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Abstract: Resolution enhancement is crucial for human vision. However, it can be resource-consuming
in the display pipeline. Therefore, there is a need to develop a lightweight resolution improvement
algorithm specifically targeting visual attention regions. This paper presents a spatial-interpolation-
based algorithm to improve the resolution of the visual attention area. The eye-tracking system
consists of a near-infrared camera and an event camera is proposed to obtain the 3D gaze vector
and eye moving trajectory. Secondly, the observation coordinates are obtained by gaze vectors, and
the visual attention region is defined by the sensitive field-of-view angle. Then, interpolation-based
adaptive spatial resolution enhancement and contrast enhancement adjustment are performed in
the visual attention area. Finally, the feasibility of the proposed method is tested on both qualitative
and quantitative dimensions. The experimental results demonstrate that the proposed method can
significantly improve the visual effects.

Keywords: super resolution; eye tracking; visual attention region; virtual reality

1. Introduction

Super-resolution is an image processing technique that transforms low-resolution
images into high-resolution ones through certain methods [1–4]. Interpolation algorithm is
a traditional super-resolution reconstruction method [5]. It resamples the low-resolution
image, extracts useful information to reconstruct the image, and achieves the purpose of
enlarging the image and obtaining a higher resolution. It can effectively improve the quality
and details of images. In augmented reality (AR) and virtual reality (VR) applications,
high resolution is particularly important for improving the user’s visual experience [6–9].
However, many existing AR/VR devices are limited by hardware conditions, and thus the
image quality and resolution cannot satisfy the visual sensory needs of users. Therefore,
there is an urgent need to develop lightweight, hardwareized super-resolution technology
to solve this problem.

Some recent studies on super-resolution reconstruction are based on deep learning
methods. VDSR [10], LapSRN [11], SR-LUT [12] and other deep-learning algorithms have
achieved good results. However, the computational cost and GPU memory usage of deep-
learning-based super-resolution algorithms are very high, which are difficult to deploy in
mobile devices, such as AR/VR through hardware.

In the AR/VR system, visual-attention-area-oriented super-resolution takes the char-
acteristics of the sensitive field of view into consideration [13]. While using the AR/VR
devices, the user’s sight is usually focused on a certain area in the image, which is the
so-called “visual attention regions”. Performing the super-resolution algorithm on the
visual attention region [14–17] could meet customers’ vision expectations. To achieve this
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goal, the user’s gaze and the current fixation point location could be determined by an
eye-tracking system. The commonly used sensors to obtain annotation information are
infrared cameras and event cameras. The system in this paper adopts multi-sensor fusion.
The infrared camera and the event camera are used to obtain the annotation information
and eye movement information, and they constitute the eye-tracking system, which feeds
back the captured annotation information to the display to determine the staring area. Then,
the spatial-based interpolation and contrast enhancement algorithms are applied on the
visual attention region. Performing super-resolution on local areas can reduce computation
and save resources while achieving better visual effects.

The main contributions of this article are as follows:

(1) An adaptive spatial resolution improvement algorithm is proposed, which uses the
traditional interpolation algorithm. The algorithm achieves better performance and
reduces the computation.

(2) Contrast enhancement and sharpening are carried out to further improve the visual
effect of the image after the over-division.

(3) The super-resolution algorithm is combined with eye movement information, and
the resolution of the visual attention area is improved, which improves the visual
experience of human–computer interaction.

(4) This algorithm adopts a non-deep-learning method and could be implemented in
hardware due to its low computational cost.

The rest of this article is organized as follows. The second part introduces the back-
ground and motivations of the research. The third part presents the process of the super-
resolution algorithm, contrast enhancement algorithm, eye movement and annotation
information acquisition in detail. The fourth part lists the experimental results and verifies
the effectiveness of the algorithm. Lastly, the fifth part gives the conclusion of this study
and the future work.

2. Related Work and Motivations

AR and VR technologies are among the most widely discussed and researched areas in
the field of technology. Their applications cover many fields, including gaming, healthcare,
manufacturing, entertainment and so on. However, one challenge that AR/VR systems face
is the need for high-resolution displays that can provide a realistic and detailed experience.
The image processing and display technology in AR/VR are crucial, as they directly impact
the user’s perception of the virtual scene.

Super-resolution reconstructions are mainly divided into three types: reconstruction-
based methods, interpolation-based methods, and learning-based methods. Interpolation
algorithms can be divided into two categories: spatial-based interpolation and frequency-
based interpolation. Traditional spatial-based interpolation algorithms include bilinear
interpolation [18], bicubic interpolation [19], and nearest-neighbor interpolation [20]. Com-
mon frequency-based interpolation algorithms include wavelet-based interpolation [21]
and locally linear-embedding-based interpolation [22]. Interpolation [23] is a commonly
used super-resolution algorithm that can effectively improve the quality and details of
images. The advantages of interpolation algorithms are their simple implementation and
low computational complexity. However, they may introduce noise, blur image details,
and change the color and contrast of images, resulting in image distortion [24]. To address
these issues, researchers have proposed improved interpolation algorithms, such as the
improved algorithm of bilinear interpolation [25], which can effectively reduce noise and
improve image quality and details. A method based on reconstruction requires prior
information to constrain the reconstruction process. When processing image tasks with
large amplification coefficient, the performance of the algorithm will become poor due to
the lack of prior information. Dong et al. [26] proposed the first model to reconstruct HR
images using a convolutional neural network (CNN) approach, with a result that was better
than some traditional methods. Simonyan K et al. [10] proposed Very Deep Convolutional
Networks for super-resolution; although the result was satisfactory, its network layers were
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too deep. Jo Y et al. [12] proposed super-resolution using a look-up table; this was a fast
super-resolution method, but the effect was not obvious.

The visual-attention-area oriented super-resolution algorithm can reduce computation
and alleviate the computational complexity. An eye-tracking system is needed to realize the
visual-attention-area-oriented super-resolution. The eye-tracking system includes an event
camera [27,28] and an infrared camera. Event cameras are used to obtain eye movement
information and infrared cameras are used to obtain fixation points. Since only the regions
of interest to the user need to be super-resolution-processed, this saves computational
resources. Visual-attention-area-oriented super-resolution rendering technology can be
widely used in AR/VR systems in the future.

3. System and Methods

The whole system consists of an event camera, an infrared camera and a display
device. The whole eye-tracking system is placed in front of a display device and should be
lower than the height of the display device to avoid interference caused by occlusion of the
display device. The structural diagram of the experimental system is shown in Figure 1.
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Figure 1. The structural diagram of the experimental device.

The infrared camera is a device used to obtain eye-tracking data and fixation points. It
has the advantages of low cost, small size and being easy to use. Its principle is to detect
the position and movement of the eye through the reflection of infrared light, and then
infer the fixation point of the eye. Specifically, the infrared camera emits infrared light,
which is reflected by the eye, and the camera captures the reflected light. Then, image-
processing algorithms are used to analyze the position and movement of the reflected light.
By comparing the eye positions captured at different times, the camera can calculate the
trajectory and fixation point of the eye.

As mentioned above, the method proposed in this article is mainly used to improve the
resolution of the fixation area, achieving eye-tracking interaction [29] with super-resolution
technology. The framework of our algorithm includes three parts: gaze acquisition, super-
resolution reconstruction and contrast enhancement. Super-resolution reconstruction
includes three steps: calculating contrast, calculating weight and upsampling. The total
process can be divided into five steps as in Figure 2.
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The steps of Figure 2 are as follows: Firstly, the visual attention area is obtained by
the sensor, the contrast of the area is calculated, the weights in the upsampling process
of Lanczos interpolation are calculated, the upsampling is carried out and the contrast
sharpening is finally improved.

3.1. Gaze Vector Acquisition

The gaze vector refers to the vector from the eye to the viewing point, which is used to
determine the user’s gaze direction and fixation position. Firstly, in the initial calibration
phase, the user fixates on the area identified in advance (such as the red circle in Figure 1)
on the screen; the infrared camera and the event camera are used to capture the gaze vector
at this time. The transformation matrix between the gaze vector obtained by the eye tracker
device in the user coordinate system and the gaze vector of the display plane is obtained.
Secondly, the eye-tracking device will perform the corresponding matrix transformation
for each gaze vector to obtain the unique display gaze vector. The gaze vector is calculated
using the following formula:

→
v gaze =

→
p f ixation −

→
p eye (1)

where
→
v gaze represents the gaze vector,

→
p f ixation represents the coordinates of the fixation

point and
→
p eye.represents the coordinates of the eye. The gaze vector is normalized, and

the direction of this vector is the gaze direction. After the gaze vector is projected, the
two-dimensional coordinate value in the display coordinate system is obtained, which is the
gaze coordinate, represented as the point the user is looking at during the eye interaction.

3.2. Adaptive Spatial Resolution Enhancement Module

The super-resolution reconstruction algorithm used in this paper uses a 4 × 4 filter
with 12 core pixels and presents an oval shape. The final filtering kernel is generated
iteratively using bilinear interpolation. The core idea was to use the Lancozs-like function
for upsampling. The Lanczos function is essentially a sinc function that can be used in
resampling algorithms, and theoretically, it is an optimal reconstruction filter window
function. Moreover, its length and window are adaptive, and it has good anti-aliasing char-
acteristics. Therefore, we introduced the locally adaptive elliptical Lanczos-like filter into
our spatial resolution enhancement algorithm and applied it separately in the horizontal
and vertical directions [30].

We facilitated every point on the matrix of target resolution sizes, calculated the
coordinate mapped to the low-resolution (LR) image and obtained the pixels and texture
information near the coordinate, which were used to calculate texture information and
resampling. The calculated LR image coordinate pixel point, obtained by rounding down
the coordinate value P, was stored as the integer and decimal parts. The coordinates of
p + (1, −1), p + (0, 1), p + (2, 1) and p + (1, 3) are, respectively, denoted as Q0, Q1, Q2 and
Q3. The coordinate relationship of each pixel is shown in Figure 3.
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Edge-detection algorithms [31,32] typically calculate the gradient magnitude and
direction of each pixel, and determine whether it is an edge point by comparing the
gradient magnitude with a threshold. The two-dimensional direction gradient vector, dir,
represents the gradient value in the corresponding direction [33]. The horizontal and
vertical gradient values of each pixel are calculated, and the two-dimensional gradient
vector is obtained. The magnitude and direction of the vector could be used to represent the
edge features of the pixel. The length value, len, of the two-dimensional direction gradient
vector represents the magnitude or strength of the gradient vector. The gradient magnitude
represents the local variation or gray level slope of each pixel in the image, and a larger
magnitude indicates a more drastic change and is usually associated with edge or corner
features. If the gradient magnitude exceeds a predefined threshold, it is considered as an
edge point; otherwise, it is considered as a non-edge point. The two-dimensional gradient
vector, dir, len, can be initialized. The formula for calculating the brightness value of each
pixel is:

luminance = 0.5 ∗ R + 0.5 ∗ B + G (2)

where R, G and B are the values of different channels of pixel, respectively. Edges are
typically composed of pixels with large brightness variations. Taking the coordinate of
Qi and pixel brightness as inputs, the weight, w, is accumulated iteratively using bilinear
interpolation. The parameters required for the class Lancozs interpolation function are
calculated based on the position of the four points. The horizontal and vertical gradient
magnitudes and vectors are calculated separately, denoted as lx, dx and ly, dy, respectively.
lx and ly are multiplied by the weight value, w, and added to the gradient magnitude,
len, while the gradient values in each direction are multiplied by w and added to the
horizontal and vertical direction gradient vectors. The gradient values and length values of
dir are iteratively calculated for each pixel, and the above results are weighted and summed
according to w to obtain the final gradient vector and length.

Different upsampling methods are employed for edge and non-edge regions. For
non-edge regions, the weight values of each point are computed and processed using
weighted averaging. For edge regions, weighted averaging leads to motion blur, at which
point high-pass filtering is required.

Each sampling point corresponding to the input image is interpolated using a Lanczos-
like function. The continuous analog signal Lanczos4 function is expressed as:

L(x) =
4sin(πx)sin

(
πx
4
)

π2x2 (3)

The continuous analog signal of the Lanczos-like function is discretized and fitted by a
fourth-order polynomial. The shape of the function is controlled by the range of the control
variable ω. The fitting function is:

L(X) =

[
25
32

x4 − 25
16

x2 +
1

16

](
ωx2 − 1

)2
(4)

The coefficient of the fourth-order term in the polynomial is used to control the edge
features of the sampling function. The edge features are calculated by taking the pixel
Q and its neighboring pixels in the horizontal and vertical directions, and the resulting
feature value is denoted as:

E =
(

EX2 + EY2
)

(5)

EX =

∣∣g(Qx−1,y
)
− g

(
Qx+1,y

)∣∣
max

(∣∣g(Qx−1,y
)
− g

(
Qx,y

)∣∣, ∣∣g(Qx+1,y
)
− g

(
Qx,y

)∣∣) (6)

EY =

∣∣g(QX,y−1
)
− g

(
Qx,y+1

)∣∣
max

(∣∣g(Qx,y−1
)
− g

(
QX,y

)∣∣, ∣∣g(Qx,y+1
)
− g

(
QX,y

)∣∣) (7)
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The edge feature E is calculated for each pixel Q and its neighboring pixels in the
horizontal and vertical directions. The feature is then normalized to [0, 1] using:

Edge =
(

E
2

)2
(8)

The linear relationship between the weight ω and the edge feature Edge is estab-
lished as:

ω =
1
2
− 1

4
Edge (9)

The edge feature E and the weight ω are calculated for each of the four cross-shaped
regions in the convolution kernel, and the ω is bilinearly interpolated with respect to the
coordinate position. The resulting ω is then used for spatial upsampling at the correspond-
ing sampling point. The horizontal and vertical gradients are calculated and normalized to
a direction vector as:

dir = (cosα, sinα) (10)

The direction of the fastest grayscale value change is determined, and the gradient at
the sampling point is rotated accordingly. The anisotropic length after rotation is computed,
and the coordinate transformation (x·cosα + y·sinα, −x·sinα + y·cosα) is applied as to
adapt to edges of different angles. The rotated and scaled RGB or RGBA pixel values are
calculated and filled into the target matrix template to generate the super-resolved image
using the super-resolution algorithm.

3.3. Contrast Enhancement

Firstly, a Gaussian filter is applied to the image generated by the super-resolution
algorithm to smooth out high-frequency noise and to perform a color space conversion [32].
Then, a 3 × 3 filter is used to calculate the average contrast in the surrounding region of
each pixel to determine the contrast level of the area where the pixel is located. For each
pixel, the mean and standard deviation of its surrounding 3 × 3 pixels are calculated, and
the contrast of the pixel is determined based on the mean and standard deviation using the
formula:

contrast =
pixelvalue − pixelmean

k× pixelstd + epsilon
(11)

Here, pixelvalue is the pixel value, pixelmean is the mean of surrounding pixels, std is the
standard deviation of surrounding pixels, k is a parameter that can be adjusted to control
the response range of the contrast and epsilon is a constant that goes to zero infinitely to
avoid division by zero.

The image is divided into different regions based on local contrast values. For regions
with low contrast, the sharpness of the image is enhanced to improve its clarity and detail.
The calculation formula is as follows:

I′(x, y) =
I(x, y)− µ

1 + k
(

σ
τ − 1

) (12)

The formula implements contrast enhancement, where I(x, y) represents the brightness
value of the pixel (x, y) in the original image, µ and σ represent the mean and standard
deviation of the current region and k and τ are adjustment parameters. The numerator
subtracts the mean value of the current region, and the denominator 1 + k(σ/τ − 1) is an
adaptive gain that adjusts according to the contrast of different regions.

High-contrast regions maintain the original sharpness of the image, avoiding excessive
contrast enhancement that can amplify noise and produce artifacts. The weight of each
pixel in the final image is determined by its local contrast values. The original image is
blended with the locally contrast-enhanced image using a weighted average, preserving
the details and colors of the original while improving clarity and contrast. The sharpness
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coefficient α can be customized to achieve the desired degree of sharpening. Sharpness α is
in the range [0, 1]. The output image is given by:

Output = (1− α)× SI + α×OI (13)

Here, SI is the sharpened image and OI is the original image. When α is 1, the output
image is identical to the original; when α is 0, the output image is the sharpened image.

3.4. Evaluation Index

We used the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to
evaluate the results. The PSNR [34] is calculated as:

PSNR = 10log10
(MAX I)

2

MSE
(14)

MSE(x, y) =
1

H ×W ∑H
i=1 ∑W

J=1[X(i, j)−Y(i, j)]2 (15)

where MAX I is the maximum possible value of the pixel value in the image, usually
255; MSE is the mean square error; H and W represent the height and width of the given
image; and X(i, j) and Y(i, j) represent the sizes of the pixels corresponding to the real
high-resolution image and generated super-resolution image. The SSIM [35] value is:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µx2 + µy2 + C1)(σx2 + σy2 + C2)
(16)

where x and y represent the original image and the processed image, µx and µy represent
the mean value of x and y, respectively, σx

2 and σy
2 represent the variance of x and y,

respectively, σxy represents the variance of x and y and C1 and C2 are two constants, used
to avoid denominator-free 0 case.

Mean opinion score (MOS) [36] is a measure used in the domain of Quality of Experi-
ence and telecommunications engineering, representing overall quality of a stimulus or
system. It is the arithmetic mean over all individual “values on a predefined scale that
a subject assigns to his opinion of the performance of a system quality”. Such ratings
are usually gathered in a subjective quality evaluation test. It was scored by the tester
according to their subjective impression of the test sets in this paper.

4. Experiment and Analysis

This section includes three parts: the first part describes the design of the experimental
system, the second part validates the effectiveness of the super-resolution algorithm and
the third part simulates and implements the eye-tracking interactive super-resolution
technology.

4.1. Evaluation of Super-Resolution Algorithms

In order to verify the validity and reliability of the proposed super-resolution algo-
rithm, quantitative and qualitative verification were carried out, respectively. From a
quantitative point of view, our super-resolution algorithm adopts two evaluation indexes:
peak signal noise (PSNR) and result similarity (SSIM). The high-resolution original image
(HR) in the dataset was downsampled according to the bicubic method, and the hori-
zontal and vertical directions were downsampled according to 0.5 and 0.25 coefficients,
respectively, to obtain the corresponding low-resolution image data set (LR). The images
were reconstructed according to our upsampling super-resolution algorithm to obtain the
corresponding super-resolution (SR) images. The above evaluation indexes were used to
evaluate the super-resolution image and the original high-resolution image after the super-
resolution algorithm. Traditional super-resolution algorithms, such as bicubic, nearest and
bilinear, were used to calculate these two groups of indicators after sampling to the same
spatial resolution. At the same time, super-resolution algorithms based on deep learning,
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such as VDSR [10], were used to improve the resolution of the downsampled images by
the same multiple as the control group to calculate the two groups of indicators. The final
PSNR and SSIM were obtained by averaging the indexes of each group in the data set. In
the process of ×2 super-resolution reconstruction, the PSNR and SSIM of the proposed
algorithm and other algorithms are shown in Table 1.

Table 1. PSNR and SSIM index values of different algorithms (×2 SR).

Method PNSR Average SSIM Average

Bicubic 33.96 0.9763
Nearest 31.19 0.9570
Bilinear 32.40 0.9655

Vdsr 35.33 0.9799
Ours 35.02 0.9793

In the process of ×4 super-resolution reconstruction, the PSNR and SSIM of the
proposed algorithm and other algorithms are shown in Table 2.

Table 2. PSNR and SSIM index values of different algorithms (×4 SR).

Method PNSR Average SSIM Average

Bicubic 27.98 0.8964
Nearest 26.48 0.8635
Bilinear 27.25 0.8825

Vdsr 29.15 0.9160
Ours 28.87 0.9034

According to the results in Tables 1 and 2, the proposed algorithm achieved similar
performance as Vdsr in the two evaluation indexes, and released more computing burden
than the algorithm based on deep learning.

From a qualitative point of view, we used the subjective mean score (MOS) evaluation
index. Multiple groups of super-resolution-reconstructed images were mixed together,
including those reconstructed by traditional methods and deep learning methods. The
super-resolution algorithm presented in this paper produced better visual effects after 60
testers were asked to select the most visually effective images in each group. The MOS
index is shown in Table 3. It can be seen that the method proposed in this paper is effective
and reliable.

Table 3. MOS for different test cases.

MOS Our Method Other Methods

Building 39 21
Sea 36 24

Code 34 26
Game 41 19

Mountain 40 20
Road 38 22

The visual difference between our super-resolution reconstruction and other super-
resolution reconstructions is shown in Figure 4.
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Figure 4. The effect of a single image after the super-resolution algorithm.

The results showed that our proposed super-resolution algorithm has better visual
effects. By using our method, the bridge can be seen more clearly in Figure 4a. The
natural scenery in Figure 4c,e is more clearly textured. The details in Figure 4b,d are more
reproduced, such as the outline of the car in Figure 4d. Therefore, it can be concluded that
the proposed method is more effective and reliable.

4.2. Eye-Movement Interaction and Super-Resolution of Fixation Area
4.2.1. Obtain Gaze Area and Eye Movement Trajectory

The application scenario of the sensor is to obtain annotation information. The infrared
camera captures images of the eye and extracts the position and size of the pupil. Based on
the position of the pupil in the image, the direction vector of the eye can be determined.
The motion vector of the eye can be obtained by recording the eye’s movement trajectory.
Combining the direction vector and motion vector of the eye yields the gaze vector. An
event camera is a new type of image sensor that can capture and process visual event
information very quickly. Unlike traditional cameras that capture and process images at
a fixed frame rate, event cameras individually record changes in light intensity for each
pixel in the image sensor and produce event data at a very high time resolution. Event
outputs are generated only when the pixel values change. Red and green are usually
used to represent different event types or timestamps. Color indicates the change in pixel
intensity. This color coding helps to better capture eye-tracking data. The obtained infrared
gaze is shown in Figure 5, while the eye-tracking captured by the event camera is shown in
Figure 6. Red means pixel brightness increases, green means pixel brightness decreases.
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4.2.2. Enhancing the Image Resolution of the Fixation Area

In the near-eye display system, visual-attention-area oriented super-resolution is
important. In order to verify the robustness of the algorithm, the elliptical shape annotation
trajectory was simulated according to the user’s fixation habit. This simulation upsamples
the horizontal and vertical resolution of the central region of the gaze point, achieving a
×4 super-resolution effect, and performs contrast enhancement to highlight edge details.
For the outer layer, this simulation only performed contrast enhancement, which can
effectively meet the requirements of both super-resolution and visual effects while reducing
computational costs and minimizing delays in the eye-movement-tracking process. The
human eye has high sensitivity in the 5.2◦ region of the central retina. Thus, we only
need to improve the resolution of the high-sensitivity region. Experiments show that the
super-resolution algorithm based on the visual attention area can save about 80% of the
computing resource compared with processing the whole image.

As illustrated in Figure 7, this simulation employs an elliptical gaze trajectory which
is marked in red dots.
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Figure 7. Elliptical gaze trajectory used in simulation.

According to the simulated elliptic annotation trajectory, the region to be processed is
determined.

As long as the eye movement data generated by the user in the process of human–
computer interaction is obtained, the trajectory of the gaze point moving on the display can
be calculated. The actual gaze trajectory is used to replace the simulated gaze trajectory,
and the algorithm can be used in the actual human–computer interaction system. The
global simulation results are shown in Figure 8.
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Figure 8. Visual effects after the visual-attention-area oriented super-resolution. The resolution and
contrast enhancement were performed in the red rectangle box, and the contrast enhancement was
performed in the blue rectangle box outside the red rectangle box.

The simulation effect under a certain gaze point is shown in Figure 9. The red rectan-
gular box is built around the fixation point that the user is looking at. This part of the region
was upsampled to improve the resolution, and at the same time, the contrast adaptive
sharpening was performed. Outside the red box, only contrast-adaptive sharpening was
performed inside the blue box. Areas other than the blue box represent the original image.

The above figure shows that the proposed eye-tracking-based eye movement inter-
action super-resolution algorithm is effective and reliable. The edge information of the
complex building in the red rectangle is well preserved. The contrast outside the red
rectangle box and inside the blue rectangle box is significantly improved compared with
outside the blue rectangle box.

The running time of the interpolation algorithm in this paper was compared with other
traditional interpolation algorithms, and the experimental results are shown in Table 4.
Compared with other traditional algorithms, the proposed algorithm takes only a little
longer time. However, the reconstruction effect is significantly better than other traditional
effects. The graphics card we used was NVIDIA GeForce RTX4090; the CPU we used was
13th Gen Intel(R) Core(TM) i9-13900K.
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Table 4. Running time for different test cases.

Method Running Time

Bicubic 42.98 µs
Nearest 23.75 µs
Bilinear 31.74 µs

Ours 61.44 µs

Experiments were conducted to test the satisfaction of users of the global execution
algorithm and the annotation area execution algorithm. The experimental results are shown
in Table 5.

Table 5. MOS for different processing area.

MOS
Global Visual Attention Area

18 42

5. Conclusions

Resolution enhancement is important for human vision. In this paper, we developed
a lightweight resolution enhancement algorithm for visual attention regions. Firstly, the
eye-tracking system was proposed to obtain the 3D gaze vector and eye-moving trajectory.
Secondly, the observation coordinates were obtained by gaze vectors, and the visual at-
tention region was defined by the sensitive field-of-view angle. Then, interpolation-based
adaptive spatial resolution enhancement and contrast-enhancement adjustment were per-
formed in the visual attention area. Finally, the feasibility of the proposed method was
tested on both qualitative and quantitative dimensions. The experimental results demon-
strate that the proposed method can significantly improve the visual effects. Experiments
show that the super-resolution algorithm based on the visual attention area can save about
80% of the computing resource compared with processing the whole image. While the pro-
posed eye-tracking interactive super-resolution algorithm successfully improves resolution
based on the gaze area, there is still room for improvement in real-time performance. In
the future, the gaze and eye-tracking information acquired by the eye-tracking system will
be used to test the performance of this eye-tracking interactive super-resolution algorithm
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in real time. The algorithm will be deployed in VR/AR devices to test the algorithm
performance.
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