

1 + (2δ − 1)η

]
(20)

where C3 = 2.187 × 10−4, another expression for Fh can be written out:

Fh = C4
r1/5

n hnC2/15
a f 4/5

j k3/5
c H2/5

v

K4/5
v r2/5

m ρ2/15W4/5 ×[
π
2 − arcsin(1 − γ

A f
)
] 1

5 arccos
[
1 − 2δ(1−δ)η2

1+(2δ−1)η

] (21)

where C4 = 1.7854. Through Formula (21), the sawing depth γ can be determined and, by
inserting the result of the sawing depth γ into Formula (20), the theoretically calculated
normal sawing force can be obtained.

3. Sawing Experiment with Alumina Ceramics
3.1. Experiment Setup

The experiment in this study was based on the 5060 automatic inner diameter slicer,
as shown in Figure 7. Based on this inner diameter slicer, a series of transformations were
carried out. First, the ultrasonic vibrator was designed, including the transducer and horn,
which played the main role, and finite element analysis was performed to determine the
vibration node and resonance frequency. Second, the ultrasonic transmitter and power
amplifier were connected to complete the overlap of the entire ultrasonic vibrator. Then, in
order to facilitate the application of ultrasonic vibration, a fixing device for the workpiece
was designed. By binding the workpiece to a wooden pad and then binding the wooden
pad to the clamping device, this method makes material replacement more effective and
convenient during the experimental process. An ADVANTECH PCIE-1816 acquisition
card with a data sampling frequency of 5000 S/s was used to filter the signal measured
by the six-axis force sensor through the median filtering method. Next, data acquisition
cards and six-axis force sensors were installed to collect the cutting force data and measure
the sawing movements during the experiment. The collected cutting force data were then
compared with the simulated results from the theoretical model developed in Section 2.
Details of the design of the ultrasonic vibrator and the clamping method of the workpiece
can be found in our previous paper [29].
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3.2. Experimental Design

If the value of fracture volume factor is a parameter independent of other factors,
then, theoretically, only one set of experimental data can be used to calculate the specific
value of Kv. However, a series of experiments need to be performed to verify that Kv is an
independent parameter. Four variables were proposed in the experimental design: spindle
speed, feed speed, abrasive granularity, and ultrasonic amplitude, as shown in Table 1. In
this experiment, SPSS software was used to design the orthogonal experiment, and a total
of 25 groups of experiments were completed.

Table 1. Orthogonal experimental design scheme.

Case Spindle Speed
W r/min

Feed Rate fj
mm/s

Radius of Spherical
Abrasive Particles rm mm

Amplitude Af
µm

1 2400 0.083 0.106 3.2
2 2400 0.05 0.097 3.8
3 2400 0.033 0.065 2.5
4 2400 0.033 0.085 4.4
5 2400 0.067 0.074 5.5
6 2600 0.05 0.065 4.4
7 2600 0.033 0.106 5.5
8 2600 0.083 0.074 3.8
9 2600 0.067 0.097 2.5
10 2600 0.033 0.085 3.2
11 2800 0.067 0.065 3.2
12 2800 0.033 0.106 3.8
13 2800 0.083 0.097 4.4
14 2800 0.05 0.085 5.5
15 2800 0.033 0.074 2.5
16 3000 0.033 0.074 4.4
17 3000 0.033 0.097 3.2
18 3000 0.083 0.065 5.5
19 3000 0.067 0.085 3.8
20 3000 0.05 0.106 2.5
21 3200 0.067 0.106 4.4
22 3200 0.05 0.074 3.2
23 3200 0.033 0.065 3.8
24 3200 0.083 0.085 2.5
25 3200 0.033 0.097 5.5

4. Model Validation and Discussion
4.1. Calculation of the Fracture Toughness Coefficient

The unknown quantity of the fracture toughness coefficient Kv was calculated with
the following formula:

Kv =
Vz

Vq
(22)

The theoretical removal volume Vq can be directly calculated with Formula (17), and
the actual removal volume Vz can be further calculated by calculating the material removal
rate. Then, we calculated the actual removal volume Vz with the following formula:

Vz =
MRR
Nh fl

(23)

Then, the fracture toughness coefficient Kv can be calculated with Formula (22) using
the actual removal volume Vz and theoretical removal volume Vq. A more accurate value for
the fracture toughness coefficient Kv can be calculated through multiple sets of experiments.
The data obtained were fitted, and the calculation results showed that Kv was equal to
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0.035, as shown in Figure 8. The experimental results showed that the value of Kv was
independent of other parameters.
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4.2. Modeling of Normal Sawing Force

Substituting the calculated fracture toughness coefficient into Formula (24), the final
expression of the normal sawing force was obtained as follows:

Fh = C5
r1/5

n hnC2/15
a f 4/5

j k3/5
c H2/5

v

r2/5
m ρ2/15W4/5 ×[

π
2 − arcsin(1 − γ

A f
)
] 1

5 arccos
[
1 − 2δ(1−δ)η2

1+(2δ−1)η

] (24)

where C5 = 26.12. By comparing the theoretical normal sawing force with the actual normal
sawing force measured by the six-axis force sensor in the actual cutting experiment, the
error rate of this model was obtained.

The differences between all the experimental and simulation results are compared in
Figure 9. The blue line represents the cutting force data measured in the actual machining
process, the red line was obtained by enveloping and filtering the cutting force data, and
the green dotted line is the cutting force curve obtained after bringing the corresponding
machining parameters into the cutting force model. It can be seen from Figure 9 that the
data measured in the experiment were consistent with the normal sawing force model
calculated in theory. Then, part error analysis was performed with the obtained data,
as shown in Figure 10. In 46 groups of sawing experiments, the average error reached
12.51%, and the maximum error was controlled at approximately 20%. As a result, there
was little difference between the theoretical normal sawing force model and the actual
measured normal sawing force, meaning that the actual normal sawing force could be
predicted after using the theoretical model. Compared with the average error in the regular
tetrahedral abrasive particle model, which is 16% [21], the model in this paper reduces the
error by 3.49%.

The parameters of single-crystal silicon were brought into the normal sawing force
model with spherical abrasive particles in order to compare it with our previous work
and verify that the spherical abrasive normal sawing force model is more accurate than
the regular tetrahedral abrasive normal sawing force model. To undertake a comparative
analysis with the data from the known literature [21], the errors for 20 groups of data were
calculated. The statistical error results for the two models can be seen in Figure 11a, and
the statistical results were fitted to obtain Figure 11b. However, the blade vibration made
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the advantages of the model in this paper not obvious. There was little difference between
the mean values of the two models, but the model proposed in this paper had a more
concentrated error distribution than previous models, as shown in Figure 11b. Similarly,
the sawing experiment data for 58 groups of alumina ceramics were brought into the two
models. Figure 11c shows the error statistics for the two groups of different models, and
it is obvious from Figure 11d that the mean value and variance of the proposed model’s
perdition error were reduced by 5.08% and 2.56%, respectively, compared to the regular
tetrahedral abrasive normal force model. It was verified that the model proposed in this
paper is better than the regular tetrahedral abrasive particle model.
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Figure 9. Comparison of experimental data and fitting curves. (a) fj = 0.033 mm/s, rm = 0.097 mm,
Af = 3.2 µm, rn = 45 mm, hn = 0.5 mm, W = 3000 r/min; (b) fj = 0.0633 mm/s, rm = 0.097 mm,
Af = 3.2 µm, rn = 45 mm, hn = 0.5, W = 3200 r/min; (c) fj = 0.033 mm/s, rn = 0.085 mm, Af = 6 µm,
rn = 41.5 mm, hn = 0.4 mm, W = 3200 r/min; (d) fj = 0.033 mm/s, rn = 0.097 mm, Af = 3.2 µm,
rn = 45 mm, hn = 0.5, W = 2400 r/min; (e) fj = 0.033 mm/s, rn = 0.097 mm, Af = 6 µm, rn = 45 mm,
hn = 0.5 mm, W = 3000 r/min; (f) fj = 0.033 mm/s, rn = 0.065 mm, Af = 6 µm, rn = 41.5 mm, hn = 0.3,
W = 3000 r/min.

We found that the influence of some parameters on the maximum cutting force was
larger based on multiple sets of experimental data processing and analysis and regular
statistics, such as the feed rate and spindle speed, while the influence of other parameters
on the maximum cutting force was small, such as the ultrasonic amplitude and particle
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size, because the thickness of the cutting edge depends on the size of the abrasive grain.
Therefore, the influence of the cutting-edge thickness on the maximum sawing force was
the same as that of the abrasive particle size.
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silicon sawing experiment [21], (b) error statistical analysis of monocrystalline silicon [21], (c) error
analysis of the alumina ceramic sawing experiment, (d) statistical error analysis of alumina ceramics.

The influence of cutting parameters on the maximum normal sawing force was ob-
tained by analyzing the experimental data. As shown in Figure 12a, the maximum normal
sawing force decreased with increasing spindle speed. As shown in Figure 12b, the maxi-
mum normal sawing force increased with the increasing thickness of the inner diameter
blade. As shown in Figure 12c, the maximum normal sawing force was almost unaffected
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by the ultrasonic amplitude. As shown in Figure 12d, the maximum normal sawing force
increased with increasing abrasive particle size. Within the considered range of the research
parameters, the feed speed and spindle speed had a great influence on the maximum
normal sawing force; the grain size and the thickness of the inner diameter blade had little
influence; and the ultrasonic amplitude had little effect on the maximum normal sawing
force. In production activities, when the feed speed is lower, the spindle speed is higher,
the inner diameter blade thickness is thinner, the grinding abrasive particle size is smaller,
the maximum normal sawing force is smaller, and the quality of the slices obtained is better.
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4.3. Normal Sawing Force and Surface Quality

To better explore the relationship between the surface quality of the alumina ceramic
slices and the normal sawing force, a NewView9000 model optical profiler was used
to detect alumina ceramic slices with a diameter of 10 mm under normal temperature
conditions, and the detection results are shown in Figure 13.

As shown in Figure 13, while other process parameters remain unchanged, as the
spindle speed increased, the maximum normal sawing force gradually decreased, resulting
in a gradual decrease in the surface roughness of the alumina ceramic chips. The maximum
normal sawing force was positively correlated with the surface roughness of the chips.
In future cutting experiments, the surface quality of chips can be further predicted by
predicting the maximum normal sawing force during ultrasonic-assisted internal circular
sawing of hard and brittle materials.
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mm; (i) v = 0.067 mm/s, W = 3000 r/min, rm =0.097 mm, rn = 45 mm, hn = 0.5 mm; (j) v = 0.067 mm/s, 

W = 3200 r/min, rm =0.097 mm, rn = 45 mm, hn = 0.5 mm; (k) v = 0.050 mm/s, W = 2400 r/min, rm 

=0.097 mm, rn = 45 mm, hn = 0.5 mm; (l) v = 0.050 mm/s, W = 2600 r/min, rm = 0.097 mm, rn = 45 mm, 

hn = 0.5 mm; (m) v = 0.050 mm/s, W = 2800 r/min, rm =0.097 mm, rn = 45 mm, hn = 0.5 mm; (n) v = 

0.050 mm/s, W = 3000 r/min, rm =0.097 mm, rn = 45 mm, hn = 0.5 mm; (o) v = 0.050 mm/s, W = 3200 

r/min, rm =0.097 mm, rn = 45 mm, hn = 0.5 mm. 

As shown in Figure 13, while other process parameters remain unchanged, as the 

spindle speed increased, the maximum normal sawing force gradually decreased, re-

sulting in a gradual decrease in the surface roughness of the alumina ceramic chips. The 

maximum normal sawing force was positively correlated with the surface roughness of 

the chips. In future cutting experiments, the surface quality of chips can be further pre-

dicted by predicting the maximum normal sawing force during ultrasonic-assisted in-

ternal circular sawing of hard and brittle materials. 

5. Conclusions 

Based on a six-axis force sensor, an ultrasonic-assisted inner diameter saw cutting 

force model was proposed to improve surface quality. The correctness of the model in 

this paper was verified by comparing experimental data, and the influence of various 

process parameters on the normal sawing force was analyzed. 

(i) A novel ultrasonic-assisted force model for inner diameter sawing was proposed by 

using the six-axis forces data sampled in processing; 

(ii) Spherical abrasive particles were applied in the sawing force model to improve 

prediction accuracy. For the processing example with alumina ceramics, the mean 

value and variance of the proposed model’s prediction error were reduced by 5.08% 

and 2.56% compared to the regular tetrahedral abrasive model; 

(iii) The highest normal sawing force peak could be obviously reduced and the surface 

quality of the slices significantly improved with the proposed sawing force model by 

adjusting the process parameters. 

Due to the complexity of the engineering implementation of ultrasound-assisted 

inner diameter slice machining technology, the work in this paper can be improved, in-

cluding improving the universality of the model for machining different materials, con-

Figure 13. Relationship between slice surface quality and normal maximum sawing force.
(a) v = 0.083 mm/s, W = 2400 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (b) v = 0.083 mm/s,
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W = 2600 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (c) v = 0.083 mm/s, W = 2800 r/min,
rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (d) v = 0.083 mm/s, W = 3000 r/min, rm = 0.097 mm,
rn = 45 mm, hn = 0.5 mm; (e) v = 0.083 mm/s, W = 3200 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm;
(f) v = 0.067 mm/s, W = 2400 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (g) v = 0.067 mm/s,
W = 2600 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (h) v = 0.067 mm/s, W = 2800 r/min,
rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (i) v = 0.067 mm/s, W = 3000 r/min, rm = 0.097 mm,
rn = 45 mm, hn = 0.5 mm; (j) v = 0.067 mm/s, W = 3200 r/min, rm = 0.097 mm, rn = 45 mm,
hn = 0.5 mm; (k) v = 0.050 mm/s, W = 2400 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm;
(l) v = 0.050 mm/s, W = 2600 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (m) v = 0.050 mm/s,
W = 2800 r/min, rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (n) v = 0.050 mm/s, W = 3000 r/min,
rm = 0.097 mm, rn = 45 mm, hn = 0.5 mm; (o) v = 0.050 mm/s, W = 3200 r/min, rm = 0.097 mm,
rn = 45 mm, hn = 0.5 mm.

5. Conclusions

Based on a six-axis force sensor, an ultrasonic-assisted inner diameter saw cutting
force model was proposed to improve surface quality. The correctness of the model in this
paper was verified by comparing experimental data, and the influence of various process
parameters on the normal sawing force was analyzed.

(i) A novel ultrasonic-assisted force model for inner diameter sawing was proposed by
using the six-axis forces data sampled in processing;

(ii) Spherical abrasive particles were applied in the sawing force model to improve
prediction accuracy. For the processing example with alumina ceramics, the mean
value and variance of the proposed model’s prediction error were reduced by 5.08%
and 2.56% compared to the regular tetrahedral abrasive model;

(iii) The highest normal sawing force peak could be obviously reduced and the surface
quality of the slices significantly improved with the proposed sawing force model by
adjusting the process parameters.

Due to the complexity of the engineering implementation of ultrasound-assisted inner
diameter slice machining technology, the work in this paper can be improved, including
improving the universality of the model for machining different materials, considering the
influence of temperature and chip fluid under unconventional working conditions, and
combining the limitations of the model assumptions in this paper.
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