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Abstract: The article deals with sensor fusion and real-time calibration in a homogeneous inertial
sensor array. The proposed method allows for both estimating the sensors’ calibration constants
(i.e., gain and bias) in real-time and automatically suppressing degraded sensors while keeping the
overall precision of the estimation. The weight of the sensor is adaptively adjusted according to the
RMSE concerning the weighted average of all sensors. The estimated angular velocity was compared
with a reference (ground truth) value obtained using a tactical-grade fiber-optic gyroscope. We have
experimented with low-cost MEMS gyroscopes, but the proposed method can be applied to basically
any sensor array.
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1. Introduction

MEMS inertial sensors (i.e., gyroscopes and accelerometers) allow for the development
of low-cost robotic and other mobile applications, where high-end fiber-optic gyroscopes
(FOGs) are not affordable. The greatest concern is the bias stability and the noise of the
MEMS sensors, which are much more significant compared to the FOG. Several approaches
have been developed to compensate for the miscalibration and noise of the MEMS sensors.
We may divide them into two categories: calibration and redundancy.

1.1. Calibration

The aim is to calculate the transformation function between the sensor output (raw
data) and the best estimate of the measured variable (e.g., angular velocity, in the gyroscope
case). The calibration is performed sample-by-sample and may also consider the sensor’s
gain, bias, misalignment, and optionally higher-order nonlinearity. Especially in the case of
the MEMS sensors, the calibration parameters change after the sensor restarts [1] and also
significantly depend on the temperature [2]. There are two types of calibration applicable
to the MEMS gyroscopes:

• Offline—the sensor is rotated by several predefined angular velocities. The measured
points are then fitted using a calibration curve. We need to measure all angular
velocities at different temperatures to compensate for the thermal drift. The most
basic version of this is the start-up bias calibration, which computes the gyroscope’s
bias (offset) by measuring the steady state’s mean output during the start-up phase
while neglecting the Earth’s rotation. The authors of [3] applied a convolution neural
network (CNN) to obtain the calibration model. When a simple linear calibration
model is used, its coefficients can be calculated using the least squares method. The
external stimuli may be, in exceptional cases, replaced with internal ones, e.g., in the
case of honeycomb disk resonator gyroscopes (HDRG), the authors of [4] analyzed
the third-order harmonic component of the sensor signal to estimate the scale factor
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of the closed-loop sensor, as well as to compensate for its thermal drift. The authors
of [5] improved the precision of the calibration procedure by detecting the outliers
in the measured calibration data using the random sample consensus algorithm
(RANSAC), Mahalanobis distance, and median absolute deviation. A significant
source of systematic errors is the misalignment of the sensor. The authors of [6]
applied correlation analysis and the Kalman filter to estimate the installation errors.

• Online—the sensor readings are compared with the readings of other sensors (e.g.,
in the sensor array [7–9]) and/or with the previous readings of the same sensor
(see, e.g., [10]). Such methods overcome the static nature of the offline calibration,
compensating both long-term and short-term drift in the parameters using the Kalman
filter or an algebraic estimator combined with a finite-response (FIR) filter [11–13]. An
essential advantage of such methods is avoiding the requirement of multipoint offline
thermal calibration since they adjust the calibration constants in real time.

1.2. Redundancy

The combination (fusion) of the information obtained from multiple sensors (possibly
of different types) has the potential to be more precise, robust, and reliable compared
to a single sensor [14]. In a standard configuration, the MEMS gyroscopes are coupled
with the MEMS accelerometers (often in the same chip). The accelerometer estimates
the vertical direction by measuring the gravity acceleration. The accelerometer is also
inherently affected by the linear acceleration of the object itself concerning the inertial
frame of reference. Still, in many applications, the long-term mean of the linear acceleration
can be considered negligible concerning the gravity acceleration. The estimated vertical
direction from the accelerometer can be combined with the gyroscope readings using
various sensor fusion methods, improving the precision of the estimated angular velocity
and Euler angles (see, e.g., [8,9,15–19]). Using multiple sensors also improves the safety of
the whole system (see, e.g., [20,21]). To estimate the position of the object, the accelerometer
and gyroscope readings can be combined with the odometrical data [22], microwave range
finder [23], or laser scanner [24]. A variation of the nonlinear Kalman filter (e.g., the
extended Kalman filter or EKF) is usually applied as the maximum likelihood estimator.
The advantage of sensor fusion is its ability to estimate some parameters of the environment.
Researchers in [25] used multiple independent models to enhance the robustness of an
INS-based navigation system combined with a Doppler velocity log (DVL). The EKF
requires presetting covariance matrices for the measurement. In real-life scenarios, the
noise characteristics of the sensors are not constant; hence, they need to be estimated in real
time. One commonly used technique is applying an LSTM neural network to learn how to
estimate those changing parameters from the past readings of the sensors. For example,
the authors of [11] developed a self-learning square-root cubature Kalman filter based on
LSTM networks for GPS/INS navigation systems. However, estimators based on the neural
networks are poorly explainable in general and hence cannot be used in safety-related
applications. The fusion of the homogeneous sensor array can be implemented as a linear
minimum variance (LVM) estimation (see, e.g., [26]). Such an approach requires one to
know or precalculate the error covariance matrix, which is the same drawback that the
EKF has.

1.3. Calibration in the Redundant Sensor Array

This article focuses on combining the approaches mentioned above, especially in
cases where multiple inertial sensors of the same type are being used. Theoretically,
when systematical errors of individual sensors are eliminated, the only source of error
is the random (unpredictable) noise. Researchers in [8] investigated the precision of
a MEMS array comprising 16 IMUs when the systematical errors were suppressed by
offline calibration. It is more desirable to calculate each sensor’s deviation for the overall
estimate of the measured variable. The authors of [27] proposed a method for online
calibration for the array of 32 IMUs (later reduced to 8 IMUs due to the low communication
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bandwidth available) using a maximum likelihood estimator, compensating bias, gain, and
misalignment errors. The reference value of the angular velocity has been estimated from
the rotation of the measured gravity acceleration vector. Such a method is applicable only
when vibrations and linear acceleration are not present (e.g., rotating the IMU array by
hand as suggested by authors).

An essential part of evaluating the algorithm’s precision is the reference measurement
system. The standard approach is to use a turntable. Researchers in [15] used military grade
AHRS (Attitude and Heading Reference System) STIM300 to provide the reference value
of angular velocity, compared with the values measured by a redundant array of 6 IMU
units in a cubic constellation. Our first experiments used a rotational platform driven by a
stepper motor, but it caused irreducible rotational-mode vibrations, rendering the reference
value non-usable. Later, we used navigation-grade IMU SPAN-CPT for measurement of
the ground-truth angular velocity.

2. Error Model of the Inertial Sensor System
2.1. Random Errors

Each sensor generates noisy readings. In the ideal case, we may assume that the noise
is superposed to the true value. For the gyroscope, the relation is:

ω ∼ ωtrue + ν, (1)

where ωtrue is the true angular velocity, ω is the raw analog value at the output of the
MEMS sensor unit, and ν is the noise from normal (gaussian) distribution:

ν ∼ N(0, ωrms
2). (2)

With only one sensor, the mechanical vibrations of the rotational character may also
be considered noise.

2.2. Systematic Errors

The raw value of the gyroscope is truncated to the sensor’s full-scale range±ωmax and
quantized to obtain the digital value. The quantization is a rounding of the analog value
towards the nearest digital level and is performed by an internal A/D converter built-in
within many commercially available MEMS sensors. The digital raw value converted to SI
units (International System of Units) can be modeled by the following:

ωraw = ∆ω · round
(ωtruncated

∆ω

)
= ∆ω ·

∣∣∣∣∣∣∣∣min(max(ω, −ωmax), ωmax)

∆ω

∣∣∣∣∣∣∣∣. (3)

where ∆ω is the quantization step (assuming uniform quantization), ωtruncated is the analog
raw value (true angular velocity + random noise) truncated within the sensor’s full-scale
range, and round(x) is the rounding function returning the nearest integer to x, further
noted as ‖x‖. All variables in Equation (3) are in rad·s−1. The quantization step is:

∆ω =
ωmax

2r−1 , (4)

where r is the sensor’s resolution in bits (e.g., r = 16 bits for the MPU9250 sensor). The
histogram of the real gyroscope noise is shown in Figure 1.
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Since the gyroscope is a directional sensor (measures angular velocity around one or
multiple principal perpendicular axes), the misalignment of the sensor is a source of the
systematic error:

ω ∼ ωtrue cos ε, (5)

where ε is the misalignment angle. In the case of three-dimensional movements, the mis-
alignment causes cross-talk between axes, which is expressed by the rotational matrix Ralign:

ω ∼ Ralign ·ωtrue. (6)

Another source of systematic errors is the miscalibration of the sensor—deviation of
its gain and/or offset:

ω ∼ Gωtrue + B, (7)

where G is the gain and B is the bias. The gain and bias are generally unpredictable
and vary with time and temperature. The MEMS gyroscope measures the Coriolis force
affecting periodically oscillating mass. Vibrations of the measured object perpendicular
to the sensing axis of the gyroscope may cause additional periodic components of the
measured signal due to the resonance. Such disturbance can be modeled using discrete
Fourier series. It is a sum of harmonic (sinus) signals with frequencies from 0 to Nyquist
frequency Fs/2 = 1/(2Ts). The smallest frequency change detectable by the sensor with
the constant sampling frequency Fs is Fs/N, where N is the count of samples (window
size). The model of the periodic noise is then:

ω ∼ ωtrue +
N/2
∑

m=0
Am · sin(2π fmt + ϕm)

∼ ωtrue +
N/2
∑

m=0
Am · sin

(
2πm Fs

N t + ϕm

)
∼ ωtrue +

N/2
∑

m=0
Am · sin

(
2π m

NTs
t + ϕm

)
,

(8)

where A is the amplitude of the measured oscillations (not to be confused with the ampli-
tude of the vibrations itself), Ts is the sampling period of the sensor, and ϕ is the phase of
the measured oscillations. Altogether, the measured value at the output of the single-axis
gyroscope is:
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ωraw = ∆ω ·

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
min

(
max

(
Gωtrue cos ε + B + ν + ∑

m
Am · sin

(
2πmt
NTs

+ ϕm

)
, −ωmax

)
, ωmax

)
∆ω

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (9)

If we use the sensor with sufficient full-scale range ±ωmax and a very small quantiza-
tion step ∆ω, the model of the sensor can be considered linear. The mean square error of
the estimated angular velocity is:

MSE(ω) =

N−1
∑

k=0
(ωraw[k]−ωtrue[k])

2

N

= 1
N

N−1
∑

k=0

(
Gωtrue[k] cos ε + B + ν[k]−ωtrue[k] + ∑

m
Am · sin

(
2πmt
NTs

+ ϕm

))2

≈ 1
2 ∑

m
Am

2 + B2 + (γ−1)2

N

N−1
∑

k=0
ωtrue[k]

2+ 1
N

N−1
∑

k=0
ν[k]2,

(10)

where γ = G cos ε is the directional gain of the sensor. Since we assume that the internal
noise component ν[k] is independent from the true value ωtrue[k], the mean of their product
is negligible. At zero rate (during static calibration, ωtrue[k] = 0), the output bias B can be
observed at the output of the gyroscope as the mean value, and the MSE is:

MSE(ω0) =
1
2∑

m
Am

2 + B2 +
1
N

N−1

∑
k=0

ν[k]2. (11)

The same principles and formulas are valid for accelerometers or any sensors sensitive
to the environmental noise.

2.3. Synchronization Errors

Within a multi-sensor environment, we need to consider the synchronization of indi-
vidual sensors. Some intelligent sensors provide a trigger input, which allows the master
controller (e.g., a microprocessor) to send a synchronization pulse, starting the measure-
ment of all sensors at the same time. To quantify the impact of incorrect synchronization,
we may assume two identical sensors with the same sampling period Ts but with different
sampling phases. Qualitatively, the effect of invalid synchronization increases when the
measured variable changes rapidly. If we model the dynamic input signal (true measured
angular velocity) as a sine wave with the frequency fsig, the readings of two sensors are:

ω1[k] = A sin
(
2π fsigt

)
+ ν = A sin

(
2π

fsig

Fs
k
)
+ ν, (12)

ω2[k] = A sin
(
2π fsig(t− τ)

)
+ ν = A sin

(
2π

fsig

Fs
k− 2π fsigτ

)
+ ν, (13)

where A is the signal amplitude, ν is white Gaussian noise superposed independently to
both sensors, and τ is the synchronization delay of the second sensor. Naïve sensor fusion
is the average of the two sensors:

ω[k] = 0.5ω1[k] + 0.5ω2[k]. (14)

Figure 2 shows the RMSE of the value estimated using equation (14 concerning the
relative sampling frequency and synchronization delay. The RMSE of each sensor noise
was set to 1% of the signal amplitude for the simulation. A significantly larger sampling
frequency than signal frequency (20 times and more) suppresses the adverse effects of
invalid sensor synchronization (note the logarithmic vertical scale).
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3. Homogeneous Sensor Fusion

We may now analyze the situation when multiple almost-identical sensors sense the
same variable. While the environmental noise (e.g., vibrations) is common for all sensors,
the random internal sensor noise ν is purely random. The homogeneous sensor fusion can
be expressed as a weighted average of the sensors’ readings:

Ω[k] = ∑
j

qjωj(raw)[k] and ∑
j

qj = 1, (15)

where qj is the weight of the j-th sensor. If we apply Equations (9)–(15), neglecting the
quantization and limits of the sensor, we obtain:

Ω[k] = ∑
j

qj

(
γjωtrue[k] + Bj + ∑

m
Am · sin

(
πm t

Ts
+ ϕm

)
+ νj[k]

)
= ∑

m
Am · sin

(
πm t

Ts
+ ϕm

)
+ ωtrue[k] ·∑

j
qjγj + ∑

j
qjBj + ∑

j
qjνj[k].

(16)

The goal of the sensor fusion is to minimize the MSE of the output (least-squares
method). Theoretically, if the gain and bias errors are completely compensated by calibra-
tion, the sensor is perfectly aligned, and there are no vibrations present, the only source of
the error is the internal noise of the sensor, and the result of the sensor fusion is:

Ωideal[k] = ωtrue[k] + ∑
j

qjνj[k], (17)

The MSE of the sensor fusion is then:

MSE(Ωideal) = ∑
j

qj
2MSE(ωj). (18)
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When each ideal sensor has a weight coefficient proportional to qj ∼ 1/MSE(ωj), the
MSE of the ideal sensor fusion result MSE(Ωideal) will be minimal (see, e.g., [28]).

MSE(Ωideal)min =

∑
j

1
MSE(ωj)(

∑
j

1
MSE(ωj)

)2 =
1

∑
j

1
MSE(ωj)

. (19)

The precision of the real fusion result depends on the precise estimation of the MSE. If
we use the zero-rate estimate of the MSE (Equation (11)), which is an overestimate, the MSE
of the sensor fusion result will be worse. We do not know the harmonic components of
the measured vibrations (parameters Am, ϕm), nor the values of the calibration parameters
after a longer run. The values of the calibration parameters for a group of sensors are
considered randomly distributed around their ideal values. When the homogeneous sensor
fusion (weighted average) provides a reasonable estimate of the true value, it is possible
to estimate the values of the calibration parameters from the last N samples. The simple
calibration model is:

ωj(cal)[k] =
(
1 + c1j

)
·ωj(raw)[k] + c2j, (20)

where ωj(raw)[k] is the k-th raw digital sample of the j-th sensor converted to SI units,
ωj(cal)[k] is the corresponding calibrated value, and c1j, c2j are the calibration parameters.
The Equation (20) represents the first-order (linear) calibration model. The sensor gain
should ideally be equal to one; the c1 parameter represents gain deviation and is usually
significantly lower than one. The form of the calibration model was chosen to improve
numerical precision when floating point numbers are used. The calibration parameters c1
and c2 may be considered quasi-constant since they may slightly vary with the elapsed
time and temperature. In the ideal case, both calibration parameters are zero. If we invert
(20) and compare it with (7), the gain and bias of j-th sensor Gj, Bj from (7) can be rewritten
in terms of c1j, c2j:

Gj =
1

1 + c1j
, (21)

Bj =
−c2j

1 + c1j
, (22)

If we would know the true value and the noise is Gaussian, the calibration parameters
can be estimated using the least-squares method:

ωtrue[1]−ωj(raw)[1]
ωtrue[2]−ωj(raw)[2]

. . .
ωtrue[K]−ωj(raw)[K]


︸ ︷︷ ︸

yj

'


ωj(raw)[1] 1
ωj(raw)[2] 1

. . . 1
ωj(raw)[K] 1


︸ ︷︷ ︸

Wj

·
(

c1j
c2j

)
, (23)

(
c1j
c2j

)
=
(

Wj
T ·Wj

)−1
·Wj

T · yj, (24)

In a real application, the true value is unknown. In the case of multiple sensors, the
apriori estimate of the true value is the mean of all calibrated sensors’ measurements at the
given time (all qj are the same):

Ωest[k] =
1
M∑

j
ωj(cal)[k], (25)
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where M is the count of sensors. Initially, the bias and gain deviation may be set to zero;
hence, ωj(cal)[0] =

1
M ∑

j
ωj(raw)[0].

Algorithm 1 explains the homogeneous sensor fusion with the calibration estimation:

Algorithm 1 Homogeneous sensor fusion with calibration

set: .c1j ← 0, c2j ← 0, qj ←1⁄M.
for j = 1 to M

get ωj(raw)

end for
initialize the estimate of the true value: Ωest ← 1

M ∑
j

ωj(raw)

compute sensor deviation yj ← Ωest −ωj(raw)

compute the calibration parameters c1, c2 using (24)

for j = 1 to M
compute calibrated values ωj(cal) ←

(
1 + c1j

)
·ωj(raw) + c2j

end for

for r = 1 to iterations
re-compute the estimate of the true value: Ωest ← ∑

j
qjωj(cal)

for j = 1 to M
compute the MSE of each sensor MSE(ωj)← Var(Ωest −ωj(cal))
compute the weight of the sensor qj ← 1/MSE(ωj)

end for
compute maximal weight qmax =

µ
M ·∑

j
qj, truncation factor µ = 3 (empirical)

for j = 1 to M
truncate qj ← min(qj, qmax)
normalize: qj ← qj/∑

k
qk

end for
end for

In the real-time version of the above algorithm, we process a fixed-size window of
historical raw readings.

Truncation Factor

The proposed algorithm has intrinsic instability. When the MSE of one sensor is
significantly underestimated compared to the other sensors, the estimated MSE of that
sensor is low and its weight qj is significantly higher than the weights of the other sensors.
Such a sensor becomes a “dictator”—in the next iteration, the estimated weighted average
Ωest is pulled towards the readings of the dictator sensor. Therefore, it is pulled away
from the readings of the other sensors. Then, the algorithm overestimates the MSE of the
other sensors, resulting in a further decrease in their weight. After multiple iterations,
the normalized weight of the dictator sensor converges to one, and all other sensors are
suppressed. To avoid such behavior, truncation factor µ was introduced. It ensures that the
weight of the best sensor never exceeds µ-times the average weight of all sensors. Suppose
we assume that the RMS of a single sensor is a gamma-distributed random variable. In that
case, the probability of false truncation (underestimation of the best sensor) is shown in
Figure 3. The parameter shape θ = 23 ± 8 (std. deviation) and scale β = 0.03 ± 0.01 of the
gamma distribution were roughly estimated by fitting the histogram of the RMS values
obtained from a sample of 16 sensors. Figure 4 shows the RMSE of the estimated angular
velocity concerning the truncation factor (see the next section for further details about the
simulation parameters). According to the simulation results, the optimal truncation factor
is approximately 3, which is the value to be used for further experiments. The false sensor
weight truncation probability for µ = 3 is around 1%.
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4. Simulation

We have used both simulation and real experiments to test the proposed method’s
performance. The simulation raw data were computed using MATLAB R2021a environment
with the following parameters:

• count of the samples N = 10,000
• sampling frequency FS = 100 Hz
• amplitude of the random signal A = 200 deg·s−1

• frequency vector of the random signal f [k] = 1.0 Hz + ξ, where ξ is normally distributed
random number (implemented by MATLAB function randn)

• phase of the random signal ϕ[k] = 2π
FS

k
∑

n=1
f [n] (implemented as MATLAB func-

tion cumsum)
• simulated (true) angular velocity: ωtrue[k] = A · sin(ϕ[k])
• RMS of all 16 sensors is from a gamma distribution with shape α = 5 and scale β = 0.02
• bias of all 16 sensors is from a zero-centered Gaussian distribution with standard

deviation σ = 30 deg·s−1

• gain of all 16 sensors is one-centered with standard deviation σ = 0.04

The above parameters roughly correspond to the noise parameters of real low-cost
MEMS gyroscopes available commercially. Using a pseudo-sinusoidal signal with a fluc-



Sensors 2023, 23, 6431 10 of 16

tuating frequency simulates the continuous angular velocity of a physical object with a
non-zero moment of inertia. An example of the simulated signal is in Figure 5. The average
gain across all sensors equals one and the average bias is zero. Such normalization is
necessary because the algorithm cannot intuitively determine the common-cause bias of
all sensors without any apriori information (e.g., from different types of sensors). For
simplicity, when all sensors deviate in the same direction, the result will also deviate in
that direction.
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5. Simulation Results

In the simulation mode, each sensor’s gain, bias, and MSE are known. Therefore, we
may compute the optimal weights and compare the estimated parameters with the known
values (see Table 1).

Table 1. Convergence of simulation.

Sensor No. j
Gain Gj (-) Bias Bj (deg·s−1) RMSj (deg·s−1)

Estimated True Estimated True Estimated True

1 0.956946 0.956949 −25.5111 −25.5107 0.103 0.101
2 0.998366 0.998368 −8.0970 −8.0975 0.097 0.099
3 0.963520 0.963516 −13.9765 −13.9773 0.077 0.077
4 1.016634 1.016636 6.7336 6.7339 0.085 0.088
5 0.990664 0.990654 34.6136 34.6141 0.163 0.162
6 0.963372 0.963376 −6.1223 −6.1218 0.049 0.053
7 0.990176 0.990172 46.9899 46.9911 0.147 0.147
8 0.987289 0.987301 15.0531 15.0539 0.101 0.102
9 1.008443 1.008421 −81.3185 −81.3222 0.198 0.204

10 1.053295 1.053302 −23.8845 −23.8849 0.094 0.101
11 1.003599 1.003604 45.7136 45.7147 0.076 0.079
12 0.996136 0.996143 −33.4840 −33.4843 0.055 0.060
13 1.056180 1.056180 11.0308 11.0311 0.064 0.070
14 0.988030 0.988037 −0.2502 −0.2506 0.123 0.122
15 0.972770 0.972752 2.3391 2.3411 0.177 0.173
16 1.054589 1.054589 30.1703 30.1694 0.072 0.078
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The algorithm converges under the abovementioned ideal conditions (zero-centered
biases, one-centered gains). The shown values are obtained by three iterations of the RMS
estimation. Please note that the algorithm, as described, computes MSE (mean square error)
instead of RMS to avoid unnecessary computation of the square root.

6. Experimental Setup

Real-world experiments were conducted using a matrix of 16 MPU9250 MEMS sensors
from TDK InvenSense (Shenzhen, China) (see Figure 6). All sensors communicate with
the microcontroller STM32F446 from STMicroelectronics (Geneva, Switzerland) via two
independent SPI channels. The microcontroller then sends all sensor readings to the
computer via serial connection. To synchronize the sensor readings, all sensors contain
synchronization trigger input. The synchronized readings are stored within internal FIFO
buffers within each sensor and later retrieved via SPI. The typical noise characteristics of
the used gyroscope sensor obtained from the datasheet are [29]:

• gain tolerance ±3% (at 25 ◦C), ±4% (whole temperature range −40 ◦C to +85 ◦C)
• nonlinearity ±0.1%
• bias tolerance ±5 deg·s−1 (at 25 ◦C), ±30 deg·s−1 (whole temperature range from

−40 ◦C to +85 ◦C)
• RMS noise 0.1 deg·s−1
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To evaluate the proposed method, it is necessary to measure the ground-truth value
of the angular velocity. Our first attempts utilized a stepper motor driving a rotational
platform. Still, the MEMS gyroscopes mentioned above captured the high-frequency
changes in the motor’s rotation speed caused by the steps. The frequency of those steps is
higher than the Nyquist frequency of the sensors, thus causing aliasing. To circumvent that,
we attached the sensor matrix to a commercially available SPAN-CPT inertial navigation
unit from NovTel Inc. (Calgary, AB, Canada), which contains three DSP-3000 single axial
fiber optical gyroscopes (FOGs) manufactured by KVH Industries (Middletown, CT, USA).
The characteristics of FOG sensors are [30]:

• sampling frequency: 1000 Hz (downsampled by SPAN-CPT to 100 Hz)
• initial bias: ±20◦/h
• nonlinearity: 500 ppm at ±150◦/h
• bias stability: 1◦/h
• angle random walk: 0.067◦/

√
h

• RMS (measured): 0.005◦/s

It is clear that FOG has 20 times lower RMS, so it thus may be used as a source of
ground-truth value. Initial calibration allows us to compensate for the bias of the FOG
sensor. The matrix of MEMS sensors attached to the SPAN-CPT unit is shown in Figure 7.
Both sensors were rotated randomly by hand. The time series of the measured angular
velocity from the MEMS array and FOG was roughly synchronized using a timestamp and
fine-aligned by hand to suppress delays caused by the communication interfaces in the PC.
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The manual alignment of MEMS and FOG signals is needed only for validation purposes;
in real applications, the FOG is not present. The measured angular velocity is in Figure 8.
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The estimated gain, bias, and weight of all sensors are shown in Figure 9, which
presents a comparison of the sensor calibration parameters. Blue circles are “true” val-
ues considering the FOG data. The results are obtained using a moving window with
the size of 1000 samples (processing the last 10 s). Shown outliers represent short-term
calibration changes.

As seen in Table 2 and Figure 9, the bias and gain of sensors were estimated correctly.
The true gain and bias were obtained by comparing the results of the MEMS sensor with
the readings from FOG. Those reference values lay within bounding boxes of estimated
gain and bias. The mean absolute error of the gain estimation was 0.46%, and the mean
absolute error of the bias estimation was 0.04 deg·s−1 (0.016% of the gyroscope full scale).
The weights of the sensors are estimated roughly, with a mean absolute error of 41%, but it
reflects the qualitative difference between the sensors (e.g., sensors j = 3, 4, 14, 15 have low
weights). Table 3 compares two scenarios: the first with the real measured data and the
second with an artificial white Gaussian noise added to one of the sensors, which emulates
the degradation.
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Table 2. Estimated parameters of individual sensors.

Sensor No. j Gain Gj (-) Bias Bj (deg·s−1) Weight qj (-)

Estimated True Estimated True Estimated Optimal

1 0.9986 1.0024 −0.0026 0.0176 0.0580 0.0726
2 1.0007 0.9981 0.0044 0.0064 0.0407 0.0816
3 1.0019 1.0005 −0.0092 0.0065 0.0836 0.0241
4 0.9957 0.9878 −0.0110 −0.0195 0.0149 0.0480
5 1.0018 1.0033 −0.0068 0.0038 0.0912 0.0849
6 0.9957 1.0056 0.0132 0.0437 0.0808 0.0422
7 1.0106 1.0079 −0.0042 0.0028 0.1075 0.0649
8 0.9956 0.9965 0.0134 0.0160 0.1190 0.0827
9 1.0022 1.0004 −0.0096 −0.0064 0.0850 0.0807

10 0.9991 0.9989 0.0115 0.0183 0.0561 0.0762
11 0.9975 0.9951 0.0120 0.0044 0.0828 0.0679
12 1.0041 1.0056 −0.0011 0.0161 0.0377 0.0813
13 0.9981 1.0000 −0.0001 0.0102 0.0820 0.0810
14 0.9999 0.9888 −0.0125 −0.0289 0.0291 0.0311
15 1.0172 1.0022 −0.7651 −0.2994 0.0021 0.0297
16 0.9927 1.0009 0.0098 0.0349 0.0297 0.0511
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Table 3. Comparison of results.

Constellation
RMSE (deg·s−1)

Measured Data Single Sensor Additive Noise

Single sensor 0.945 10.000
The mean of 16 sensors, no calibration 0.720 0.936
The mean of 16 sensors, with calibration 0.701 0.924
The weighted sum of 16 sensors, with calibration 0.685 0.688

7. Conclusions

This article deals with the real-time calibration and sensor fusion in the homogeneous
sensor array of the MEMS gyroscopes, measuring the angular velocity. The proposed
method has been validated by both simulation and real-world experiments. The results of
the experiments show that the algorithm improves the precision of the estimated angular
velocity by approx. 5% compared to a naïve average when all sensors are working. The
main advantage of the algorithm is the intrinsic ability to compensate for the degradation
of some sensors using an adaptive weighted average, thus improving the reliability of the
sensor array. The homogeneous sensor fusion can estimate calibration parameters (gain,
bias) of individual sensors within the sensor array without the need for precise offline
calibration equipment. Compared to the LVM (linear minimum variance) methods, our
method does not require apriori information about error covariance matrices for individual
sensors and can capture the changes in the error characteristics in real time. The proposed
method applies to all types of sensors (not exclusively MEMS gyroscopes) because it does
not require additional information. One of the critical challenges in such a configuration is
to keep sensors in sync, which can be achieved by a global synchronization signal routed
to all sensors. This drawback can be neglected when the sampling period is significantly
smaller than the time constant of the system dynamics.
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