
Citation: Liu, Y.; Wang, F.; Jiang, Z.;

Sfarra, S.; Liu, K.; Yao, Y. Generative

Deep Learning-Based Thermographic

Inspection of Artwork. Sensors 2023,

23, 6362. https://doi.org/10.3390/

s23146362

Academic Editor: Steve Dixon

Received: 30 May 2023

Revised: 27 June 2023

Accepted: 11 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Generative Deep Learning-Based Thermographic Inspection
of Artwork
Yi Liu 1 , Fumin Wang 1, Zhili Jiang 1, Stefano Sfarra 2 , Kaixin Liu 3,* and Yuan Yao 4,*

1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology,
Hangzhou 310023, China; yliuzju@zjut.edu.cn (Y.L.); 2112102479@zjut.edu.cn (F.W.); jiangzl@zjut.edu.cn (Z.J.)

2 Department of Industrial and Information Engineering and Economics, University of L’Aquila,
Piazzale E. Pontieri n. 1, Monteluco di Roio, I-67100 L’Aquila, Italy; stefano.sfarra@univaq.it

3 Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China
4 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
* Correspondence: kxliu@nuc.edu.cn (K.L.); yyao@mx.nthu.edu.tw (Y.Y.)

Abstract: Infrared thermography is a widely utilized nondestructive testing technique in the field
of artwork inspection. However, raw thermograms often suffer from problems, such as limited
quantity and high background noise, due to limitations inherent in the acquisition equipment and
experimental environment. To overcome these challenges, there is a growing interest in developing
thermographic data enhancement methods. In this study, a defect inspection method for artwork
based on principal component analysis is proposed, incorporating two distinct deep learning ap-
proaches for thermographic data enhancement: spectral normalized generative adversarial network
(SNGAN) and convolutional autoencoder (CAE). The SNGAN strategy focuses on augmenting the
thermal images, while the CAE strategy emphasizes enhancing their quality. Subsequently, princi-
pal component thermography (PCT) is employed to analyze the processed data and improve the
detectability of defects. Comparing the results to using PCT alone, the integration of the SNGAN
strategy led to a 1.08% enhancement in the signal-to-noise ratio, while the utilization of the CAE
strategy resulted in an 8.73% improvement.

Keywords: artwork; infrared thermography; convolutional autoencoder; generative adversarial
network; panel painting

1. Introduction

Artworks hold significant cultural and aesthetic value, and their conservation has
gained increasing attention alongside improvements in people’s life quality [1]. However,
artworks are prone to damage during production and preservation processes [2]. To address
this issue, nondestructive testing (NDT) techniques are vital in early defect detection.
NDT encompasses various methods, such as ultraviolet light, ultrasonic testing, X-ray
imaging, and infrared thermography (IRT) [3–6]. Among these techniques, IRT has become
a prominent method for the quality inspection of artworks because of its easy operation,
rapid scanning capabilities, and ease of result interpretation [7].

In the IRT detection of artwork defects, the primary criterion relies on the temperature
contrast between the area with defects and its surrounding regions in thermal images [8–10].
However, due to various factors, such as the equipment used for image acquisition and the
experimental environment, the thermographic data obtained through IRT often contain
noise, and defects may be obscured by the presence of an inhomogeneous background.
Consequently, it becomes challenging to identify and discern defects solely through visual
examination of these images. To address this challenge, there has been a growing interest
in the development and application of thermogram processing and analysis methods to
enhance defect detection in artwork.
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In recent years, machine learning methods have shown remarkable performance in
various data processing and analysis tasks, including those in the medical and industrial
process domains [11,12]. For instance, Md et al. [12] utilized machine learning techniques
to assess the quality of diverse production processes and provided an overview of the four
industrial revolutions that revolutionized manufacturing. Machine learning algorithms
have also found application in the domain of artwork defect detection, with principal
component thermography (PCT) [13–15] being a commonly used method for enhancing
defect detection and analyzing defect distributions. However, PCT itself has limitations in
terms of its feature extraction capabilities, because the scarcity of thermal images further
complicates the task of identifying optimal projection directions that effectively distinguish
between defects and background elements. As a result, researchers have directed their
attention towards exploring methods for enhancing thermographic data and investigating
their performance in improving defect detectability. This area has emerged as a prominent
research focus in the field, aiming to develop techniques that enhance the capabilities of
PCT and enable more accurate and efficient identification of defects.

Deep learning, a prominent branch of machine learning, has garnered substantial
attention and achieved remarkable success in the field of computer vision. Sampath
et al. [16] proposed a deep learning-based model for gait-based fall prediction, which aids
in the early identification of falls among individuals with walking disabilities. Generative
deep learning methods, among the various approaches, have emerged as promising tools
for image processing tasks [17–21]. These methods have shown potential in generating
realistic and high-quality images, enhancing the field of computer vision and image analysis.
By leveraging the power of generative deep learning, researchers have been able to tackle
complex challenges and extract valuable insights from visual data. The autoencoder
(AE) [22], a type of unsupervised generative model, has proven to be effective in various
tasks, including image enhancement, noise reduction, nonlinear dimensionality reduction,
and feature extraction. Another notable generative model in the field of unsupervised
learning for image processing is the generative adversarial network (GAN) [23–26]. GANs
have shown impressive results by employing a game-like learning approach between
the generator and discriminator models. This mutual learning process enables GANs
to generate high-quality output images. In the context of artwork defect detection, the
application of generative deep learning strategies is expected to enhance both the quantity
and quality of thermal images. This improvement can subsequently be combined with
PCT to enhance the visibility of defects. However, it is worth noting that, to the best of
our knowledge, this particular strategy has received limited investigation in the context of
internal defect detection tasks in artwork.

In this study, we employed two different strategies, namely SNGAN and CAE, to
process the data with the objective of comparing their respective effects on PCT results.
SNGAN, a generative adversarial network, optimizes and refines the generated images
through the iterative competition between its generator and discriminator models, ef-
fectively addressing the challenge of limited data availability. On the other hand, CAE
enhances the images to mitigate the impact of the noise on defect visibility, resulting in
improved PCT outcomes. By comparing the PCT analysis results obtained from the two
image enhancement strategies with those derived from the original data, a comprehensive
assessment can be conducted to evaluate the performance improvements achieved using
these two techniques. The scientific contributions of this work are:

(1) A defect inspection method for artwork is proposed, which incorporates deep learning
approaches for thermographic data enhancement. The integration of the proposed
method and principal component thermography allows for improved detection of
defects in artwork.

(2) The performance of two distinct generative deep learning approaches, namely SNGAN
and CAE, is compared and analyzed. By examining their effectiveness in enhancing
the detectability of artwork defects, we gain insights into the strengths and limitations
of each approach.
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(3) The proposed method is evaluated on a dataset comprising a panel painting. Experi-
mental results demonstrate the validity of our approach in enhancing the quality and
quantity of thermographic data, leading to improved defect detection. Furthermore,
quantitative evaluation results provide evidence of the method’s efficacy in terms of
enhancing the signal-to-noise ratio and F-score.

The remainder is organized as follows. Section 2 describes the data acquisition process.
Section 3 presents the framework and implementation of the two deep learning methods for
image enhancement. Section 4 discusses the dataset used in the experiments and provides a
comparative analysis of the experimental results, along with a discussion of the underlying
factors contributing to the observed differences. Finally, Section 5 concludes the work,
summarizing the findings and outlining potential directions for future research.

2. Related Works
2.1. Thermographic Data and Preprocessing

Data acquisition is a fundamental step in defect detection experiments, serving as
the foundation for subsequent analysis. IRT detection systems are commonly employed
to acquire thermal image data. In this study, the laboratory setup for data acquisition
typically consists of the sample under investigation, two lamps, an infrared camera, and a
computer for subsequent processing. The configuration of the IRT device is depicted in
Figure 1. During data acquisition, the lamps are used to stimulate the sample, and the
infrared camera captures the surface temperature distribution of the sample at each time
point during the cooling phase. The temperature contrast at different locations reveals
the characteristics of the inspected sample, influenced by the varying materials and the
presence of defects.

Figure 1. IRT detection device.

The thermographic data acquired from the IRT detection system can be represented as a
three-dimensional (3D) matrix, denoted as nt× nx× ny. Here, nt corresponds to the number
of thermal images, and nx × ny represents the total number of pixels per image. However,
for further analysis, it is necessary to convert the 3D matrix into a two-dimensional (2D)
matrix to facilitate processing. This transformation involves expanding the aforementioned
3D matrix into a 2D matrix, where each row represents a thermal image, and each column
represents the temperature variation in a pixel.
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2.2. Principal Component Thermography

Principal component analysis (PCA) is a widely used multivariate statistical analysis
method that aims to reduce the dimensionality of data. Using linear transformations,
PCA extracts the primary features of high-dimensional data and projects them onto a
lower-dimensional space. This technique offers various advantages, including simple
implementation, feature extraction, and noise reduction. In the field of IRT, PCT [13–15]
employs a singular value decomposition of the covariance matrix of the thermograms to
accomplish thermographic data dimensionality reduction and capture significant changes
in the data. In the meantime, by projecting the original data onto the directions of maximum
variance, PCT effectively reduces noise contained in the thermographic data.

The extraction of the first principal component (PC) can be expressed as follows:

max
p
‖Xp‖2

subjectto ‖p‖2 ≤ 1
(1)

Here, X represents the column-centered thermographic data matrix, p is a vector
whose dimensions are nxny × 1, and ‖ · ‖2 denotes the L2 parametrization. In PCT, the
singular value decomposition method is commonly employed to solve each PC. The process
begins by calculating the covariance matrix (C) of the thermographic data matrix (X). The
eigenvalue decomposition of C is then performed, resulting in the following expression:

C = U ∑ VT

∑ = diag(σ1, σ2, σ3, . . . , σp)
(2)

where U is an orthogonal matrix of order m, V is an orthogonal matrix of order n, Σ

is an m × n rectangular diagonal matrix consisting of non-negative diagonal elements
arranged in descending order, and σi represents the singular value of matrix C. The singular
values are sorted from largest to smallest, and the top-k singular values are selected. The
corresponding k eigenvectors {pi, i = 1, . . . , k} are obtained. Therefore, t = Xp1 signifies
the first PC, which is a linear combination of the columns in X and aims to explain the
maximum possible variation in the data. Subsequent PCs can be calculated successively. In
practice, only a few PCs are typically needed to capture the majority of the variance present
in the data.

3. Methodology

In the context of defect analysis in thermographic data, relying solely on PCT may
not yield satisfactory results. To achieve improved performance, a promising approach is
to integrate deep learning methods with PCT. By leveraging deep learning techniques to
expand and enhance the data, the performance of PCT in detecting defects is enhanced.
In this study, we propose a defect inspection method for artwork that combines PCT
with two different deep learning strategies for thermographic data enhancement. The
framework and implementation steps of the proposed approach are outlined.

3.1. Problem Description

In order to detect defects in artwork using IRT, specifically pulsed thermography, the
test sample is subjected to instantaneous heating using flash lamps. A thermal imaging
camera is then used to capture temperature information on the surface of the sample
during the subsequent temperature drop. Finally, a computer is utilized for data storage
and analysis. The temperature signal at a specific pixel location in the thermal images can
be described by the one-dimensional Fourier diffusion equation:

T(s, t) = T0 +
Q

e
√

πt
exp(− s2

4αt
) (3)
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where T(s,t) denotes the temperature at time t and depth s, T0 is the initial temperature,
Q denotes the energy absorbed by the material surface from the heat source, and α and e
represent the thermal diffusivity and thermal storage coefficient, respectively.

It is important to note that the aforementioned equation is derived under the assump-
tion that the tested sample is a semi-infinite solid and that thermal diffusion is strictly
one-dimensional. However, in reality, thermal diffusion in materials is often complex and
three-dimensional, leading to nonlinearities in the obtained thermal images. In addition,
issues, such as experimental noise and scarcity limiting the availability of thermal images,
make it challenging for PCT to identify an effective projection direction, impeding its ability
to achieve accurate defect detection. Therefore, the objective of this study is to investigate
how generative deep learning techniques can enhance the quality of thermographic data
and improve the performance of PCT in defect analysis.

3.2. SNGAN-Based PCT Approach

Data augmentation is a crucial technique for addressing the challenge of limited
data availability and reducing data collection costs. In thermal image data analysis, data
augmentation methods play a vital role in improving the performance of thermal imaging
techniques by increasing the diversity of thermal image data. GANs have emerged as a
prominent approach for learning and generating data distributions [27] and have been
successfully applied in various domains, including image synthesis, video generation,
speech synthesis, and natural language processing [20–23], making them a focal point in
the field of deep learning.

In this study, an improved GAN algorithm, spectral normalized GAN (SNGAN),
is used to enhance thermographic data. Traditional GANs often face challenges, such
as gradient disappearance or explosion during training, due to the complexity of the
generator (G) and discriminator (D). SNGAN addresses these issues by employing spectral
normalization, which normalizes the weight matrix in the D [28]. This normalization
technique restricts the spectral radius of the weight matrix’s singular value decomposition
to a fixed range, effectively preventing gradient disappearance or explosion. Furthermore,
SNGAN offers simplicity and avoids the need for complex hyperparameter tuning. This
regularization method enhances the training stability of GANs and helps generate higher-
quality images.

To ensure that SNGAN has sufficient discriminating and generating capabilities, we
designed a G comprising one fully connected layer and five deconvolution layers and a D
comprising one fully connected layer and four convolutional layers. The design of these
layers is based on the size of the thermal images. The architecture of the SNGAN-based
generative principal component thermography (GPCT) model is depicted in Figure 2.

In the network, the first deconvolutional layer employs a 3 × 3 convolutional ker-
nel with a stride of 1, enabling the model to capture local information in the input fea-
tures more effectively. The subsequent convolutional and deconvolutional layers employ
4 × 4 convolutional kernels with a stride of 2, enabling the model to capture global con-
textual information in the input features. LeakyReLU activation functions are utilized in
all layers except for the last deconvolutional layer, where the activation function is Tanh.
Notably, spectral normalization is applied to the weight matrix of each convolutional layer
in D. In doing this, the model becomes more robust against input perturbations, enhancing
the overall model robustness [29].

In the GPCT initial, ng new thermal images are generated using SNGAN and trans-
formed into 2D data. These new images are then merged with the original dataset. This
integration results in a new 2D dataset with a specific size

(
nt + ng

)
× nxny. Finally, this

new dataset is fed into the PCT for subsequent processing and analysis.
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Figure 2. Framework of the GPCT model.

3.3. CAE-Enhanced PCT Approach

Data enhancement methods can significantly enhance the performance of thermal
imaging techniques by mitigating the impact of background noise on the data. CAE, one
of the variants of AE, can compress input data into a low-dimensional representation and
then reconstruct the input data from this representation, effectively learning meaningful
data features. Normally, it is used for tasks, such as dimensionality reduction, denoising,
and feature extraction. In particular, CAE has proven to be very effective for image
enhancement tasks.

The encoding and decoding processes of CAE can be expressed as follows:

Y = P(W1 ∗ X + a1) (4)

Z = Q(W2 ∗ Y + a2) (5)

In the above equations, X denotes the thermographic data, Y represents the compressed
data produced by the encoder, Z signifies the decoded data, W1, W2, a1, and a2 are the
weights and biases of the encoder and decoder, respectively, P(·) and Q(·) are the nonlinear
activation functions of the encoder and decoder, respectively, and ∗ denotes the two-
dimensional convolution operation.

In this study, we developed the CAE-enhanced principal component thermography
(CPCT) method for detecting internal defects in artworks. The CAE architecture consists
of an encoder and a decoder. The encoder compresses the input data using a series of
convolution and pooling operations, resulting in a lower-dimensional coded representation
that captures the essential features of the input data. Subsequently, the decoder reconstructs
the coded representation back into the original input data using convolution and up-
sampling operations. The aim of the reconstruction process is to closely resemble the
original input, thus generating reconstructed data that closely resemble the original data.
Specifically, we set the size of the convolution kernel to 3, and the convolution stride was
set to 1. The pooling operation utilizes maximum pooling with a kernel size and stride of 2.
The encoder employs the ReLU activation function, while the output layer uses the sigmoid
function, and the remaining layers utilize ReLU. The newly decoded data are then fed
into the PCT model for dimensionality reduction, resulting in the extraction of k principal
components. This process effectively highlights defects in the images.
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Figure 3 illustrates the framework of the CPCT model utilized in this study. The
detection process based on CPCT is depicted in Algorithm 1.

Algorithm 1: Set n_components = k

Input: 3D data nt × nx × ny
Output: 2D data k× nxny
Algorithm Flow:

Step 1: Initialize model weights and biases;
Step 2: Encode the input data using the encoder and obtain the reconstructed output using

the decoder;
Step 3: Measure the performance of the model in terms of the error between the reconstructed

output and the original input, with a loss function of mean squared error;
Step 4: Calculate the gradient of the error with respect to the model parameters;
Step 5: Transfer of errors and calculation of gradients using a back-propagation algorithm;
Step 6: Minimize the reconstruction error of the model by updating the model parameters

based on the gradient information using an optimization algorithm, Adam;
Step 7: Repeat steps 2 to 6 until the training is completed or the preset number of iterations

is reached;
Step 8: Transform the trained 3D data into a 2D matrix A;
Step 9: Perform column normalization on the 2D matrix A;
Step 10: Perform PCT on the normalized 2D matrix A to obtain 2D data k× nxny.

Figure 3. Framework of the CPCT model.

After applying Algorithm 1, each row of the obtained data matrix is transformed into
a 2D matrix with dimensions nx × ny and can be visualized. By observing the obtained
images, it is convenient to identify defect information within the sample. Defects in the
artwork can be detected by analyzing the patterns and irregularities present in these
visual representations.

4. Experiment

To objectively evaluate the assay’s performance, signal-to-noise ratio (SNR) [30] is a
widely used metric in thermography data processing. In this study, SNR is employed to
assess the effectiveness of the proposed approach. It is calculated as follows:

SNR =
|Mdef −Min|

σin
(6)

In the above equation, Mdef denotes the average pixel value of the defective region,
Min represents the average pixel value of the intact region, and σin is the standard deviation
of the pixel values in the intact region. SNR measures the thermal contrast between the
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defective and non-defective regions. A larger SNR value indicates a higher level of defect
information in the image, indicating better performance of the assay.

The F-score is a commonly used evaluation metric in classification, diagnosis, and
image processing tasks [31,32]. In the context of defect analysis, it is utilized to assess the
performance of the model by considering four scenarios: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). Specifically, the F-score is calculated
as follows:

F =

(
β2 + 1

)
× P× R

β2 × P + R
(7)

where β is a default value for the associated precision and recall weights, P = TP/(TP + FP)
represents detection precision, and R = TP/(TP + FN) represents detection recall. A higher F-
score indicates better defect visibility, implying superior performance of the corresponding
thermography method.

4.1. Preparation and Pretreatment of Samples

In this study, an experimental test was conducted using a panel painting sample
named “Madonna”, as depicted in Figure 4a. The objective was to compare the performance
of different data enhancement methods. The Madonna sample consists of four defects;
however, the collected data could only capture three of these defects. Therefore, only these
three defects were utilized in this study for calculating the SNR of each method.

Figure 4. Madonna sample and defect distribution: (a) Madonna sample; (b) defect distribution diagram.

The sample has dimensions of 15 × 21 × 2 cm and is composed of poplar wood with a
layered structure consisting of a bottom layer of canvas, plaster, and glue. A varnish layer
was added to protect the painting layer. Artificial zones, simulating defects at different
depths, were incorporated within this structure. The defects in the Madonna sample, as
shown in Figure 4b, were simulated by inserting Mylar®, also known as BoPET (biaxially
oriented polyethylene terephthalate), sheets. In Figure 4b, the a, b, c and d represent
different defects. The shape, size, and depth of each defect are outlined in Table 1. The
heating device involves two 250 W lamps (Siccatherm E27, OSRAM) positioned 50 cm
apart from each other and 48 cm from the painting. An infrared camera with a frame rate
of 1 frame per second was employed to capture a total of 270 thermal images. Among
these, the first 90 images correspond to the heating phase, while the remaining 180 images
represent the cooling phase. The region of interest (ROI) size was set to 240 × 320 pixels for
each thermal image. Consequently, an infrared thermal imaging dataset with dimensions
of 270 × 240 × 320 was obtained. To facilitate subsequent analysis, the dataset was
transformed into a 2D matrix with dimensions of 270 × 76,800. Each row of the matrix
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corresponds to a thermal image, while each column represents the temporal change in
pixel values.

Table 1. Defect information of Madonna sample.

Number Shape Area(mm2) Depth(mm)

a Two Circles d = 5 0.3–0.8
b Rectangle 28 × 4 0.5–1.1
c Circular d = 8 0.7–1.6
d Rectangle 14 × 3 2.0

Figure 5 displays the thermal images obtained using the IRT system at eight different
time instances, providing an overview of the image quality during the early, middle, and
late stages of data acquisition. In these images, the presence of defects is not readily
apparent. Therefore, additional methods must be applied to uncover the hidden defects
beneath the oil painting. To address this, the original thermal images are processed using
two different strategies of image enhancement. Figure 6a depicts the generated images of
SNGAN, while Figure 6b shows the enhanced images of CAE. Some of the parameters are
set by default, such as the optimizer and the multiplicative factor for spectral normalization
in SNGAN. Other parameters were determined through several trials, and their specific
values were set as follows:

For the training process of SNGAN:
Epoch: 500
Batch size: 30
Learning rate: 0.0002
Dropout: 0.25
For the training process of CAE:
Epoch: 50
Batch size: 30
Learning rate: 0.0002

Figure 5. Original thermal images, where the grid division for F-score calculation is illustrated in the
first sub-figure.
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Figure 6. Results of image enhancement based on deep learning strategies: (a) generated images;
(b) enhanced images.

4.2. Results and Discussion

Next, PCT was applied to analyze the original thermal images, the enriched ther-
mographic dataset obtained using SNGAN, and the enhanced thermal images generated
through noise reduction with CAE. The analysis results are represented as PCT, sparse PCT
(SPCT), GPCT, and CPCT, respectively, in Figure 7. In the case of GPCT, the rich dataset
consists of original images and generated images, resulting in 390 thermal images in the
total dataset.

Upon observing and analyzing the three different outcomes, it is evident that the
defects, particularly defect a and defect b, are more prominently highlighted in GPCT
compared to the background. However, CPCT effectively reduces the influence of the back-
ground and enhances the visibility of defect information. These results can be attributed to
the complex background information in the Madonna dataset, which significantly affects
the detection of defects. During the augmentation process, the model tends to focus more
on the background information rather than learning the characteristics of defects, leading
to suboptimal results after augmentation. In contrast, the dataset enhanced using the CAE
model exhibits reduced noise, making it easier to distinguish defects from the background.
The CAE-based enhancement approach effectively preserves and enhances the defect
information while minimizing the impact of noise and background interference. These
findings align with the qualitative results, demonstrating the advantages of CAE-based
enhancement in improving defect detection. The SNR values provided in Table 2 further
support the qualitative results. The SNR values of CPCT were higher than those of the
other three methods for both individual defects and all defects. A reasonable explanation
is that the CPCT model uses the CAE data enhancement strategy to reduce the noise in the
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original image and obtain the essential characteristics of the defects. For instance, in the
case of defect b, PC6 of CPCT exhibits a smoother background, which effectively enhances
the differentiation between the background and the defect. These findings indicate that
CPCT not only outperformed the other methods in terms of SNR values but also yielded
improved visual results in distinguishing defects from the background. These quantita-
tive and qualitative analyses further support the efficacy of CPCT in enhancing defect
detection performance.

Figure 7. Comparison of different methods: (a) PCT; (b) SPCT; (c) GPCT; (d) CPCT.

Table 2. SNR values of different methods.

SNR

Defect a Defect b Defect c All Defects

PCT 1.210 4.703 5.561 3.619
SPCT 1.745 1.051 1.273 1.063
GPCT 1.535 4.887 5.438 3.658
CPCT 2.686 5.264 6.544 3.935

Table 3 presents the results of the relative improvement rates achieved by combining
SNGAN or CAE with PCT. The relative improvement rates for defects a and b are relatively
low when SNGAN is combined with PCT alone, and defect c shows a negative effect.
This could be attributed to SNGAN’s tendency to primarily learn the raw thermal image
data, including the heavily inhomogeneous background, which may result in suboptimal
performance in defect analysis when combined with traditional PCT. In contrast, the CPCT
model demonstrates high SNR defect enhancement rates for each defect detection, with the
highest rate reaching 121.98%. This can be attributed to the CPCT model’s utilization of the
CAE data enhancement strategy, which reduces noise in the original image and captures
the essential features of the characterized defects. These findings support the effectiveness
of the CPCT model in enhancing defect visibility through the combination of CAE-based
data enhancement and PCT analysis.

In order to validate the results obtained from the proposed artwork defect detection
model, we calculated the SNR values for the five rounds of test results and compared
them with the results obtained from PCT on raw thermograms. Figure 8, presented below,
illustrates the results of the five tests conducted for each model. Despite the inherent
uncertainty in the training process, the consistency of the results across the five tests
indicates the validity and reliability of the proposed models. This comparison serves
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to demonstrate that the proposed artwork defect detection model yields consistent and
accurate results, providing confidence in its effectiveness for detecting defects.

Table 3. Comparison of the relative improvement rates of SNR using different methods.

Improvement Rate Compared to PCT

Defect a Defect b Defect c All Defects

GPCT 26.86% 3.91% −2.21% 1.08%
CPCT 121.98% 11.93% 17.68% 8.73%

Figure 8. Comparison of the SNR values of the five rounds of test results of the proposed model with
the PCT results: (a) GPCT; (b) CPCT.

In Figure 5, the first sub-figure illustrates how the images are divided into cells for
calculating P and R values. Subsequently, using Equation (7), Table 4 showcases the F-score
values obtained through different methods. The proposed CPCT model achieved the high-
est F-score values for all three types of defects, demonstrating its strong defect identification
capability. This improvement is attributed to the utilization of data enhancement strategies
in the CPCT model, which enhances the quality of the data used for modeling. In the con-
text of this work, existing approaches primarily concentrate on the analysis and processing
of thermographic data using machine learning methods to attain specific objectives, such as
noise removal, mitigation of inhomogeneous backgrounds, and extraction of defect features.
However, it is worth noting that future advancements may involve the incorporation of
physical knowledge-based models. Specifically, physics-informed neural networks are a
promising technique, which leverage both machine learning techniques and the underlying
physics principles associated with heat transfer.

Table 4. F-score of different methods.

F-Score

Defect a Defect b Defect c

PCT 0.632 0.640 0.923
SPCT 0.769 0.640 0.889
GPCT 0.632 0.640 0.727
CPCT 0.857 0.957 1.000
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5. Conclusions

In this study, we employed two deep learning strategies, SNGAN and CAE, for en-
hancing thermographic data in order to improve the accuracy of defect detection in panel
paintings. The SNGAN strategy facilitated the generation of additional thermal images,
while the CAE strategy focused on denoising and deblurring. The PCT results based on
the enhanced thermographic data are significantly better than those based on the raw
thermograms. Specifically, CPCT outperforms GPCT in the case study discussed in this
paper. The results of our study indicate that deep learning-based image enhancement
techniques hold great potential for advancing defect detection and evaluation in the conser-
vation of artworks. When comparing the results of PCT alone with the proposed CPCT
method, it is observed that the CPCT method achieved a significant improvement in the
signal-to-noise ratio (SNR) for identifying all defects in the artwork. Specifically, the CPCT
method increased the SNR value by 8.73% compared to PCT alone. Furthermore, when
evaluating individual defects, the CPCT method showed a substantial enhancement in
performance. The highest F-score value achieved using the CPCT method improved by
49.46% compared to PCT. Furthermore, this proposed framework could also be applicable
for the inspection of augmented-reality-generated content [17,18]. Looking ahead, further
research will be conducted to explore the combination of deep learning strategies for ther-
mal image enhancement with other feature extraction methods. This will contribute to the
development of more comprehensive and effective approaches for defect detection and
analysis in various domains.
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