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Abstract: This paper focuses on the optimal geometry and motion coordination problem of mobile
bearings-only sensors for improving target tracking performance. A general optimal sensor–target
geometry is derived with uniform sensor–target distance using D-optimality for arbitrary n (n ≥ 2)
bearings-only sensors. The optimal geometry is characterized by the partition cases dividing n into
the sum of integers no less than two. Then, a motion coordination method is developed to steer the
sensors to reach the circular radius orbit (CRO) around the target with a minimum sensor–target
distance and move with a circular formation. The sensors are first driven to approach the target
directly when outside the CRO. When the sensor reaches the CRO, they are then allocated to different
subsets according to the partition cases through matching the optimal geometry. The sensor motion
is optimized under constraints to achieve the matched optimal geometry by minimizing the sum of
the distance traveled by the sensors. Finally, two illustrative examples are used to demonstrate the
effectiveness of the proposed approach.

Keywords: optimal geometry; bearings-only measurement; Fisher information matrix; motion
coordination

1. Introduction

Bearings-only target tracking is widely applied in wireless sensor networks for the
civilian and military areas [1,2]. Different from other sensors such as range-only sensors,
time difference of arrival (TDOA) sensors, and so on, bearings-only sensors work in passive
mode and easily survive from being detected and attacked. However, they are highly
sensitive to a range in which even a small angle measurement error may lead to a large
tracking error. Therefore, bearings-only target tracking has been a research area of consid-
erable interest for decades. Meanwhile, with the development of the unmanned vehicles,
the traditional stationary sensor platforms have evolved into mobile ones characterized by
high speed and long endurance. Accordingly, flexible sensor motion coordination can be
achieved, so the tracking accuracy and the survival ability are significantly improved from
sensor coordination.

Much previous work has been dedicated to developing different estimators for target
tracking based on bearings-only measurements in two- and three-dimensional space [3–6].
The extended Kalman filter (EKF) is a classical method for the nonlinear tracking prob-
lem [7] but often diverges when the model nonlinearity is strong. The pseudolinear Kalman
filter (PLKF) was introduced in [8,9], with better convergence than the EKF. However, the es-
timate is biased, which is highly dependent on sensor geometry [10]. Furthermore, other
estimation algorithms such as the unscented Kalman filter (UKF) [11], cubature Kalman
filter (CKF) [12–15], and particle filter (PF) [16,17] have been applied in bearings-only target
tracking with different estimation performance advantages.

Compared with the improvement in the tracking accuracy produced by the estimation
algorithms, sensor–target geometry plays a fundamental role in determining the accuracy
of target tracking systems [18–21]. The Fisher information matrix (FIM) is a commonly
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used criterion assessing target tracking accuracy. The inverse of the FIM, called the Cramer–
Rao lower bound (CRLB), indicates the optimal performance of a tracking system. Three
popular optimality criteria are adopted tp achieve the optimal sensor configuration based
on the FIM [19]. D-optimality minimizes the area of the uncertainty ellipse by maximizing
the determinant of the FIM [18,20,22]; A-optimality suppresses the average variance by
minimizing the trace of CRLB [23,24]; and E-optimality minimizes the length of the largest
axis of the same ellipsoid by minimizing the maximum eigenvalue of the CRLB [19].
In [25], D-optimality was adopted to optimize sensor placement for range-based target
tracking. In [26], the conditions for optimal placement of heterogeneous sensors were
derived based on maximizing the information matrix, and the optimal placement for paired
sensors was developed leveraging a “divide-and-conquer” strategy. In [27], A-optimality
was used to solve sensor placement for 3D angle-of-arriving target localization. Geometric
dilution of precision (GDOP) [28] is another criterion used to evaluate tracking accuracy.
GDOP is defined as the root mean square position error and illustrates how an estimation
is influenced by sensor–target geometry [29]. The optimal deployment for multitarget
localization was developed in [30] by minimizing the GDOP.

In addition to the above theoretical analysis on the sensor–target geometries, some
sensor path optimization methods have been proposed for target tracking to avoid the
difficulty in finding the closed-form solution. A gradient-descent-based motion planning
algorithm was presented for decentralized target tracking [31]. In [32], a gradient descent
optimization algorithm was proposed for single- and multisensor path planning by mini-
mizing the mean square error in 2D space. In [33], the path optimization for passive emitter
localization in 2D space was transformed into a nonlinear programming problem with
the FIM as the cost function. In [34], the path optimization strategy for 3D AOA target
tracking was developed by minimizing the trace of covariance matrices with gradient
descent optimization and a grid search method. In [35], the optimal sensor placement for
AOA sensors was derived with a Gaussian prior using D- and A-optimality. In addition,
the result was extended to path optimization based on a projection algorithm.

Most of the existing work has focused on optimal deployment using multiple bearings-
only sensors for target localization. Some closed-form solutions have been derived with
equal angular distribution. Inspired by the “divide-and-conquer” strategy in [26], the con-
tinuum of the optimal solution for bearings-only measurement has potential to be extended
to general circumstances. Moreover, for bearings-only target tracking problems using
mobile sensors, some studies in the literature have adopted optimization methods such
as gradient descent, Gauss–Seidel relaxation, and so on. Nevertheless, the solution space
for optimization is complex due to the high nonlinearity of the cost functions related to
the FIM. As a result, these numerical methods may lead to falling into local optima and
fail to reach the globally optimal tracking performance. Motivated by the aforementioned
aspects, this paper focuses on the optimal sensor–target geometry and motion coordination
problem of mobile bearings-only sensors for target tracking. The sensors are driven to
approach the target from a distance and eventually move in a circular formation to track
the target.

The contributions of this paper are summarized as follows. (1) The suboptimality
of approaching the target for bearings-only sensors to improve tracking performance is
analyzed. (2) A continuum solution to optimal sensor–target geometry is derived with
uniform sensor–target distance using D-optimality for arbitrary n (n ≥ 2) bearings-only
sensors. The optimal geometry is characterized by the partition cases dividing n into
the sum of integers no less than two. (3) A motion coordination algorithm to achieve
globally optimal performance is developed based on matching optimal geometry and
motion optimization to achieve the optimal target tracking performance.

The remainder of this paper is organized as follows: Section 2 presents the problem
formulation. The CKF and FIM are introduced in Section 3. Section 4 reformulates the prob-
lem and investigates the optimality analysis. In Section 5, we design a motion coordination
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strategy based on the results in Section 4. The proposed method is verified by simulations
in Section 6. Section 7 concludes this paper.

Notations: Define θi ∈ (−π, π], θij = θj − θi ∈ (−π, π]. The two-norm of a vector
x ∈ Rn is defined as ‖x‖ =

√
xTx. Chol(M) indicates the Cholesky decomposition of M.

tr(·) and det(·) denote the trace and the determinant of the matrix contained in the bracket,
respectively. |S| represents the cardinality of the set S. S\T = {e|e ∈ S and e /∈ T}.

2. Problem Formulation

This paper focuses on the problem of sensor motion and coordination for single-
moving-target tracking with n ≥ 2 bearings-only sensors in 2D space. The target tracking
geometry is depicted in Figure 1. θi,k is the angle of the line of sight (LOS) from sensor i at
discrete time k. Define zi,k as the measurement of θi,k; then, the measurement function is

zi,k = θi,k + ηi,k = tan−1

(
yp

k − yi(k)

xp
k − xi(k)

)
+ ηi,k (1)

where pk = [xp
k , yp

k ]
T is the position of the target at time k; tan−1(·) is the four-quadrant in-

verse tangent function and θi,k ∈ (−π, π]; si(k) = [xi(k), yi(k)]T is the location of sensor i; ηi,k
is the measurement noise and assumed to be i.i.d Gaussian noise with zero mean and variance
σ2

i , i ∈ {1, 2, . . . , n}. The sensors are homogeneous, i.e., σ2
i = σ2

θ . Write the measurements
in a compact form as zk = [z1,k, z2,k, . . . , zn,k]

T ∈ Rn, and ηk = [η1,k, η2,k, . . . , ηn,k]
T ∈ Rn is

measurement Gaussian noise with zero mean and covariance Rk = σ2
θ I, where I is an

identity matrix.
Consider the target whose motion is described by a nonlinear dynamic discrete system

xk+1 = f (xk) + wk (2)

where xk ∈ Rnx is the state vector of the dynamic system at discrete time k; wk ∈ Rnx is
process Gaussian noise with zero mean and covariance Qk; nx is the dimension of the state
vector. Meanwhile, wk and ηk are mutually independent processes.

y

x

s1

Target trajectory

s2

si

O

sn

θ2 

θ1 

θi 
θn 

Figure 1. Target tracking geometry for n > 2 bearings-only sensors, where i > 2.

The dynamic model of the mobile sensors is given by

si(k + 1) = si(k) + ui(k) (3)

ui(k) = vi(k)T

where si(k) is the position of sensor i at discrete time k; ui(k) is the control input for sensor
i at time k; vi(k) is the designed velocity of sensor i at time k; and T is the sampling time.
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The state parameters of the target are unknown. We assume that the state of the mobile
sensors and the measurements taken by them are known. Because of the noncooperative
scenario, the minimum distance restriction between the target and the sensors should be
ensured. We aimed to estimate the target state using the bearings-only measurements and
improve the tracking accuracy by optimizing the sensor–target geometry of cooperative
mobile sensors under practical constraints.

Assumption 1. At the beginning of the tracking process, at least two sensors are deployed in posi-
tions that are not colinear to the target to ensure the observability of the target by the sensors [19,36].

Assumption 2. The mobile sensors are homogeneous with a maximum speed vmax and a maximum
turn rate ϕmax due to the limitations of the mechanical properties. The maximum speed of the
sensor is faster than that of the target to ensure they can catch up the target. The minimum distance
between sensors and the target is denoted as dmin.

3. Parameter Estimation

In this paper, we use the cubature Kalman filter [12] to estimate the state of the target.
The CKF is a nonlinear filter rising in the past decade with improved performance over
the conventional nonlinear filter, particularly in addressing the strong nonlinearity in
bearings-only target tracking.

In addition, it is known that the tracking performance of static sensors has a limited
track range performance. Obviously, one feasible way to improve the tracking accuracy is
moving sensors to better locations to accurately track the target. Therefore, the FIM based
on bearings-only measurements is introduced in this section for optimality analysis in the
following section.

3.1. Cubature Kalman Filter

Denote x̂k|k as the estimate of xk and Pk|k as the estimate error covariance by using the
bearings-only measurements zk. The cubature Kalman filter, in its time- and measurement-
update forms, can be computed by starting from x̂0|0 and P0|0. The iteration functions are
as follows:

Step 1. Evaluate cubature points (i = 1, 2, . . . , 2nx)

Sk−1|k−1= Chol
(

Pk−1|k−1

)
Xi,k−1|k−1 = Sk−1|k−1ξ i + x̂k−1|k−1 (4)

where Sk−1|k−1 is the Cholesky decomposition of Pk−1|k−1; ξ i =
√

nx[1]i; [1]i ∈ Rnx repre-
sents the ith element of the following set


1
0
...
0

,


0
1
...
0

, . . . ,


0
0
...
1

,


−1
0
...
0

,


0
−1

...
0

, . . . ,


0
0
...
−1


︸ ︷︷ ︸

2nx

Step 2. Time update

Xi,k|k−1 = f (Xi,k−1|k−1)

x̂k|k−1 =
1

2nx

2nx

∑
i=1

Xi,k|k−1 (5)

Pk|k−1 =
1

2nx

2nx

∑
i=1

Xi,k|k−1XT
i,k|k−1 − x̂k|k−1 x̂T

k|k−1 + Qk−1
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where x̂k|k−1 is the state prediction, and Pk|k−1 is the predicted error covariance.
Step 3. Measurement update

Sk|k−1= Chol
(

Pk|k−1

)
χi,k|k−1 = Sk|k−1ξ i + x̂k|k−1

Zi,k|k−1 = h(χi,k|k−1)

ẑk|k−1 =
1

2nx

2nx

∑
i=1

Zi,k|k−1

Pzz,k|k−1 =
1

2nx

2nx

∑
i=1

Zi,k|k−1ZT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 + Rk (6)

Pxz,k|k−1 =
1

2nx

2nx

∑
i=1

χi,k|k−1ZT
i,k|k−1 − x̂k|k−1ẑT

k|k−1

Wk = Pxz,k|k−1P−1
zz,k|k−1

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1)

Pk|k = Pk|k−1 −WkPzz,k|k−1W T
k

where ẑk|k−1 is the predicted measurement; Pzz,k|k−1 is the innovation covariance matrix;
Pxz,k|k−1 is the cross-covariance matrix; Wk is the Kalman gain.

3.2. Fisher Information Matrix

The error covariance matrix is defined as

Pk|k , E
[
(xk − x̂k|k)(xk − x̂k|k)

T
]
≥ J−1

k (7)

where Jk is called the FIM, which quantifies the amount of information obtained from the
measurements, with the expression

Jk = E

[
−∂2 ln p(zk|xk)

∂x2
k

]
(8)

where p(zk|xk) is the probability density function, expressed as

p(zk|xk) =
1√

(2π)n det(Rk)
× exp

{
−1

2
[(zk − h(xk)]

T R−1
k [(zk − h(xk)]

}
(9)

Given the measurements vector zk, the FIM is determined as

Jk =
1
σ2

θ

n

∑
i=1

1
r2

i,k

[
cos2(θi,k) − 1

2 sin(2θi,k)

− 1
2 sin(2θi,k) sin2(θi,k)

]
(10)

where ri,k = ‖pk − si(k)‖ represents the distance between the target position pk and the
sensor position si(k) at time k.
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Lemma 1 ([18]). The FIM is expressed in (10); then, the following expressions of the determinant
of the FIM are equivalent:

(1)det(Jk) =
1

4σ4
θ

( n

∑
i=1

1
r2

i,k

)2

−
(

n

∑
i=1

cos(2θi,k)

r2
i,k

)2

−
(

N

∑
i=1

sin(2θi,k)

r2
i,k

)2
 (11)

(2)det(Jk) =
1
σ4

θ
∑
Ψ

sin2(θij)

r2
i,kr2

j,k

where Ψ = {{i, j}} is the set of all combinations of i and j with 1 ≤ i < j ≤ n; θij = θj,k − θi,k.

4. Optimality Analysis

The problem of path planning and motion coordination for improving tracking per-
formance is equivalent to finding the next waypoints at each time step by maximizing the
determinant of the FIM. There exist two kinds of parameters influencing the determinant
of the FIM. So, we can maximize det(Jk) by simultaneously reducing the distances between
the sensors and target and configuring the angles among the sensors.

In order to ensure the minimum distance constraint, the sensors move on a circular
trajectory at a distance radius around the target. Before that, the path to reaching the circular
radius orbit (CRO) for improving the tracking accuracy was studied. Thus, the design of
the motion coordination for multiple sensors is divided into two stages, including outside
the CRO distance and on the CRO distance dmin.

4.1. Outside the CRO Distance

Consider the bearings-only tracking problem. When the range between the target and
the sensor is greater than dmin, the problem of the optimal sensor movement is equivalent
to the following optimization problem:

max det(Jk+1)

s.t. ‖vi(k)‖ ≤ vmax (12)

|∠vi(k)−∠vi(k− 1)| ≤ ϕmax

where ∠vi(k) is the angle of the velocity vector at time k, and the difference between ∠vi(k)
and ∠vi(k− 1) is bounded by ϕmax due to the limited turn rate.

Obviously, the difficulty of solving problem (12) increases with the increase in the
number of the mobile sensors, though they can be solved via numerical methods. As such,
we turned to suboptimal motion to reduce computational complexity.

When the sensors are far away from the target, the sensors are expected to move with
maximum speed vmax to approach the target. As shown in Figure 2, the location si(k + 1)
that sensor i is able to reach can be expressed by

xi(k + 1) = xi(k) + vmaxT cos φi,k (13)

yi(k + 1) = yi(k) + vmaxT sin φi,k

where φi,k ∈ [0, 2π) is the heading direction of sensor i at time k. For convenience, denote
∆xi , xp

k+1 − xi(k), ∆yi , yp
k+1 − yi(k) and di , vmaxT.
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y

x

si(k)

O

θi 

 pk+1

si(k 1)

ϕi 

si(k+1)

Figure 2. Optimal sensor motion for target tracking.

Theorem 1. Consider the bearings-only tracking problem. When the range between the target and
the sensor is greater than dmin, and the position of the target is pk+1 at time k + 1, the suboptimal
heading direction of sensor i at time k is

φ∗i,k = tan−1
(

∆yi
∆xi

)
(14)

Proof. According to the Cauchy inequality,

det(Jk+1) ≥
1

4σ4
θ

( n

∑
i=1

1
r2

i,k+1

)2

−
n

∑
i=1

cos2 2θi,k+1

r4
i,k+1

−
n

∑
i=1

sin2 2θi,k+1

r4
i,k+1

 (15)

=
1

4σ4
θ

( n

∑
i=1

1
r2

i,k+1

)2

−
n

∑
i=1

1
r4

i,k+1

 , F(γ)

Consider the function

F(γ) =
1

4σ4
θ

( n

∑
i=1

1
r2

i,k+1

)2

−
N

∑
i=1

1
r4

i,k+1

 (16)

where γ = [r1,k+1, r2,k+1, . . . , rn,k+1]
T .

To achieve the maximum of F(γ), take the partial derivatives of F(γ) with respect to
φi,k. Then, we have

∂F(γ)
∂φi,k

=
1

4σ4
θ

[
n

∑
j=1

1
r2

j,k+1
· 4di

r4
i,k+1

(∆yi cos φi,k − ∆xi sin φi,k) +
di

r6
i,k+1

(∆yi cos φi,k − ∆xi sin φi,k)

]
(17)

Let ∂F(γ)
∂φi,k

= 0, we obtain

φ0 =
[
tan−1

(
∆y1
∆x1

)
tan−1

(
∆y2
∆x2

)
· · · tan−1

(
∆yn
∆xn

)]
(18)

Additionally, let H ∈ Rn×n denote the Hessian matrix of F(γ) at φ0, with elements

Hij =
∂2F(γ)

∂φi,k∂φj,k
(19)
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We obtain

Hij|φ0 =

{
0 i 6= j
− di∆ri

σ4
θ r4

i,k+1
∑n

l=1
1

r2
l,k+1

i = j (20)

where ∆ri =
√

∆x2
i + ∆y2

i . Obviously, H is a negative definite matrix, and as a consequence,

φ0 is the maximum point.

Furthermore, taking the limitation of the turn rate into consideration, the heading
direction of sensor i at time k is

φi,k =


φ

i,k
φ∗i,k < φ

i,k
φ∗i,k φ

i,k
≤ φ∗i,k ≤ φ̄i,k

φ̄i,k φ∗i,k > φ̄i,k

(21)

where φ̄i,k = ∠vi(k− 1) + ϕmax and φ
i,k

= ∠vi(k− 1)− ϕmax.
Note that the determinant of FIM increases with the range between the sensors and

target when the angles among the sensors remain unchanged. In other words, the optimal
heading direction is always toward the target, so we can force the sensors to directly
approach the CRO around the target. The tracking accuracy is improved as well but does
not reach the optimum.

4.2. On the CRO Distance dmin

When all sensors reach the CRO around the target, which is a circle centered on the tar-
get and with a radius of dmin, we have ri = dmin. Define ∆θi = θi+1− θi, i ∈ {1, 2, . . . , n− 1}.
The sensor–target geometry is depicted in Figure 3. In this section, the time step k is omitted
for the convenience of description.

s1

s2

si

si 1

Δθ1
Δθi 1

target

Figure 3. Sensor–target geometry.

In order to simplify the analysis of optimal sensor–target geometry, the related propo-
sitions are reclaimed.

Proposition 1. The determinant of the FIM in (11) remains unchanged in the following three operations:

1. Switching the position of any two sensors;
2. Rotating all the sensors around the target;
3. Flipping arbitrary sensors about the target.

Remark 1. Proposition 1 originated from [18] and recognized in [20]. It implies that det(J) is
invariant to these geometric operations.

Without loss of generality, the sensors are assumed to be renumbered counterclockwise
with θi, θi ∈ (0, π] through the geometric operations according to Proposition 1, which is
equivalent to flipping the sensors with the actual angles of a LOS ranging from −π to 0.
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The target tracking system achieves optimal estimation performance when all sen-
sors move at the same speed as the target on the CRO in the formation, confirming the
following results.

Lemma 2 ([30]). Consider n bearings-only sensors tracking a single target. When all sensors
are on the CRO around the target (ri = dmin), ∆θ1 = ∆θ2 = · · · = ∆θn−1 = ∆θ, the Fisher
information determinant given in (11) has the upper bound N2

4σ4
θ d4

min
. The upper bound is achieved

when ∆θi =
π
n .

Remark 2. When n ≥ 3, there are two solutions for optimal geometry with equal angular dis-
tribution in [30], i.e., ∆θi = π

n or 2
n π. However, the optimal geometry when ∆θi = 2

n π can
be obtained through flipping part of the sensors about the target in the optimal geometry when
∆θi =

π
n . Therefore, we consider them as identical optimal geometry for n sensors and retain the

solution of ∆θi =
π
n , which avoids the complexity arising from two optional solutions.

For a more general circumstances, there is less limitation to ∆θi. Denote S = {1, 2, . . . , n}
as the set of all sensors and Si = {ni

1, ni
2, . . . , ni

qi
} as the subset of S, i ∈ {1, 2, . . . , m}. Denote

Ξ = {q1, q2, . . . , qm}, where qi = |Si|. Then, we have the following result:

Theorem 2. Consider the bearings-only tracking problem. When all sensors are on the CRO
around the target (ri = dmin), the Fisher information determinant given in (11) has the upper bound

N2

4σ4
θ d4

min
. The upper bound is achieved if the following conditions hold true

m⋃
i=1

Si =S, Si ∩ Sj = ∅ (i 6= j)

2 ≤ qi ≤ n (22)

θni
l+1
− θni

1
=

l
qi

π, ∀l ∈ {1, 2, . . . , qi − 1}

Proof. When ri = dmin, then

det(J) =
1

σ4
θ d4

min
∑
Ψ

sin2(θij) (23)

=
1

2σ4
θ d4

min

(
n(n− 1)

2
−∑

Ψ
cos(2θij)

)

The sensors in Si are placed as Lemma 2. Then,

∑
Ψi

cos 2(θab) = −
qi
2

(24)

where Ψi = {{a, b}} is the set of all combinations of a and b with a < b and a, b ∈ Si. Since

∑n
i=1 cos(α + 2(i−1)

n π) = 0 (α is arbitrary, n ≥ 2), for j ∈ Si, ∀l ∈ Sg(i 6= g)

qg

∑
l=1

cos(2θjl) =
qg

∑
l=1

cos(2θjng
1
+ 2(l − 1)

π

qv
) = 0 (25)

Finally, consider the following function

∑
Ψ

cos(2θij) = ∑
Ψ′

cos(2θij) + ∑
Ψ\Ψ′

cos(2θij) (26)

=
m

∑
i=1
− qi

2
+ 0 = −n

2
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where Ψ′ =
⋃m

i=1 Ψi.
Hence,

det(J) =
n2

4σ4
θ d4

min
(27)

In view of (25) in the proof of Theorem 2, the angles between the sensors not in the
same subset do not affect the optimal sensor–target geometry. In addition, it remains the
optimal sensor–target geometry when the sensors are managed by the geometric operations
in Proposition 1. Therefore, we can classify the optimal sensor–target geometry by the set
Ξ = {q1, q2, . . . , qm}, which is recognized as the partition case dividing n into the sum of
integers no less than 2. In other words, the optimal sensor–target geometries are regarded
as identical for equivalent Ξ. Figures 4 and 5 illustrate some examples of the optimal
sensor–target geometry for n = 4, 5. In Figure 4a,b, two sensor–target geometries are
considered the same because the sensors are both divided into two subsets with Ξ = {2, 2}.
Additionally, the sensors with the same Ξ = {2, 3} in Figure 5a,b are also regarded as
having identical sensor–target geometry, because the optimal sensor–target geometry in
Figure 5b can be obtained by flipping sensor 4 about the target in Figure 5a. Additionally,
the optimal sensor–target geometry with another partition case for n = 5 is shown in
Figure 5c,d, which is regarded as identical optimal geometry with Ξ = {5, }, but they differ
from the optimal geometry in Figure 5a,b due to different partition cases.

2

1

3

4

(a)

1

2

3

4

(b)

Figure 4. Optimal sensor–target geometries for n = 4. (a) S1 = {1, 2}, S2 = {3, 4}. (b) S1 = {1, 3},
S2 = {2, 4}.

1

2

3
4

5

(a)

1

2

3

4

5

(b)

Figure 5. Cont.
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1

2

34

5

(c)

1

2

3

4

5

(d)

Figure 5. Optimal sensor–target geometry for n = 5. (a) S1 = {1, 3}, S2 = {2, 4, 5}. (b) S1 = {1, 3},
S2 = {2, 4, 5}. (c) S1 = {1, 2, 3, 4, 5}. (d) S1 = {1, 2, 3, 4, 5}.

Remark 3. Although the number of optimal sensor–target geometries described in Theorem 2
is infinite due to rotation invariance, we are only concerned with the partition cases of the set
S according the classification method in this paper. The number of the partition cases divid-
ing n into a sum of positive integers no less than 2, denoted as A(n), asymptotically equals

1
4
√

3n
exp

(
π
√

2n
3

)
− 1

4
√

3(n−1)
exp

(
π

√
2(n−1)

3

)
[37].

5. Motion Coordination

In this section, we propose a motion coordination strategy for mobile sensors to
improve target tracking performance. According to our analysis above, the mobile sensors
are required to reach the CRO around the target as soon as possible and coordinate with
each other. Figure 6 illustrates the main steps of sensor motion coordination to achieve
optimal geometry.

Predicted target 

position

Sensor 

movement

Single sensor 

motion

Match optimal 

geometry and 

motion 

coordination

Take 

measurements

Estimate target 

position
k=k+1

O
n
 t
h
e 

C
R

O

Figure 6. Sensor motion coordination to achieve optimal geometry.

5.1. Single Sensor Motion

In practice, the real state of the target is unknown. We utilize the one-step predicted
position of the target p̂k+1|k = [x̂p

k+1|k, ŷp
k+1|k]

T instead of pk+1 at time k. The velocity of
sensor i is designed as
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ui(k) =
{

vmaxT[cos φi,k, sin φi,k]
T ri,k > dmin

(p̂k+1|k − p̂k|k) ri,k = dmin
(28)

As we want the sensors to approach the target as soon as possible, the velocities of the
sensors are set to their maximum before they reach the boundary of the CRO around the
target. After the sensors reach the CRO around the target, they are expected to follow the
target on the CRO around the target.

5.2. Coordination Strategy

As all sensors reach the CRO around the target, they enter the coordination stage.
The coordination strategy consists of matching the optimal sensor–target geometry and
sensor motion optimization. The task of matching the optimal geometry involves allocate-
ing the sensors into the subsets by comparing current sensor–target geometry with optimal
geometry with the desired partition case Ξ. The sensor motion is optimized to achieve the
optimal geometry with minimum energy consumption based on the result of matching the
optimal geometry.

Let ŝi(k + 1) = [x̂i(k + 1), ŷi(k + 1)]T denote the expected location of sensor i at time
k + 1 calculated by ui(k) in (28) as

ŝi(k + 1) = si(k) + ui(k) (29)

Define θ̂i as the predicted angle

θ̂i = tan−1

 ŷp
k+1|k − ŷi(k + 1)

x̂p
k+1|k − x̂i(k + 1)

 (30)

where θ̂i is constrained within the range of 0 to π to simplify the step of matching the
optimal geometry.

Matching optimal geometry for a given Ξ = {q1, q2, . . . , qm} can be described as follows:

min κ =

√√√√ m

∑
i=1

qi−1

∑
l=1

(θ̂ni
l+1
− θ̂ni

1
− l

qi
π)2

s.t. Si ∩ Sj = ∅, i 6= j

Si = {ni
1, ni

2, . . . , ni
qi
} ⊂ S (31)

|Si| = qi, ∀i ∈ {1, 2, . . . , m}
∀l ∈ {1, 2, . . . , qi − 1}

where κ is defined as the difference degree compared with the optimal sensor–target
geometry. The problem is naturally a combinatorial optimization problem, which is NP-
hard. An algorithm to search for an approximate solution with a given Ξ was developed
and is shown in Algorithm 1 based on the greedy search method.
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Algorithm 1 Matching optimal geometry.

Input:
S = {1, 2, . . . , n}, Ξ = {q1, q2, . . . , qm};

Output:
The sensor grouping S1, S2, . . . , Sm;

1: for i = 1, . . . , m do
2: for j ∈ S do
3: for l = 2, . . . , qi do
4: Ll

j = arg min
k∈S\{j}

(θ̂k − θ̂j − l−1
qi

π)2;

5: end for
6: κj =

√
∑

qi
l=2(θ̂Ll

j
− θ̂j − l−1

qi
π)2;

7: end for
8: Find the minimum κj, Si ←− {j, L2

j , . . . , Lqi
j },

S←− S \ Si;
9: end for

10: return {S1, S2, . . . , Sm}.

Remark 4. The step of matching the optimal geometry only needs to be performed once when
the sensors all reach the CRO. The sensor coordination follows the optimal geometry matched
via Algorithm 1 in later sensor movement on the CRO. Moreover, the computation complexity of
Algorithm 1 is O

(
mn2).

After matching the optimal sensor–target geometry, the sensors engage in motion
coordination to achieve the optimal geometry, thereby improving tracking performance.
For the purpose of energy conservation, sensor motion optimization can be described as a
nonlinear optimization problem

min ϑ =
m

∑
i=1

qi−1

∑
j=1
‖ūni

j
(k)‖

s.t. θ̂∗ni
j+1
− θ̂∗ni

1
=

j
qi

π (32)

‖s∗ni
j
(k + 1)− p̂k+1|k‖ = dmin

j ∈ {1, 2, . . . , qi − 1}, i ∈ {1, 2, . . . , m}

where ϑ is the sum of the distance traveled by the sensors; ūni
j
(k) = s∗

ni
j
(k + 1)− ŝni

j
(k + 1)

and θ̂∗i are the predicted angles for s∗i (k + 1). The nonlinear optimization problem in (32)
can be solved by “fmincon” (Optimization toolbox) in Matlab®. Therefore, the control
input for the sensor i is finally determined by

ui(k) = ui(k) + ūi(k) (33)

= s∗i (k + 1)− si(k)

The restriction of the turn rate can be implemented by choosing min{ϕmax, |∠ui(k)−
∠ui(k− 1)|}.

Remark 5. In terms of bearings-only target tracking accuracy, both the enveloping and semien-
veloping optimal sensor–target geometry configurations are considered equivalent. The selection
of the configurations depends on the objectives of target tracking. When the sensors are expected
to perform other operations, such as surveillance, recording, and so on, circumnavigation tracking
is a more preferable approach, driving the sensors to achieve complete surrounding of a target on
the CRO.
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5.3. Collision Avoidance

A distance constraint is necessary to avoid collisions among the mobile sensors. Let
lmin denote the minimum distance between two sensors. When ‖si(k)− sj(k)‖ < ρmin,
the collision avoidance algorithm is enabled, and we have

si(k + 1) =
[

xi(k) + ‖ui(k)‖ cos(∠ui(k)± δ)
yi(k) + ‖ui(k)‖ sin(∠ui(k)± δ)

]
sj(k + 1) =

[
xj(k) + ‖uj(k)‖ cos(∠uj(k)± δ)
yj(k) + ‖uj(k)‖ sin(∠uj(k)± δ)

]
(34)

where δ is a small heading change for the sensor, and ±δ is selected to make the range
between them larger.

To summarize, the sensor motion coordination algorithm is presented in the
Algorithm 2.

Algorithm 2 Sensor motion coordination for target tracking.

Input:
The estimate of the target at time k, x̂k|k;
The location of the sensor at time k, si(k);

Output:
The estimate of the target at time k + 1, x̂k+1|k+1;
The location of the sensor at time k + 1, si(k + 1);

1: Receive x̂k+1|k from the estimation center;
2: Compute ui(k) with (28), (31), (33) and (34);
3: Move to a new position si(k + 1);
4: Take new measurements of the target zk+1, and estimate the state of the target via CKF;
5: return x̂k+1|k+1, si(k + 1).

6. Simulation Experiments

In this section, we illustrate the proposed sensor motion coordination algorithm with
some simulation examples. By default, all variables used in the simulation were in SI units.
As introduced in Section 3.1, we used a CKF method to estimate the state of the target. For
comparison, the gradient descent method in [34] and the projection method in [35] were
adopted to optimize the sensor motion under the same conditions.

To compare the tracking performance, we used the root mean square error (RMSE) of
the position of the target. The RMSE of position at time k is defined as

RMSEp(k) =

√√√√ 1
Nc

Nc

∑
i=1

(
(xi(k)− x̂i(k))2 + (yi(k)− ŷi(k))2

)
where Nc is the total numbers of Monte Carlo runs; [xi(k), yi(k)]T and [x̂i(k), ŷi(k)]T are the
true and estimated positions at the nth Monte Carlo run respectively.

Scenario 1: We consider a problem of tracking a moving target using 5 mobile sensors
in 2D space. The dynamic function of the target is described by the constant velocity model

xk+1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk + wk
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where xk = [xk, ẋk, yk, ẏk]
T and T = 0.2 s is the sampling time. The process noise wk is a

zero-mean Gaussian with a covariance matrix Qk = diag[qM qM], where

M =

[
T3/3 T2/2
T2/2 T

]
The scalar parameter q = 0.1 m/s3 denotes the process noise intensity. The measure-

ments taken by sensor i at time k is given in (1) and σθ = 0.1 rad.
The true initial state of the target is x0 = [−50 m 3 m/s 50 m 1 m/s]T , and its associated

covariance is P0|0 = diag[1000 m2 100 m2/s2 1000 m2 100 m2/s2]. The initial state estimate
x0|0 is randomly chosen from N (x0, P0|0) in each run. The initial positions of the 5 sensors
are s1(0) = [−100 m 120 m]T , s2(0) = [−150 m 50 m]T , s3(0) = [−100 m 60 m]T , s4(0) =
[−100 m − 120 m]T , and s5(0) = [100 m − 200 m]T . The maximum velocity and turn
rate are vmax = 10 m/s and ϕmax = π

3 rad, respectively. The minimum restriction is
dmin = 50 m, and the minimum distance among the sensors is ρmin = 10 m. Set Nc = 2000.

There are two partition cases for n = 5 with Ξ = {2, 3} and Ξ = {5}. We first com-
pared the tracking performance and distance traveled by the mobile sensors when the
sensors are steered to achieve these two kinds of optimal sensor–target geometries. Addi-
tionally, we included static sensors and mobile sensors whose waypoints were computed
by the methods in [34,35] in the comparative experiment. Figure 7a,b show the trajectory of
the 5 bearings-only sensors achieving the optimal geometry with partition cases Ξ = {5}
and Ξ = {2, 3}, respectively. As shown in Figure 7b, sensor 1, sensor 3, and sensor 5 are
assigned into the subset with three sensors and the others in the subset with two sensors
after matching the optimal geometry. The sensors eventually move with the target in
the optimal geometry, as expected. The optimal geometry is referenced to the estimated
target position and shows discrepancies with the true optimal sensor–target geometry.
This discrepancy is unavoidable in practical applications since the true target position is
unknown. However, the proposed motion coordination method can enhance the estimation
performance, and the circular formation approaches closer to the true optimal geometry,
thus achieving the theoretically optimal estimation accuracy, as shown by the compared
RMSEs of the position illustrated in Figure 8. Obviously, the tracking performance esti-
mated by mobile sensors is better than that estimated by static sensors. The proposed
method significantly improves the tracking performance and exhibits lower estimate error
compared with the method in [34]. Meanwhile, the tracking performance of the method
in [35] is close to the proposed method in this scenario. There is a negligible difference in
the tracking performance between the two kinds of optimal geometries with Ξ = {2, 3} and
Ξ = {5}. Additionally, the sums of the distance traveled by all mobile sensors to achieve
the optimal geometry with Ξ = {2, 3} and Ξ = {5} are 1488.9 m and 1548.6 m, respectively.
The reduction in distance between Ξ = {2, 3} and Ξ = {5} is attributed to the fact that
the sensor–target geometry is closer to the optimal geometry with Ξ = {2, 3}, whose κ is
smaller, when the sensors reach the CRO.

Scenario 2: We consider a problem of tracking a moving target using 4 mobile sensors
in 2D space. The dynamic function of the target is described by

xk+1 =


1 sin ΩkT

Ωk
0 −

(
1−cos ΩkT

Ωk

)
0

0 cos ΩkT 0 − sin ΩkT 0
0 1−cos ΩkT

Ωk
1 sin ΩkT

Ωk
0

0 sin ΩkT 0 cos ΩkT 0
0 0 0 0 1

xk + wk
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where xk = [xk, ẋk, yk, ẏk, Ωk]
T and T = 1 s. The process noise wk is a zero-mean Gaussian

with a covariance matrix Qk = diag[q1Γ q1Γ q2T], where

Γ =

[
T3/3 T2/2
T2/2 T

]
and q1 = 0.1 m/s3 and q2 = 1.75× 10−4 rad/s2 denote the process noise intensity. The true
initial state of the target is x0 = [0 m 20 m 0 m 0 m 0.05 rad/s]T , and its associated covariance
is P0|0 = diag[1000 m2 100 m2/s2 1000 m2 100 m2/s2 10−4 rad2/s2]. The initial positions
of the 4 sensors are randomly deployed. The rest parameters are listed as: σθ = 0.05 rad,
dmin = 100 m, ρmin = 20 m, vmax = 50 m/s, ϕmax = π

3 rad and Nc = 2000.

−100 0 100 200
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−100
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0
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100

(a)

−100 0 100 200

−200
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−50

0

50

100

(b)

Figure 7. Sensor trajectory for target tracking in Scenario 1. (a) The optimal geometry with partition
case Ξ = {5}. (b) The optimal geometry with partition case Ξ = {2, 3}.

0 50 100 150 200
0

5

10

15

Figure 8. Comparison of RMSEp for target tracking in Scenario 1 [34,35].

There are two partition cases for n = 4 with Ξ = {2, 2} and Ξ = {4}. However,
the optimal geometry with Ξ = {4} can be obtained by rotating the sensors in one subset
in the optimal geometry with Ξ = {2, 2} as a whole by a proper angle. Thus, the partition
case for n = 4 is selected as Ξ = {2, 2} in Scenario 2. Figure 9 shows the trajectory of the
4 bearings-only sensors tracking a target. In this run, sensors 1 and 3 are assigned in a
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subset and the others in another subset after matching the optimal geometry. Figure 10
shows the compared RMSEs of the position. Obviously, the tracking performance estimated
by static sensors is the poorest, and it continues to degrade as the distance from the target
increases. The proposed method improves the tracking performance and exhibits lower
estimate error compared with the methods in [34,35] for maneuver turning target tracking.

−500 0 500 1000 1500

−1500

−1000

−500

0
true trajectory

estimated trajectory

sensor 1

sensor 2

sensor 3

sensor 4

Figure 9. Sensor trajectory for target tracking in Scenario 2.

0 20 40 60 80 100
0

5

10

15

Figure 10. Comparison of RMSEp for target tracking in Scenario 2 [34,35].

7. Conclusions

In this study, optimal sensor–target geometry and a motion coordination strategy
were proposed for a target tracking system using mobile bearings-only sensors in 2D space.
We discussed the suboptimality of approaching the target for bearings-only sensors to
improve tracking performance. A general optimal sensor–target geometry was derived
with uniform sensor–target distance using D-optimality for arbitrary n (n ≥ 2) bearings-
only sensors. A motion coordination algorithm was developed based on the previous
optimality analysis to achieve the optimal target tracking performance efficiently. In future
work, we will investigate a distributed optimization method for mobile sensors and its
extension to multitarget tracking.
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