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Abstract: Real-time fault detection in power distribution networks has become a popular issue in
current power systems. However, the low power and computational capabilities of edge devices often
fail to meet the requirements of real-time detection. To overcome these challenges, this paper proposes
a lightweight algorithm, named Comprehensive-YOLOV5, for identifying defects in distribution
networks. The proposed method focuses on achieving rapid localization and accurate identification
of three common defects: insulator without loop, cable detachment from the insulator, and cable
detachment from the spacer. Based on the You Only Look Once version 5 (YOLOV5) algorithm, this
paper adopts GhostNet to reconstruct the original backbone of YOLOV5; introduces Bidirectional
Feature Pyramid Network (BiFPN) structure to replace Path Aggregation Network (PANet) for feature
fusion, which enhances the feature fusion ability; and replaces Generalized Intersection over Union
GIOU with Focal Extended Intersection over Union (Focal-EIOU) to optimize the loss function, which
improves the mean average precision and speed of the algorithm. The effectiveness of the improved
Comprehensive-YOLOV5 algorithm is verified through a “morphological experiment”, while an
“algorithm comparison experiment” confirms its superiority over other algorithms. Compared with
the original YOLOV5, the Comprehensive-YOLOVS5 algorithm improves mean average precision
(mAP) from 88.3% to 90.1% and increases Frames per second (FPS) from 20 to 52 frames. This im-
provement significantly reduces false positives and false negatives in defect detection. Consequently,
the proposed algorithm enhances detection speed and improves inspection efficiency, providing a
viable solution for real-time detection and deployment at the edge of power distribution networks.

Keywords: deep learning; Comprehensive-YOLOVS5; real-time fault detection; power distribution
networks; lightweight

1. Introduction

The rapid growth of power components and transmission lines has increased the diffi-
culty of power supply and the workload of maintenance and repair of the grid system [1-3].
Eighty to ninety percent of power system faults occur in the distribution network. Distribu-
tion lines are susceptible to factors such as lightning, storms, and magnetic fields during
operation. Once a fault occurs, it will have a significant impact on the economy, industrial
production, and the normal lives of residents [4—6].

In recent years, with the advancement of unmanned aerial vehicle (UAV) technol-
ogy, UAV aerial photography has been increasingly applied in power distribution line
inspections. By analyzing aerial images, defects can be promptly identified and repaired,
ensuring the normal operation of distribution lines. References [7,8] have investigated
the feasibility of intelligent UAV inspections by analyzing the required image data and
autonomous navigation techniques. Reference [9] improved the deep convolutional neural
network (DCNN) by designing an adaptive strategy for the localization of the DCNN
model, thereby extending the endurance of UAV inspections. Reference [10] employed a
cascaded Faster R-CNN network model for insulator detection and self-destruction recog-
nition on UAV images. It utilized feature pyramids to extract target features and combined
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region proposal networks to generate candidate regions, resulting in improved accuracy
for insulator self-destruction detection and recognition. These studies have effectively
enhanced the accuracy of fault recognition in power distribution lines by increasing the
depth and complexity of the models. However, deploying large and bulky models on
mobile devices not only requires high-performance hardware support but also significantly
reduces the speed of fault recognition in distribution lines.

Deep convolutional neural networks have demonstrated significant superiority in the
field of fault localization and recognition in power distribution lines. Current research
can be primarily divided into two categories. The first category includes two-stage ob-
ject detection models represented by the Region-based Convolutional Network method
(R-CNN) [11], Fast Region-based Convolutional Network method (Fast R-CNN) [12], and
Faster Region-based Convolutional Network method (Faster R-CNN) [13]. Reference [14]
proposed a parallel convolutional neural network (P-CNN) training method based on
transfer learning, which constructed a dual-branch convolutional neural network with fault
classification and localization branches. Reference [15] employed a genetic algorithm to
optimize the parameters of the support vector machine model, creating a multi-support
vector machine model diagnostic approach for electrical quantity fault information fea-
tures. However, two-stage object detection algorithms have a large number of network
parameters, requiring more resources and a longer detection time. Another category of
representative algorithms includes the YOLO (You Only Look Once) series [16-20], which
includes YOLOv1, YOLOv2, YOLOv3, YOLOv4, and YOLOVS5, as well as the Single Shot
MultiBox Detector (SSD) algorithm [21]. This paper focuses on the YOLOVS5 algorithm,
which not only maintains high accuracy but also features fast detection speed, short pro-
cessing time, and low memory usage. This study addresses the problem of localization
and identification of defects in power distribution components and proposes an improved
version of the Comprehensive-YOLOV5 lightweight neural network model for end-to-
end defect localization and identification. Based on the original YOLOV5, the main body
and neck are reconstructed using GhostNet [22] to reduce the model size and improve
computational speed. The Bi-directional Feature Pyramid Network (BiFPN) [23-27] struc-
ture is employed to replace the Path Aggregation Network (PANet) [28-33] for feature
fusion, enhancing computational accuracy. The Focal Extended Intersection over Union
(Focal-EIOU) loss function is used instead of Generalized Intersection over Union (GIOU)
for optimization [34,35]. This approach ultimately achieves fast and accurate recognition
and detection of three typical defects in power distribution networks: insulator without
loop, cable detachment from insulator, and cable detachment from spacer.

2. Distribution Grid Fault Detection Network
2.1. Network Model of YOLOv5

The background of power distribution networks is complex and diverse, and different
angles and lighting conditions can potentially interfere with unmanned aerial vehicle (UAV)
fault detection. Therefore, it is crucial to select a robust and highly resilient network model.
Compared to region-based two-stage object detection models such as R-CNN, Fast R-CNN,
and Faster R-CNN, the YOLOVS5 algorithm belongs to a one-stage object detection model.
It directly predicts the relative positions of candidate bounding boxes and achieves object
classification and bounding box prediction. The network structure of YOLOV5 is illustrated
in Figure 1.

Moreover, the YOLOV5 object detection algorithm has several advantages over tra-
ditional object detection algorithms such as Fast R-CNN, Faster R-CNN, Mask R-CNN,
and SSD. Firstly, YOLOV5 exhibits high real-time performance, enabling real-time object
detection in a short period of time for images or videos. Secondly, YOLOvV5 employs a
simple and easy-to-implement network structure that is relatively lightweight, requiring
fewer memory and computational resources. It is suitable for embedded devices and edge
computing platforms, reducing the requirements for computational resources and storage
space, and improving the efficiency and scalability of the entire system. Additionally, in
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terms of object detection accuracy, YOLOvV5 introduces multi-scale detection techniques,
allowing it to handle objects of different scales and enhancing the algorithm’s robustness.
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Figure 1. Network Model of YOLOVS.

These advantages are crucial in fault detection in power distribution networks, as they
ensuring the timely detection and handling of faults, thereby avoiding further damage to
the power system. Therefore, in this paper, the focus is on improving the YOLOV5 algo-
rithm to meet the inspection requirements of power distribution networks. The proposed
enhancement results in a lightweight and high-precision YOLOvVS5 network, referred to as
Comprehensive-YOLOVS.

The network architecture of YOLOvV5 comprises four components: Input, Backbone,
Neck, and Prediction. The Input module employs Mosaic data augmentation and adaptive
anchor box computation. Mosaic data augmentation combines images by random scal-
ing, cropping, and arrangement to enhance the detection performance for small objects.
Adaptive anchor box computation calculates anchor box values based on optimal anchors
specific to different training sets. This reduces the disparity between the ground truth
boxes and anchor boxes, enhancing the speed of object detection during backpropagation
updates.

The Backbone module employs Cross Stage Partial Darknet (CSPDarknet) to extract
rich information features from input images. Cross Stage Partial Network (CSPNet) ad-
dresses the problem of redundant gradient information in optimizing the backbone of
deep convolutional neural network models. By integrating gradient changes into feature
maps, CSPNet reduces the model’s parameter size, floating-point operations per second
(FLOPS), and overall model size. This optimization leads to improved inference speed and
accuracy while reducing the model’s footprint. These design and optimization measures
make YOLOVS a robust and efficient network model suitable for fault detection in power
distribution networks.
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In YOLOVS5, the CSPNet structure incorporates two types of Cross Stage Partial (CSP)
structures. The first one, known as Cross Stage Partial 1_X (CSP1_X), is utilized in the
backbone network and adopts a residual structure to enhance the learning capacity of the
convolutional neural network. The second one, called Cross Stage Partial 2_X (CSP2_X),
is used in the neck network and does not employ the residual structure. In the backbone
network, the input feature map is processed through the Focus structure. The Focus
structure integrates the width (w) and height (h) information into the channel (c) dimension
through slicing operations. More specifically, it reduces the width and height by half while
increasing the number of channels by four times.

The CSPNet structure introduces the Leaky Rectified Linear Unit (LeakyReLU) acti-
vation function, which is an improved version of Rectified Linear Unit (ReLU). During
training, when the input value is less than 0, the output after activation remains non-zero.
This ensures the activation of some neurons and prevents the problem of parameters
never being updated. The LeakyReLU activation function introduces a parameter “a” that
controls the slope of negative values. The expression for LeakyReLU function is as follows:

LeakyReLUa(x) = max(ax, x) 1)

In the equation, x represents the input value, and the parameter a is typically set
to 0.01.

The neck network in YOLOVS5 incorporates the FPN + PANet structure, as illustrated in
Figure 2. In the figure, (a) represents the Feature Pyramid Network (FPN) backbone, while
(b) represents the PANet backbone. FPN is primarily utilized to enhance object detection
by merging high-level and low-level features, leading to improved detection performance,
particularly for small objects.
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Figure 2. FPN + PANet structure. (a) FPN backbone; (b) PANet backbone.

PANet builds upon FPN by introducing the Bottom-up Path Augmentation structure,
which fully utilizes the shallow features of the network for segmentation. This allows
the top-level feature maps to benefit from rich positional information derived from the
bottom-level features. This improvement enhances the detection performance for larger
objects, enabling the model to better recognize objects of varying sizes and scales.

The loss function in YOLOVS5 consists of three components: the bounding box regres-
sion loss (Loss(coord)), the confidence prediction loss (Loss(conf)), and the class prediction
loss (Loss(cls)). The bounding box regression loss is calculated using the GloU loss function,
which quantifies the discrepancy between predicted and ground truth bounding boxes.
The confidence prediction loss is computed using the Binary Cross Entropy with Logits
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(BECLogits) loss function, which evaluates the loss for the probability of object presence.
The class prediction loss is calculated using the cross-entropy loss function (BCEclsloss),
which measures the loss for class predictions. The specific formulas for these losses are as
follows:

Loss = LSS (coord) T LOSS (conf) + LOSS q15) 2)
LoSS(coord) = 1 — GloU 3)
GloU = IoU — W 4)
SxS bi A
LSS conf) = 3, 21” / [C log(C;) + <1 - ci) log(1 — ci)]
i=0 j=0 ®)

—Sf f 1| Cotog(C) + (1 G ) log(1. - )|

SxS B

bj A ~
Loss cis) Z Z L7 Y [pi(e)log(pi) + (1 — pi(c) log(1 — pi(c))] ©6)
=0 j= ceclasses
In the equation, S represents the size of the network. i represents the i-th grid cell in
the feature map, while j represents the j-th predicted bounding box associated with that
grid cell. Subscripts “obj” and “nobj” denote whether an object exists in the i-th grid cell. C;

represents the predicted class for the bounding box, while (IZ\Z- represents the true class for
the ground truth box. p; represents the predicted object confidence, and p; represents the
actual object confidence.

This paper aims to improve the network structure and loss functions of the original
YOLOVS5 model to improve the model’s detection accuracy and speed.

2.2. GhostNet Convolutional Network

In mainstream deep neural networks, feature maps extracted from input data often
contain abundant and occasionally redundant information to ensure a comprehensive
understanding of the input data. GhostNet introduces a novel convolutional method
known as Ghost convolution, which aims to replace traditional standard convolutions. In
comparison to conventional neural networks, Ghost convolution can extract redundant
information from feature maps with lower computational cost and higher efficiency.

Ghost convolution begins by applying a regular 1 x 1 convolution to reduce the
dimensionality of the input feature map, resulting in a feature map (referred to as feature
map 1) containing redundant information. Subsequently, feature map 1 undergoes an
identity mapping and inexpensive non-linear operations ®. These operations include
convolutional layers, batch normalization layers, and ReLU layers. The convolutional
layers used in this process are depth-wise separable convolutions, suchas 3 x 3or5 x 5
convolutions, applied separately to each feature map. Finally, the mapped and non-linear
transformed feature maps are concatenated to obtain the complete feature map. The specific
schematic diagram of the Ghost convolution module is shown in Figure 3.

Assuming the input feature map size is i - w - n, the number of linear operations is
W' -w' - n, and the final output feature map size is s, with a convolution kernel size of k - k.
Considering that a Ghost convolution includes one mapping operation, the actual number
of linear operations is s — 1. Therefore, the number of parameters in a Ghost convolution is
determined by the following formula:

n

= c-k-k+(s=1)-—-d-d )

m\§
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The number of parameters in a regular convolution can be calculated as follows:
pp=n-c-k-k (8)
The ratio of parameter counts is calculated as follows:

n-c-k-k . scC ~ s
B.cok-k+(s—1)-%-d-d s+c—1

Te =

©)

AN

Input Output
Figure 3. GhostConv module.

Based on the above discussion, Ghost convolution has a significant advantage over
regular convolution in terms of parameter reduction, allowing for model compression and
feature extraction at a smaller cost. Building upon Ghost convolution, we designed the
C3Ghost structure, which is illustrated in the diagram shown in Figure 4.

C3Ghost —»@ BottleNeck w

BottleNeck

Figure 4. C3Ghost module.

|

In order to address the potential increase in parameter count and computational
complexity resulting from subsequent improvements, this paper leverages GhostNet for
the reconstruction of the backbone and neck of YOLOV5. The effectiveness of this approach
through is validated subsequent experiments. The specific reconstruction operations
involve replacing regular convolutions in the backbone and neck with Ghost convolutions
and replacing the C3_2 module in the backbone and neck with the C3Ghost module. These
reconstruction operations aid in reducing parameter count and computational complexity,
thereby enhancing the efficiency and performance of the model.
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2.3. Bi-Directional Feature Pyramid Network

Convolutional neural networks (CNNs) extract target features in a hierarchical manner,
with shallow layers capture the spatial information of images and deeper layers containing
higher-level semantic information. This hierarchical structure enables CNNs to gradually
extract rich feature representations, leading to a more accurate understanding and recogni-
tion of targets. However, relying solely on feature extraction at a single resolution can lead
to information loss or insufficiency. The purpose of multi-scale feature fusion is to aggregate
features from different resolutions, thereby effectively utilizing both shallow and deep
information in the network. By fusing multi-scale features, the network can obtain more
comprehensive and rich feature representations, leading to enhanced accuracy in object
detection and localization, particularly in complex scenes. There are various approaches to
achieve multi-scale feature fusion, such as utilizing Feature Pyramid Network, bottom-up
path aggregation, bi-directional propagation, and others. These methods introduce appro-
priate connections and operations in the network, enabling effective communication and
fusion of features from different levels. Through multi-scale feature fusion, the network
can fully leverage feature information at different scales, thereby enhancing its detection
capability for objects of varying sizes and complexities. This leads to improved robustness
and generalization performance of the network. Multi-scale feature fusion plays a crucial
role in CNNs as it combines the advantages of both shallow and deep features, resulting in
enhanced object detection performance. With a well-designed feature fusion method, the
network can better comprehend the spatial and semantic information of images, leading
to more accurate object localization and recognition. In this paper, we adopt the YOLOv5
algorithm and introduce an efficient and fast feature fusion structure called Bi-directional
Feature Pyramid Network (BiFPN), as depicted in Figure 5, to further enhance the inference
performance of the model.

one

Figure 5. Schematic diagram of the BiFPN structure.

Due to the use of Ghost convolution to reduce parameters and computations, there
is a trade-off with a decrease in detection accuracy. In order to address this, we have
chosen to introduce BiFPN into the Neck network of YOLOVS, replacing the original Path
Aggregation Network (PANet). We have constructed the Concat operation to replace the
regular Concat layer, thereby enhancing the network’s feature fusion capability through
learnable weights.

BiFPN is a weighted bidirectional feature pyramid network proposed by Google
Brain. Unlike the feature pyramid network (Feature Pyramid Network) that passes features
through a single top-down path, BiFPN incorporates a reverse path to convey positional
information that might have been lost. It builds upon PANet by removing nodes with only
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one input, optimizing the network while preserving important information. Additionally, if
the input and output nodes are at the same level, an additional edge is added to fuse more
features. The comparison between BiFPN and PANet structures is illustrated in Figure 6.

Feature fusion Feature input Feature output Feature fusion Feature input Feature output

OO 0O 0O O

O

PANet BiFPN

Figure 6. Comparison between PANet and BiFPN structures.

Importantly, BiFPN proposes a weighted feature fusion mechanism that assigns a
learnable weight to each path. These weights are continuously updated through feature
learning to prioritize more important information. Due to the introduction of bidirectional
information flow and adaptive feature weighting, BIFPN may be more complex compared
to PANet. This increased complexity may require additional computational resources and
time for feature fusion, potentially impacting the training and inference time of the model.

However, the multi-level feature fusion and adaptive feature selection capability
of BiFPN can improve the accuracy and robustness of the detection model, effectively
eliminating the side effects of accuracy and robustness reduction caused by lightweight
model optimization. In this study, we aim to maintain high detection accuracy while
improving detection speed. Therefore, we adopt the BiFPN structure to mitigate the
accuracy degradation caused by using Ghost convolution to improve inference speed.

2.4. Focal Extended Intersection over Union Loss Function

The original YOLOV5 algorithm utilizes the Generalized Intersection over Union
(GIOU) loss function to calculate bounding box regression. The GIoU formula is represented
as follows:

_ _ A°—u
{ GIOU = IoU — 241 (10)

-1<GIlou <1

In the equation, A° represents the area of the minimum bounding rectangle of the
actual box and the predicted box, while u represents the intersection area between the
actual box and the predicted box.

To address the aforementioned issues of GloU, we adopt the Focal Enhanced Intersec-
tion over Union (Focal-EloU) loss function instead of GIloU for bounding box regression
in our study. The penalty term of Enhanced Intersection over Union (EloU) separates
the influence of aspect ratio in the penalty term, allowing independent calculation of the
lengths and widths of the target box and anchor box.

The Focal-EloU loss function comprises three components: overlap loss, center dis-
tance loss, and width-height loss. The first two components follow the methodology of
CIOU, while the width-height loss aims to minimize the difference between the widths and
heights of the target box and anchor box, resulting in faster convergence. The formula for
the penalty term is as follows:
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(11)

In the equation, C¥ and C" represent the width and height of the minimum enclosing
box that covers the two boxes.

Considering the issue of sample imbalance in bounding box regression, where the
number of high-quality anchor boxes with small regression errors is much smaller than that
of low-quality samples, the training process can be significantly influenced by the large
gradients produced by low-quality samples. To address this, we propose a Focal EIOU
Loss by combining Focal Loss with EIOU. From the perspective of gradient adjustment,
this approach separates high-quality anchor boxes from low-quality ones. The formula for
the penalty term is as follows:

Lgocal-r10u = IOU” Lgjou (12)

In the equation, IOU =|A N B|/|A U B|, and 1 is a parameter controlling the degree of
outlier suppression. The Focal-EIOU loss function in this context differs from the traditional
Focal Loss by assigning larger losses to higher Intersection over Union (IoU) values instead
of focusing on difficult samples. This effectively gives more weight to better regression
targets, leading to improved regression accuracy.

The EIOU loss function takes into account the overlapping area, center point distance,
and the differences in length and width of the bounding boxes. It addresses the ambiguous
definition of aspect ratio based on CIOU and incorporates Focal Loss to handle the issue of
sample imbalance in bounding box regression.

Compared to the original GIOU loss function in YOLOV5, the Focal-EIOU loss function
achieves higher accuracy and faster convergence.

2.5. Network Model of Comprehensive-Y OLOv5

Based on the description above, the improved network architecture of Comprehensive-
YOLOVS5 is shown in Figure 7.
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Figure 7. Network Model of Comprehensive-YOLOVS5.
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3. Experimental Setup and Analysis
3.1. Dataset Creation and Anchor Box Selection
3.1.1. Acquisition of Distribution Grid Defect Dataset

In this study, a dataset of 3000 original images of distribution grids was collected in a
city. The data collection process involved manual photography and the use of a camera-
equipped unmanned aerial vehicle (UAV). The images were captured at a resolution of
608 x 608 pixels and encompassed three types of faults: insulator without loop, cable
detachment from insulators, and cable detachment from spacers.

The faults were photographed from five different angles: left, right, top, bottom, and
front, at distances ranging from 20 to 100 cm from the faults. The anchor boxes, which
indicate the locations of the faults, were annotated and are depicted in Figure 8.

Figure 8. Three Typical Defects in Distribution Grids. (a) Insulator Ring Absence; (b) Cable Detach-
ment from Insulators; (c) Cable Detachment from Spacers.

3.1.2. Data Augmentation and Preprocessing

To mitigate overfitting issues in deep learning models, it is necessary to train the
model with a large amount of data samples. During the training phase, the recognition
performance of the model can be significantly enhanced by utilizing comprehensive and
diverse training data. In order to improve the generalization and anti-interference capa-
bilities of the model, this study conducted various data augmentation and preprocessing
operations on the original data before training.

The employed image augmentation techniques include horizontal flipping, vertical
flipping, random cropping, random rotation, and color jittering. These operations increase
the diversity of the dataset and improve the model’s robustness. After data augmentation,
a total of 12,000 images were obtained as the dataset.

Data preprocessing involves a series of processing operations applied to the original
data to prepare it for model training. The data preprocessing operations utilized in this
study include image scaling, normalization, and contrast enhancement.
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Specifically, the images were resized to 416 x 416 pixels to match the input size of the
Comprehensive-YOLOv5 model. Additionally, the images were standardized to accelerate
model convergence and enhance contrast to improve the visualization of defect areas.

3.1.3. Establishment of Image and Label Database

In this study, version 4.5.9 of the labellmg software was used to annotate the images,
generating annotation files in XML format. To convert the annotation files into the corre-
sponding YOLO format, a Python script was developed to process the annotation files. The
data was then split into training, validation, and testing sets according to an 8:1:1 ratio.

3.2. Experimental Conditions and Training Hyperparameter Settings

The training environment of the target detection algorithm in this experiment is
described in Table 1.

Table 1. Algorithm Training Environment.

CPU GPU RAM System Environment
E5 2690v4 x2 Ubu;‘tf 20}'10141}10”1
14C 28T RTX 2080 x2 64GB DDR4 ECC yrorchl.
35 MB Cache Cudall.3 + Cudnn8.7.0
Python 3.9.0

The Distribution Grid Defect Detection Process Flowchart is shown in Figure 9.
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Figure 9. Distribution Grid Defect Detection Process Flowchart.
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The hyperparameter settings for training the algorithm in this paper are presented in
Table 2.

Table 2. Algorithm Training Hyperparameters.

Input . . Weight Decay Input
Hyperparameter Image Size Epochs Batch-Size Learning-Rate Momentum Coefficient Channels
Parameter 416 x 416 300 64 0.0001 0.937 0.0005 3
Setting

3.3. Evaluation Criteria

This paper aims to utilize the Comprehensive-YOLOvV5 algorithm as a lightweight
model while maintaining high detection accuracy. To assess the algorithm’s speed, frames
per second (FPS) and inference time are employed as evaluation metrics. The spatial and
temporal complexity of the algorithm is evaluated using floating-point operations (FLOPs)
and the size of the model’s weights. The detection accuracy of the algorithm is evaluated
using mean average precision (mAP).

FPS represents the number of image frames processed by the algorithm per second
and serves as a metric for measuring algorithm performance and efficiency. It reflects the
algorithm’s real-time capability and responsiveness. In this paper, the detection time for a
single image is calculated using Equation (13), which indirectly utilizes FPS for computation.

1
Tinference = TPS (13)

mARP is the average value of Average Precision (AP) for all classes, used to measure the
overall performance of object detection algorithms. mAP is calculated using Equation (14).

_ TP
P = TP+FP
_ TP
— TP+FN
AP = [ P(R)dR (14)
1 m
mAP = 1 ¥ AP,
i=1

In the equations mentioned above, R represents recall, P represents precision, and TP,
FP, FN represent the quantities of true positive, false positive, and false negative predictions
made by the model, respectively.

This paper uses mAP@0.5 and mAP@0.95 as evaluation metrics for detection accuracy,
which represent the average precision at IoU thresholds of 0.5 and 0.95, respectively.

In the four mentioned equations, TP represents the number of true positive samples
predicted correctly by the model, FP represents the number of false positive samples
predicted incorrectly as positive by the model, FN represents the number of false negative
samples predicted incorrectly as negative by the model, and m represents the number of
label categories.

3.4. Morphological Experiment

To validate the effectiveness of each improvement module, four sets of morphological
experiments were conducted in this study. The training was performed sequentially,
following the experimental environment described in Section 3.2. The best weight files
from each training set were selected for experimentation on the validation set. For each
experiment, the training was carried out for 300 epochs. The results of the morphological
experiments are presented in Table 3.



Sensors 2023, 23, 6410

13 0f 18

Table 3. Results of Comprehensive-YOLOv5 Morphological Experiments.

. Model
GhostNet BiFPN 10" 1 AP@05/% mAP@0.9s/ 'Vithout — Detachment  Detachment ppg  Inference ypiopy  pirameters  GFLOPs
EloU Loop Insulator Spacer Speed .
Size/MB
x x X 88.3 452 89.4 85.2 90.3 20 51 155 7,059,201 15.9
Vi x x 87.2 14438 88.3 822 91.1 53 19 38 2,506,403 52
Vi v x 89.9 161 91.8 86 91.9 50 2.0 40 3,601,412 63
v Vi N 90.1 169 914 87.1 91.8 52 21 41 3,803,507 67

In the table, “\/” indicates the inclusion of a particular module, while “x” indicates
the exclusion of that module. Detection time refers to the time required to predict a single
image with a batch size set to 1. From Table 1, it can be observed that after incorporating
the GhostNet module, the average precision decreased by 1.1 percentage points. However,
the FPS increased significantly from 20 to 53, and the model size was greatly reduced.
With the addition of BiFPN, although there was a slight decrease in FPS and inference
speed, the average precision improved by 2.7 percentage points. After replacing GIOU with
Focal-EIOU, the model weight size remained almost unchanged, while there were minor
improvements in FPS, inference speed, and average precision. Additionally, as shown
in Figure 10, it can be observed that Focal-EIOU optimization of the GIOU loss function
significantly improved the convergence speed compared to YOLOVS5.

Comprehensive-YOLOvV5
0.1 —— YOLOV5
0.12
0.10
w2
w2
2
o0 0.08
g
g
= 0.06
0.04
\
—
0.00 - .
0 50 100 150 200 250 300

Training epochs
Figure 10. Loss graph.

The ablative experiments demonstrate that Comprehensive-YOLOV5, in comparison to
the original YOLOv5 model, achieved an overall accuracy improvement of 1.8 percentage
points. Furthermore, the FPS increased from 20 to 52, resulting in a significant 160%
improvement in inference speed. This improvement in speed makes it feasible to deploy
the model on edge devices for fault detection in power distribution networks.
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3.5. Algorithm Comparison Experiment

To validate the superiority of the proposed Comprehensive-YOLOvV5 among sim-
ilar methods, we trained YOLOv4, YOLOV5, Faster RCNN, DETR, YOLOv5-Lite, and
Comprehensive-YOLOVS5 using the same hyperparameters on our constructed comprehen-
sive dataset of distribution network line defects. Subsequently, we conducted testing on a
computer. The test results are shown in Table 4.

Table 4. Comparison of Detection Results among Different Algorithms.

. Model
Algorithm mAP@0.5/% mAP@095/% iinout  Detachment  Defachment  ppg Inference  weigny  parameters  GFLOPs
0op Insulator Spacer Speed .
Size/MB

YOLOv4 83.2 43.1 81.4 84.3 83.9 16 6.25 41 21,064,307 432
YOLOv5 88.3 452 89.4 85.2 90.3 20 51 155 7,059,201 15.9
DETR 89.1 46.1 90.1 86.6 90.6 8 125 159 64,096,782 125.1
Faster RCNN 75.1 40.5 76.5 70.9 77.9 4 25 86 8,942,302 88.1

YOLOV5-Lite 68.1 37.2 70.2 62.8 71.3 40 2.5 2.8 1,536,480 3.6

Cpmprehensive-
YOLOVS 90.1 46.9 91.4 87.1 91.8 50 2.0 41 3,803,507 6.7

It is evident that Faster RCNN performs worse than other algorithms in various
parameters, particularly in terms of long inference time and low frame rate, making it
unsuitable for deployment on edge devices. YOLOv4 and YOLOV5 algorithms are among
the most popular object detection algorithms, achieving a good balance between accuracy
and speed.

The DETR algorithm, utilizing a transformer for self-attention on the backbone feature
map, demonstrates a significant improvement over YOLOVS5 in terms of performance.
However, its detection speed is relatively slower. The YOLOv5-Lite algorithm proposed
in literature [36] achieves a detection speed of 62 FPS on edge devices, but at the cost of
lower accuracy, indicated by a mAP@0.5 of only 71.1%. This poses challenges in meeting
the requirements of precise real-time detection.

In contrast, the proposed Comprehensive-YOLOV5 algorithm, with the highest mAP,
achieves a detection speed of 52 FPS, surpassing other detection algorithms. It effectively
meets the demands of high-performance and high-accuracy inspection of power transmis-
sion lines.

3.6. Comparative Analysis of Detection Performance

To provide a more intuitive representation of the performance of the improved model,
this study selects images of three types of faults from the validation set and compares the
detection results between the original and improved models. The comparative analysis
results are shown in Figure 11.

From the effectiveness images, it is evident that the Comprehensive-YOLOv5 model
demonstrates significantly improved confidence scores compared to the original YOLOv5
model for all types of faults. The confidence scores of YOLOVS typically range from 0.7 to
0.8, while the Comprehensive-YOLOv5 model achieves confidence scores exceeding 0.9,
indicating a substantial improvement in detection confidence.

Furthermore, in the third image depicting the fault of cable detachment from the
spacer, where occlusion is present, the YOLOv5 model fails to accurately recognize the
fault. However, the Comprehensive-YOLOv5 model successfully detects faults in occluded
regions of the power distribution network.
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Figure 11. Comparative Detection Results Chart. (a) YOLOv5 Detection Results Chart.
(b) Comprehensive-YOLOVS5 Detection Results Chart.
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4. Conclusions

This study aims to addresses the issues of low detection accuracy and slow speed
in existing fault detection models for power distribution networks. To overcome these
limitations, we propose an innovative and lightweight approach based on the improved
Comprehensive-YOLOvS5 model. Our approach is designed to meet the real-time inspection
requirements of power distribution network faults while ensuring detection accuracy.

Firstly, the Comprehensive-YOLOVS5 lightweight neural network model enables real-
time detection of power distribution network faults, specifically identifying three types of
faults: “insulator without loop,” “cable detachment from insulator,” and “cable detachment
from spacer.” The detection accuracy for these faults reaches 91.4%, 87.1%, and 91.8%
respectively. Compared to the original YOLOv5 model, our proposed method signifi-
cantly reduces the model weight size and achieves a 2.6-fold increase in FPS. The model
demonstrates significant improvements in both detection accuracy and speed. Comparative
experiments with other models validate the effectiveness of our method.

Furthermore, this method employs Ghost convolution in the backbone and neck,
greatly reducing computation time and improving FPS, thus providing a feasible solution
for real-time monitoring and edge deployment of power distribution networks.

Lastly, through comparative detection experiments, it is evident that replacing PANet
with BiFPN for feature fusion and using Focal-EIOU instead of GIOU in the loss function
significantly improves the accuracy, confidence, and detection accuracy under occlusion
scenarios of the Comprehensive-YOLOv5 model.

In the context of fault detection in power distribution networks based on Comprehensive-
YOLOVS, there are still areas that require further research and effort.

Firstly, there is a need to improve the recognition accuracy of the algorithm while
maintaining the current detection speed. Secondly, the algorithm’s recognition capabilities
in complex backgrounds, such as rainy, foggy, or low-light conditions, can be enhanced to
improve its robustness. Lastly, considering the establishment of a cloud platform to upload
real-time detection data of power distribution networks can facilitate better real-time
monitoring of fault detection in power distribution networks.
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