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Abstract: Falls can easily cause major harm to the health of the elderly, and timely detection can avoid
further injuries. To detect the occurrence of falls in time, we propose a new method called Patch-
Transformer Network (PTN) wearable-sensor-based fall detection algorithm. The neural network
includes a convolution layer, a Transformer encoding layer, and a linear classification layer. The
convolution layer is used to extract local features and project them into feature matrices. After
adding positional coding information, the global features of falls are learned through the multi-head
self-attention mechanism in the Transformer encoding layer. Global average pooling (GAP) is used to
strengthen the correlation between features and categories. The final classification results are provided
by the linear layer. The accuracy of the model obtained on the public available datasets SisFall and
UnMib SHAR is 99.86% and 99.14%, respectively. The network model has fewer parameters and
lower complexity, with detection times of 0.004 s and 0.001 s on the two datasets. Therefore, our
proposed method can timely and accurately detect the occurrence of falls, which is important for
protecting the lives of the elderly.

Keywords: fall detection; deep learning; feature extraction; CNN; Transformer encoder

1. Introduction

According to the World Health Organization, approximately 28–35% of older people
fall each year, increasing to 32–42% for those over 70 years of age [1]. Falls can cause
multi-organ damage, such as brain, soft tissue, fracture, and dislocated joints, and are a
major cause of disability or death in elderly [2]. Falls can also damage the confidence of
older people, causing them to fear falling again [3]. Timely detection of falls and medical
intervention are important to reduce physical damage and economic loss to the elderly.

In recent years, fall prediction and fall detection have been the main areas of research
regarding falls [4]. Falls are caused by a variety of factors, physiological and environmental,
with physiological factors referring to a person’s age, history of falls (e.g., plantar phobia),
mobility disorders, sleep disorders, and neurological disorders. Environmental factors
include smooth surfaces, dim light, etc. [5]. Fall prediction requires consideration of all
influencing factors and does not prevent falls from occurring. Fall prediction has a high
rate of false alarms and fall risk assessment can only be used as a reference for healthcare
professionals [6]. Therefore, fall detection is the main solution to deal with the occurrence
of fall events. Existing fall detection systems are similar in structure and their main
purpose is to identify fall events and activities of daily living (ADLs) [7]. We propose a
new deep learning fall detection method based on wearable sensors. Our approach is
inspired by Transformer [8] and combines the characteristics of fall detection data samples
to accurately distinguish between fall behavior and ADLs, and also has low temporal and
spatial complexity, meeting the timeliness requirements of fall detection.

In this paper, we discuss existing methods regarding fall detection in Section 2, with
a focus on wearable-sensor-based devices. In Section 3, we present the data used in the
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experiments, the data preprocessing steps, and details of the proposed PTN approach. In
Section 4, the experimental setup and preparation are listed. The detection results and
performance of this method are provided and compared with other existing fall detection
methods. We briefly analyze feature extraction and model complexity in Section 5. In the
end, Section 6 concludes the work.

2. Related Work

In recent years, research on fall detection has included vision-sensor-based [9,10],
environmental-sensor-based [11,12], and wearable-device-based [13,14] methods. Among
them, environmental sensors and vision sensors are both non-wearable sensors.

2.1. Non-Wearable Sensors
2.1.1. Vision-Based Sensors

A vision-sensor-based fall detection system uses a camera as a data source to determine
whether a fall has occurred. A camera [15] extracts information such as body posture shape,
movement patterns, and movement of key points of the human skeleton [16]. Caroline
used a combination of history and changing in human posture to detect falls and ADLs in
video sequences [17]. Agrawal [18] used a modified gaussian mixture model (GMM) for
background subtraction to find foreground objects and calculated the distance from the top
of the rectangle covering the human body to the center of the middle to determine a fall.
The user does not need to wear additional equipment. RGB-camera-based solutions are less
costly but can violate user privacy. Heilym [19] used visual camera images to detect, extract
human skeletal information, find the most salient skeletal features, and estimate human
pose by using random forest (RF), support vector machine (SVM), four classifier models,
multilayer perceptron (MLP), and k-nearest neighbor (KNN). Kong [20] used a depth
camera to acquire a person’s standing or falling skeletal images and fast Fourier transform
(FFT) to encrypt the images and perform fall detection. Depth-camera-based fall detection
is superior compared to using RGB images in protecting users’ privacy, but this solution
suffers from high equipment cost, narrow detection angle, and short effective distance.

2.1.2. Ambient Sensors

Ambient-sensor-based fall detection methods are used to help identify fall behavior
by monitoring changes in a specific region of interest (ROI) and define posture, movement,
and human presence. These ambient sensors include infrared, acoustic, passive infrared,
and Doppler radar. Hayashida [21] detected falls by emitting and capturing infrared
radiation to measure the heat emitted by an object and obtain environmental changes in a
certain ROI. Popescu [22] proposed an acoustic-based fall detection system that consists of
a microphone array and motion detector that flags events as falls or ADLs using acoustic
characteristics. Most falls have a significant vertical motion component. Liu [23] emitted
microwave signals from multiple Doppler radars placed on the roof of a house. They can
accurately measure the radial velocity of the target relative to the radar to determine the
occurrence of a fall. While all these ambient sensors show good results, their use is limited
to the ROI in which they are placed and their performance is affected by other users and
environmental changes, such as heat or other devices.

2.2. Wearable Sensors

Unlike non-wearable sensors, wearable sensors hardly violate a user’s privacy and
are less restricted by the area in which they are used. This type of sensor also has the
advantages of low power consumption, high convenience, and low cost, and more fall
detection research is based on wearable sensors. Such sensors are usually embedded in
wristbands, belts, or other textile patches to monitor kinematic properties (acceleration,
angular velocity, magnetic induction strength) obtained from accelerometers, gyroscopes, or
magnetometers, etc., providing posture and motion information [7]. The type of wearable
sensor, sampling rate, and placement are usually used as differentiating criteria. According
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to existing research, accelerometers and gyroscopes are the most frequently used wearable
sensor types, with sampling at frequencies of 50 Hz, 100 Hz, and 200 Hz accounting
for the majority. Most data collectors choose to place the sensor at the waist or wrist,
with a few at the thigh or ankle [24]. Kusumah [25] implemented a threshold-based fall
detection algorithm using accelerometer and gyroscope sensor signals. However, the actual
fall process is more complex. Fall-like behavior (e.g., sitting and lying down) can cause
significant interference to the algorithm. These sample values for fall-like activates can
also reach the threshold limits set for fall settings at some point and thus have a high
false alarm rate. Deep-learning-based classification recognition has currently been used
in more fall detection algorithms. He [26] proposed a fall detection convolutional neural
network (FD-CNN) model with higher detection specificity compared to the traditional
threshold method. Three-axis acceleration was normalized and mapped to RGB bitmaps.
Spatial features were extracted using FD-CNN networks to detect fall and no-fall behavior
based on feature information in the bitmaps. Yhdego [27] transformed acceleration data
into scalar maps and used time–frequency analysis and a pre-trained deep convolutional
neural network (DCNN) model for transfer learning. The fall data are continuous and
convolutional processing can result in the loss of time-dimensional features. In order
to solve this problem, Mirto [28] used a long short-term memory (LSTM) fall detection
algorithm that automatically extracted temporal information using long time sequences
as input. The LSTM structures take into account the temporal and spatial relationships
of the data and can accurately distinguish between fall-like and true fall behavior. This
kind of method often requires a large amount of calculation and has a complex model
structure, with a concomitant increase in time complexity, making detection inefficient. The
fall detection method proposed by Yhdego [29] used an attention mechanism to observe
sensor data peaks. Falls can have multiple peak data in a short period of time. Focusing
only on local peaks is susceptible to interference from fall-like behavior, giving the model
low specificity. Regarding wearable devices as the main tool of fall detection, there are some
problems with the advantages of convenience and low cost. These sensors expect users to
charge them regularly and carry them with them all the time. This does not always happen,
however, because the main users of these sensors are elderly people. On the other hand,
these wearable devices have limited computing power, and deploying neural network
models on them requires consideration of limitations, such as device memory capacity,
device power duration, and user wearing comfort. Also, the detection time of the model is
required to reach a low value in order to meet the timeliness requirement of fall detection.

3. Materials and Methods

As is shown in Figure 1, the framework proposed in this study comprises two steps:
data preprocessing and feature extraction and classification based on the Patch-Transformer
Network (PTN) algorithm. Specifically, in the first step, the input wearable device data are
first normalized in size to ensure the input format is the same. The sliding window is used
to divide the data of different channels into subsequences, and then the subsequence data
of different channels are concatenated. Each subsequence datum is reshaped to meet the
input requirements of the PTN algorithm.

In the second step, the local feature information of the input sequence is extracted by
CNN, and the global feature is extracted through the Transformer encoding layer. Global
pooling enhances the correlation between features. The final classification result is derived
from the linear layer.
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Figure 1. Block diagram of the workflow of the proposed method.

3.1. Datasets

Public datasets SisFall [30] and UnMib SHAR [31] are used as our data sources to
test the accuracy and latency of the model. These two datasets include different types
of falls and ADLs.

The SisFall is a dataset that, on the posture of volunteers under different activities,
was assembled by device consisting of accelerometer and gyroscope. The data include
19 ADLs and 15 types of falls performed by 23 young people, 15 ADLs performed by
14 healthy independent participants over the age of 62, and data on all ADLs and falls
types performed by 1 participant aged 60.

UnMib SHAR is a fall and no-fall sample dataset collected by the accelerometer sensor
in the Android smartphone. Limited by the Android operating system, UnMib SHAR used
sampling frequency of 50 Hz. The dataset consisted of 11,771 samples of human ADLs and
falls events. The participating volunteers were between the ages of 18 and 60 years and the
samples were divided into 17 sub-categories and 2 coarse categories: one containing nine
ADLs samples and the other including eight samples of falls.

3.2. Data Preprocessing

In the SisFall and UnMib SHAR datasets, the data sample size was not uniform, and
regular activities, such as slow walking and jogging, were present in both datasets. These
activities were sampled for longer periods of time compared to the other behavior. To
obtain falls and ADLs datasets with uniform data specifications and to ensure data integrity,
we process the data accordingly for both datasets. In SisFall, the entire ADLs are sampled
with a 12 s duration. We split the longer time series activities into a few equal length
subsegments, each of 12 s duration, whereas, in the fall samples, the sample sizes are all
15 s. The fall dataset is downsampled to reshape the sample size to 12 s. The sampling
frequency of UnMib SHAR is different from SisFall. The segmented fragment size of the
long time series samples is 3 s. The segmented ADLs subsequences, downsampled fall
samples, and unprocessed raw data are recoded to obtain a falls and ADLs dataset with
uniform data size. The SisFall dataset includes 3778 ADLs and 1798 falls samples, each with
a sample size of 12 s. UnMib SHAR includes 4191 falls and 7578 data samples of 3 s duration.
We use overlapping sliding time windows to segment the data, with each time window
being W samples long, and reshape the samples into rectangular data blocks. The whole
sequence is partitioned into a sequence of data blocks of length N by gradually moving
backwards with a fixed sliding step S. If the sliding step is too large, the segmentation
will result in the loss in correlation between time series, so the moving step of the sliding
window needs to be smaller than the width of the time window. If the sliding step is too
small, it will cause problems, such as serious data overlap and inconspicuous distinction
of local information. Figure 2 illustrates the process of sliding window segmentation of
subsequence of our multi-channel data from acceleration sensors.
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Figure 2. Sliding-window-segmentation-data-based acceleration sensors.

3.3. Patch-Transformer Network Algorithm

We propose a fall detection method called PTN by combining the deep learning al-
gorithms of CNN and Transformer Network. An overview of the method is depicted in
Figure 3. In practical fall detection, multiple sensors are often used to determine posture
information by placing them at different locations on the human body. In this paper, we
describe the PTN model using three sensors as examples, where SDevice1, SDevice2, SDevice3
denote the sequence of data blocks of three different sensors after sliding window seg-
mentation of the data and Pi ∈ Rn2×C is a single data block for sensor. Each data block
contains the x, y, z channel values of the sensor. Input sequence I is convolved by two
convolution layers to extract local features for each matrix block (the data are extracted
from each sliding window and reshaped into the data matrix of the n× n) sequence fall,
with a convolution kernel of size 3 and a step size of 2, and the ReLU activation function
is used. Then, local features are flattened and transposed to obtain the fall local feature
mapping sequence matrix FND ∈ RD×N(D = C2, C is the number of channels after merging
multiple sensors). The input sequence needs to add the position encoding information
Epos of the sequence before being fed into the encoding layer to ensure that the time series
information is not lost during the network computation. We only use the encoding layer
part of the Transformer structure for the classification task of fall detection. The sequence
data with the position encoding were added and fed into the Transformer encoding layer.

I = Concat(SDevice1, SDevice2, SDevice3) (1)

[Q, K, V] = X[WQ, WK, WV ] (2)

SA(X) = so f tmax(QKT/
√

dk)V (3)

In this model, the projections WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , WV ∈ Rdmodel×dv are
parameter matrices. The h is the number of heads of multi-head self-attention (MSA).
MSA allows the model to learn feature information from the features extracted from
the different convolution kernels. In this paper, the projections WO ∈ Rh×dmodel×dv are
parameter matrices, dk = dv = dmodel/h, and dmodel = D, where D of Sisfall and UnMib
SHAR dataset are 9× 9 and 3× 3, respectively.

MSA(X) = Concat(SA1(X), SA2(X), . . . , SAh(X))WO (4)
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Figure 3. Patch-Transformer Network model overview.

The encoding layer consists of L sub-encoding layer. Each of them is followed by
a residual connection structure [32], which avoids the problem of gradient information
loss and accuracy degradation as the depth of the network increases during the cyclic
computation of the sub-encoding layers. The sample data representation in sub-encoding
layer, as the input to a multi-layer perceptron (MLP), Y uses the output of the entire
Transformer encoding layer. Our encoding layer outputs global average pooling (GAP).
The final fall and no-fall classification results are provided by a single linear layer.

X′l = MSA(LN(Xl−1)) + Xl−1, l = 1, 2, . . . , L (5)

XL = MLP(LN(X′l)) + X′l , l = 1, 2, . . . , L (6)

Y = LN(XL) (7)

Y′ = GAP(Y) (8)

Probability = Linearlayer(Y′) (9)

4. Results

We performed experiments with different datasets; the training was performed on the
SisFall dataset to verify the model validity. We used the UnMib SHAR fall dataset to verify the
scalability of the model. Our proposed PTN model is experimentally compared with existing
fall detection techniques that perform better. All the experiments in this paper are performed
on a PC device with an Intel Core i5-12400 CPU and NVIDIA GeForce GTX 3080 GPU. The
software environment is Python 3.8.13 with PyTorch 1.12 CUDA version 11.3.
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4.1. Training and Testing Strategy

We choose the first 80% of the data for training the model and the remaining 20% of the
set for model validation. The model is trained by a 16 and 32 mini-batch for 50 epochs. The
best epoch with minimal loss was used as the results for evaluation. We use a learning rate
decay strategy to prevent overfitting. Table 1 shows the training hyperparameter settings
in detail.

Table 1. Experimental hyperparameter settings.

Parameters SisFall UnMib SHAR

Batch size 16 32
Epochs 50 50

Optimizer Adam Adam
Learning rate 0.001 0.001

Lr* decay 0.98 0.95
Lr* represents learning rate.

4.2. Evaluation Indicators

Confusion matrices are commonly used to analyze classification and prediction models.
The fall detection confusion matrix used in this paper is shown in Table 2. To evaluate
the performance of the model, we introduce accuracy (Acc) as the metric to judge the
detection efficiency of the model, sensitive (Sen) to prevent false positives, and specificity
(Spe) to describe the capability of the model for detecting falls. We add F1− score into
our training metric. Based on the confusion matrix, the metrics above can be expressed
as follows (14)–(17).

Acc =
TP + TN

TP + TN + FP + FN
× 100% (10)

Sen =
TP

TP + FN
× 100% (11)

Spe =
TN

TN + FP
× 100% (12)

F1− score =
2× TP

TP+FP × Sen
TP

TP+FP + Sen
× 100% (13)

Table 2. Confusion matrix.

Predicted Fall Predicted No-Fall

Actual Fall TP FN
Actual No-Fall FP TN

FP, TP, FN, and TN denote false positive, true positive, false negative, and true negative, respectively. In the fall
detection classification task, TP represents the samples in which a fall occurred and was correctly judged; TN
represents ADLs that were correctly identified samples; FP represents the samples in which ADLs were judged as
fall behavior; FN represents the samples in which falls were identified as ADLs.

4.3. Model Parameters

There are usually parameters in neural networks that cannot be learned automatically
by the model and need to be set manually before training. In this paper, we use Transformer
encoding layers in which the number of parallel attention heads and the number of sub-
encoding layers have not yet been determined. Based on previous work [33] and the
wearable sensors data size, we find that, as the number of attention heads and sub-encoding
layers increases, this does not obviously improve the model accuracy in experiments. Most
of these parameters are redundant during the training model period, especially for small-
input data dimensions. The increase in model parameters will cause longer training and
testing time. Model size and computational complexity also expend, which is not beneficial
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for the fall detection task. To balance the model size and performance metrics, we employ
a small Transformer encoding layer structure, setting the parallel attention heads h to 3 and
the number of sub-encoding layers L to 6. The model structure with this combination of
parameters is used in all subsequent evaluations of the results.

4.4. Ablation Experiments

Falls occur when people are performing an activity or are suddenly disturbed by the
external environment and their duration is short. Using sliding window to intercept sample
data can fit the local feature information at the moment of the fall. Different window sizes
have a direct impact on model accuracy. To determine the optimal value of the sliding
window, we conducted sliding window ablation experiments on both SisFall and UnMib
SHAR datasets. As the sampling frequencies and sample sizes of the two datasets were
different, we chose different window sizes for the control group. In the SisFall dataset, we
set sliding windows for 1 s, 2 s, 4 s, and 6 s, and correspondingly used window sizes for 1 s,
2 s, and 3 s in the UnMib SHAR dataset. Table 3 details the performance of the model with
different window sizes for both datasets. The performance of metrics Acc, Sen, and F1-score
all perform best with a time window of 2 s on the SisFall dataset, while the specificity Spe
is slightly lower than the value for the 4 s window; on the UnMib SHAR dataset, again,
the sliding window size of 2 s works best, with Spe slightly lower than the performance
for the 1 s window. In the seven and eight columns of Table 3, we also list the number of
model parameters and the number of operations. The 2 s window size still has a lower
computational complexity and parameters computed while achieving the best performance.
In fact, the fall occurrence duration is close to 2 s [26], and an accurate fit of the feature
information of fall occurrence can improve the model detection accuracy. Therefore, 2 s
sliding time window has a strong feature expression ability, and the performance of metrics
parameters is outstanding. On the other hand, according to the last column of the table, a
PTN algorithm running on a PC with GTX3080 graphics card only spends about 4 ms on
the SisFall datasets and spends about 1 ms on the UnMib SHAR dataset to classify, which
can fully fit the need of real-time fall detection.

Table 3. Model performance at different window sizes.

Datasets
Window

Size
Acc (%) Sen (%) Spe (%) F1-Score

(%)
Params

(M)
Flops
(M)

Test Time
(ms)

SisFall

1 s 97.90 96.84 98.85 97.71 0.64 5.77 4.51
2 s 99.86 100.0 99.76 99.45 0.77 6.91 4.58
4 s 99.50 98.94 99.80 99.43 1.05 9.43 4.80
6 s 99.48 98.86 98.98 99.28 1.32 11.87 4.92

UnMib
SHAR

1 s 98.97 99.30 99.31 98.47 0.06 0.50 1.36
2 s 99.14 98.85 99.29 98.83 0.06 0.52 1.37
3 s 98.42 97.02 99.13 97.64 0.07 0.56 1.43

4.5. Comparison with Existing Methods

In this section, we compare the performance with existing fall detection methods,
and the experimental results are completed on the SisFall and UnMib SHAR datasets. We
compare the experimental results of others based on accelerometer and gyroscope fall
detection methods FD-CNN, CNN+XGB, BiLSTM, and SVM. We also list fall detection
methods that employ one signal type, CNN+LSTM and TBM+CNN. As shown in Table 4,
on the SisFall dataset, we achieved event-based Acc, Sen, and Spe of 99.86%, 100.0%, and
99.8%, respectively, as well as a higher F1-score of 99.45%. Our method has 2.45% higher
Acc and 4.31% higher Spe compared to BiLSTM, which is much higher than the performance
metrics of the fall detection method proposed by CNN-XGB; on the UnMib SHAR dataset,
our method also achieves an Acc of 99.14%, Sen 98.85%, Spe 99.31%, and F1-score of 98.83%
for the experimental results. All the parameters are higher than in the TBM+CNN method.
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According to Table 4, the PTN fall detection method based on accelerometer gyroscope data
proposed in this paper achieves the highest level of performance in all parameter metrics.

Table 4. Performance comparison with existing fall detection methods.

Method Dataset Signal Results

FD-CNN [26] SisFall Accelerometer
Gyroscope

Acc = 98.61%
Sen = 98.62%
Spe = 99.80%

CNN+XGB [34] SisFall Accelerometer
Gyroscope

Precision = 90.59%
Sen = 88.25%
Spe = 99.36%

F1-score = 89.11%

BiLSTM [35] SisFall Accelerometer
Gyroscope

Acc = 97.41%
Sen = 100%

Spe = 95.45%
Precision = 94.28%

SVM [36] SisFall Accelerometer
Gyroscope

Acc = 96.0%
Sen = 99.0%
Spe = 94.0%

CNN+LSTM [37] UnMib SHAR Accelerometer Acc = 99.11%

TBM+CNN [38] UnMib SHAR Accelerometer
Acc = 97.02%
Sen = 97.83%
Spe = 96.64%

PTN (Ours) SisFall Accelerometer
Gyroscope

Acc = 99.86%
Sen = 100.0%
Spe = 99.76%

F1-score = 99.45%

PTN (Ours) UnMib SHAR Accelerometer

Acc = 99.14%
Sen = 98.85%
Spe = 99.29%

F1-score = 98.83%

5. Discussion
5.1. Impact of Local Feature Extraction on Model

This paper introduces a neural network fall detection method based on the Trans-
former structure. The multi-head self-attention in the Transformer encoding layer is global,
and each word can learn the feature information of the whole sequence. However, this
structure itself lacks local and translation compared to CNN, and it has insufficient induc-
tive understanding of local feature information. Wearable sensors fall data are a time series
signal. The moment of fall occurrence and the whole process of the event exhibit both local
and global feature information. Both features have a direct impact on the final detective
results. We therefore use CNN to extract local feature information from the fall sample
data, and automatically learn the global features of the sample using the Transformer
multi-headed self-attention mechanism. Table 5 shows the ablation experiments for local
feature extraction and analyzes the impact on the model. The results show that focusing
on local features can improve detection accuracy, which also indicates that combining the
inductive biasing capability of the convolutional structure with the global learning features
of the multi-head self-attention mechanism can enhance the model’s ability to perceive the
data and improve detection performance.
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Table 5. Local feature ablation experiments.

Datasets Local
Feature Acc (%) Sen (%) Spe (%) F1-Score (%)

SisFall - 97.01 96.01 97.85 96.70
� 99.86 100.0 99.76 99.45

UnMib SHAR - 95.24 95.97 94.89 93.16
� 99.14 98.85 99.29 98.83

�represents that the PTN model contains local features.

5.2. Model Complexity Analysis

Model complexity has a high reference significance for the task of fall detection. The
higher the model complexity, the higher the computational power requirements of the
hardware device. The performance and computing power of ordinary wearable devices are
limited and cannot support large-scale neural network models. In addition, the detection
time of large models is long and cannot meet the timeliness requirements of fall detection.
Therefore, it is necessary to take model complexity into account in the method design.
In the PTN model, we use the stack of small convolution kernels in two convolution
layers instead of large convolution kernels, achieving the same feature extraction effect and
obviously decreaseing the model parameters. The traditional Transformer encoding layer
is a sentence, and each word in the sentence is mapped to a word vector. We choose a small
feature projection vector dimension, and global average pooling (GAP) was used to receive
the output of the encoding layer. The method has no learnable parameters, which not only
reduces the amount of computation but also avoids overfitting. On these bases, the model
complexity is reduced effectively, and the expected drop detection effect is achieved.

5.3. The Impact of Wearable Sensor Use on Algorithms
5.3.1. Effect of Sample Distribution

Uneven distribution of training set and test set samples can lead to overfitting or
underfitting problems. In the training data, some activities have a higher proportion of
samples than others, while, in the test set, these activities have the same proportion; this
situation will cause the model to be overfitted, making the test poor. Also, underfitting can
occur in cases where the training and test samples are significantly different.

5.3.2. Large-Scale Datasets Required

A Transformer model has much fewer inductive bias capabilities than CNNs. These
inductive bias capabilities can provide prior knowledge of data features and improve model
generalization. A Transformer model requires large-scale data for training to make up for
these deficiencies. We use this inductive bias of convolution to help extract local features
from the data, on which the Transformer model is trained, effectively alleviating the reliance
of model on large-scale data. However, models that want to distinguish in detail between
specific types of a certain activity still require a large number of datasets for training.

5.3.3. Impact of Sensor Accuracy

Low-precision wearable sensors may be less able to distinguish between similar
activities, reducing model specificity. For example, in the process of human squatting
and lying down, the value of acceleration will rapidly increase and then level off. The
amplitude of the action of these two activities is similar, and it is difficult to distinguish the
specific type of activity of this sample in the measurement results of low-precision sensors.
Therefore, this should be avoided as much as possible by using high-precision sensors.

6. Conclusions

This paper proposed a new fall detection method called Patch-Transformer Network,
which uses convolution to extract local feature information in a sliding window segmenta-
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tion data matrix and uses the Transformer multi-head self-attention mechanism to learn
global features of fall behavior. The final detection result is output from a linear layer. The
network model has good performance for time series in general and wearable sensor data.
This work is better than previous attempts based on wearable sensors signals in various
evaluation metrics. In the future, we will develop a fall detection system based on wearable
sensors and deploy this model on the fall detection system to automatically detect the
occurrence of fall behavior and reduce the workload of medical staff.
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