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Abstract: Evaluating the physical degradation behavior and estimating the lifetime of engineering 
systems and structures is crucial to ensure their safe and reliable operation. However, measuring 
lifetime through actual operating conditions can be a difficult and slow process. While valuable and 
quick in measuring lifetimes, accelerated life testing is often oversimplified and does not provide 
accurate simulations of the exact operating environment. This paper proposes a data-driven frame-
work for time-efficient modeling of field degradation using sensor measurements from short-term 
actual operating conditions degradation tests. The framework consists of two neural networks: a 
physics discovery neural network and a predictive neural network. The former models the under-
lying physics of degradation, while the latter makes probabilistic predictions for degradation inten-
sity. The physics discovery neural network guides the predictive neural network for better life esti-
mations. The proposed framework addresses two main challenges associated with applying neural 
networks for lifetime estimation: incorporating the underlying physics of degradation and require-
ments for extensive training data. This paper demonstrates the effectiveness of the proposed ap-
proach through a case study of atmospheric corrosion of steel test samples in a marine environment. 
The results show the proposed framework’s effectiveness, where the mean absolute error of the 
predictions is lower by up to 76% compared to a standard neural network. By employing the pro-
posed data-driven framework for lifetime prediction, systems safety and reliability can be evaluated 
efficiently, and maintenance activities can be optimized. 
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1. Introduction 
Effective lifetime prediction for engineering systems or structures that undergo deg-

radation in the field, such as airplanes and ships, is essential for different reasons, such as 
ensuring safety, facilitating preventive maintenance, and optimizing operational effi-
ciency. For example, safety is a major concern in aviation and maritime industries. The 
degradation of components in a critical system/structure can lead to catastrophic failures, 
resulting in loss of life and significant financial implications. By accurately predicting the 
lifetime, potential risks can be identified in advance, allowing for proactive measures to 
be taken. Moreover, predicting the lifetime facilitates implementing predictive mainte-
nance strategies, which reduces downtime and avoids costly repairs. Furthermore, accu-
rate lifetime prediction allows for better resource allocation, improved operational plan-
ning, and enhanced efficiency. 

1.1. Problem Statement 
Two different approaches can be found in the literature for lifetime prediction: (1) 

empirical models based on the physics of failure and (2) data-driven models based on 
sensor measurements. However, both approaches have their limitations. Empirical 
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models are obtained experimentally, usually in controlled laboratory environments. 
While they provide valuable insights, these models do not fully represent the actual deg-
radation process that happens in the field. The reason is that such models have been ob-
tained after many simplifications and may exclude certain stresses in the field (e.g., me-
chanical, temperature, and humidity), which can cause considerable estimation errors. 

On the other hand, data-driven models, particularly neural networks (NN), can in-
corporate a broad range of stresses and learn the complex interactions between them. 
However, there are issues associated with such models as well. Firstly, they only learn the 
data patterns without consideration of the governing physics of degradation. Excluding 
physics, accompanied by the lack of interpretability in NNs, makes them prone to violat-
ing physical laws unknowingly while showing a good fit to the training data. This issue 
may lead to weak generalization, mainly for predicting situations that fall outside of the 
training dataset. Secondly, they usually require a significant amount of data for sufficient 
training, which may not always be available. To estimate degradation and lifetime, NNs 
are typically trained in a supervised setting using labeled data that ideally have been col-
lected at different levels of degradation up to the failure points. However, collecting that 
data is usually expensive and time-consuming, particularly for durable systems with long 
lifetimes, as material degradation (e.g., corrosion, fatigue, wear, or creep) is often a slow 
process. Therefore, there is a need for a model that not only accounts for a wide range of 
stresses and captures the complex interactions between them but also should possess in-
terpretability in the sense that it follows the underlying physics of degradation that occurs 
in real-world conditions. Additionally, this model should be trainable with limited data. 

To address these issues, the underlying physics of degradation should be considered 
in developing a NN model for lifetime estimation. Incorporating the underlying physics 
of degradation into a NN model makes it more robust as the models’ performance does 
not drop for unseen data. Physics-guided models can be more accurate for predicting the 
state of systems in the future as physics helps determine the direction of damage accumu-
lation. Moreover, adding physics imposes a constraint that restricts the search space for 
model parameters, allowing for dealing with the data scarcity issue. However, in some 
systems, the physics of degradation and failure is not fully known nor readily available. 
Therefore, the questions of how to discover the underlying physics of degradation, which 
may be complex in real-world conditions, and how to add the complex physics to a pre-
dictive NN for robust lifetime assessment need to be answered. 

1.2. Previous Studies 
Using NNs for lifetime prediction has been widely considered in the literature. However, 

previous research studies on NN models for lifetime prediction lack consideration of the com-
mon issues noted in Section 1.1. Just a limited number of studies have incorporated physics 
into NNs to improve their performance. A summary of examples of these studies follows. 

1.2.1. Neural Networks for Lifetime Prediction 
NNs have found extensive applications for lifetime estimations based on sensor 

measurements. Batteries [1], rotating machinery [2], and machining tools [3] are some ex-
amples that have been considered in the literature for lifetime predictions by NN models. 
Lifetime prediction is mainly performed by estimating remaining useful life (RUL) or ac-
cumulation of damage (i.e., degradation). This estimation effort is a regression problem 
that maps the operating conditions to RUL or degradation intensity. 

Different NN algorithms have been used for this purpose, such as feedforward NNs, 
convolutional NNs, recurrent NNs, and autoencoder [4–6]. Feedforward NNs can learn 
complex patterns and are relatively straightforward to implement. For example, Kang et 
al. [7] developed a feedforward NN for estimating RUL for turbofan engines based on 
sensor measurements. Khumprom et al. [8] evaluated the impact of input features on the 
performance of a feedforward NN for RUL prediction for the same systems. Elasha et al. 
[9] used the same type of network for evaluating the RUL of wind turbine gearbox 
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bearings using some extracted features from vibration measurements. Ismail et al. trained 
a feedforward NN using the extracted features by principal component analysis to esti-
mate RUL for insulated gas bipolar transistors [10]. 

Convolutional NNs are designed for processing grid-like data to learn hierarchical 
representations of input data. Liu et al. [11] trained a convolutional NN to model the RUL 
of bearings after a short-time Fourier transformation of collected vibrations. The same 
type of NN was used by Modarres et al. [12] for the assessment of structural damages. 
Aghazadeh et al. [3] used a convolutional NN for tool wear estimation. A convolutional 
NN was developed by Li et al. [13] for the RUL estimation of turbofan engines. 

Recurrent NNs are designed for processing sequential data as they have internal 
memory to keep information from past inputs for prediction on future inputs. A long 
short-term memory network, which is a type of recurrent NN, was developed by Hu et al. 
[14] to predict the degradation of mechanical parts. Zhang et al. [15] used the same type 
of NN for machine tool wear prediction. Liang et al. [16] developed a recurrent NN for 
the life assessment of bearings. 

Autoencoders can learn meaningful representations of the input data in lower dimen-
sions and are used for feature learning. Verstraete et al. [17] and Ding et al. [18] used autoen-
coders for the lifetime prediction of rolling bearings. Wei et al. [19] proposed a RUL prediction 
framework for Lithium-ion batteries based on an autoencoder. Zhao et al. [20] compared dif-
ferent NN algorithms, such as autoencoder, for the lifetime prediction of machining tools. 

Despite significant progress in the NN applications, to develop a robust NN model 
for lifetime and degradation prediction that can generalize well and deal with data scar-
city, the issues of the lack of interpretability, inconsistencies with physical laws, and the 
requirement for extensive training data need to be addressed. 

1.2.2. Physics-Informed Neural Networks for Lifetime Prediction 
Raissi et al. [21] introduced the idea of physics-informed neural networks (PINNs). 

They proposed PINN for solving challenging partial differential equations (PDE) in fluids, 
quantum mechanics, reaction–diffusion systems, and the propagation of non-linear shal-
low-water waves. PINNs are designed for supervised problems and incorporate laws of 
physics in the form of PDE as a penalty term to the NN cost function. This approach ena-
bles the trained model to follow the governing differential equations and be a surrogate 
function for the equation solution [22–24]. 

The idea of PINN was later used in a very limited number of studies for developing NN 
models for the prediction of degradation. Zhang et al. [25] used the idea for creep-fatigue life-
time prediction at high temperatures, while the added physics was just a simple restriction on 
the estimated lifetimes. They added a penalty term to the network cost function to force the 
lifetime estimations to be in a specific range (between 0 and 105 cycles). Zhou et al. [26] added 
some simple fundamental rules from fatigue degradation as the underlying physics to a NN 
model to improve fatigue life predictions. Similarly, Kim et al. [27] considered a few basic un-
derstandings, such as the irreversibility of degradation, to guide a NN. Finally, Cofre-Martel 
et al. [28] used the PINN idea to explain the physics of failure based on latent features. 

The major obstacle to using PINN for lifetime estimation purposes is the lack of suf-
ficient knowledge about the underlying physics of degradation. This knowledge is often 
unavailable for the complex phenomena of degradation in real-world conditions, where 
multiple stresses act together affecting the rate and intensity of degradation synergically at 
different levels. That is why the previous studies mainly considered just some basic under-
standings of physics to guide NNs. Therefore, for lifetime prediction under degradation, 
there is a need for a framework that can discover the complex underlying physics of degra-
dation and then use the discovered physics to improve the predictions of degradation. 

1.3. Objectives and Contributions 
The main objective of this paper is to introduce a NN-based approach that discovers 

the more sophisticated and complex underlying physics of system degradation than 
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simplified and empirically developed relationships by considering all environmental fac-
tors that affect degradation and then use the discovered physics for a more accurate pre-
diction of long-term degradation in the field. 

For this purpose, the proposed approach creates a physics discovery NN that cap-
tures the relationship between degradation rate and operating conditions. This model is 
then used to guide the development of a second model, which is trained on initial meas-
urements of degradation. The second model, known as the predictive model, learns the 
temporal behavior of degradation intensity while adhering to the guidance provided by 
the first model. By combining the physics discovery model and the predictive model, long-
term degradation can be estimated accurately, even with limited training data. To enable 
robust decision-making, the predictive model also quantifies the uncertainty of the esti-
mated degradation intensities, indicating the model’s confidence in its predictions. 

The proposed approach has several advantages over traditional methods for predict-
ing product degradation. Using NNs allows for more accurate predictions by identifying 
complex patterns and relationships in the data that may not be apparent with conven-
tional statistical methods. The proposed NN framework incorporates underlying physics 
in the form of a relationship between operating conditions and degradation rate to im-
prove the accuracy of predictions. The model also provides probabilistic estimations of 
accumulated damage, allowing for more robust decision-making. 

The key contribution of this study is the development of a guided NN framework 
that incorporates the physics of degradation discovered from short-term tests to accu-
rately predict the degradation when there is a limited knowledge about future operating 
conditions. Therefore, this framework effectively addresses the challenge posed by the 
lack of sufficient data on environmental factors that a system may encounter in the future. 
This challenge has been a hindrance in using machine learning models for the accurate 
assessment of degradation. 

The approach proposed in this paper builds upon the previous research studies on 
using machine learning techniques to assess the life of systems experiencing environmen-
tally induced degradation and evaluate the impact of environmental factors on degrada-
tion progress. This paper contributes to the current state of the art by introducing a novel 
dual NN framework. This framework involves two separate NNs working in tandem, 
each with distinct roles, and interacting during training to enable physics-informed pre-
dictions of degradation even when data are limited. Additionally, the implementation of 
this framework is demonstrated by showing the improvements in the accuracy of the pre-
dictions realized by the proposed approach. This framework enables efficient evaluation 
of systems degradation even with limited data, thereby avoiding the repercussions of in-
correct lifetime estimations, such as economic losses and potentially life-threatening inci-
dents, particularly for safety-critical products. 

The remainder of this paper is structured as follows. The proposed framework is de-
scribed in Section 2. This section explains how the framework models the underlying phys-
ics and utilizes it for degradation prediction. In Section 3, the effectiveness of the framework 
is evaluated for a case study on the degradation of steel coupons as a simplified form of an 
engineering structure. In this section, the application of the proposed approach is thor-
oughly evaluated, and its performance is quantified. Additionally, the obtained results are 
discussed. Finally, Section 4 is the conclusion. It summarizes the key findings of the study 
and highlights the significance of the proposed approach in predicting degradation. 

2. Proposed Methodology 
The proposed methodology in this paper leverages the high capacity of NNs to effec-

tively model complex patterns and relationships within the data. By harnessing the power 
of NNs, the methodology aims to discover and incorporate the complex underlying phys-
ics of degradation phenomena. Figure 1 provides the overview of the training process of 
the proposed framework for predicting degradation intensity. The framework contains 
two NNs: (1) physics discovery NN (𝑁ఠ,ఏ ) and (2) predictive NN (𝑀ట,ఎ ). Unlike the 
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traditional PINN, which relies on empirical models for physics, in this approach, the phys-
ics discovery NN is responsible for modeling the underlying physics of degradation. Op-
erating conditions impact the degradation rate either linearly or non-linearly, and this lin-
ear/non-linear relationship can be captured as a regression model by the physics discovery 
NN. This network is a feedforward NN with mean squared error (MSE) loss function that 
maps the operating conditions (𝑥ଵ, 𝑥ଶ, …, 𝑥௡) to the degradation rate (డ஽డ௧ ). Equation (1) 
shows the MSE function, where 𝑁 is the number of data points, డ஽డ௧  is the true value of 

the degradation rate, and డ஽డ௧෢ is the estimated degradation rate which depends on input 
features 𝒙, network weights 𝝎, and bias parameters 𝜽. 

 
Figure 1. Training of guided neural network. 

Sensor measurements and degradation rates from short-term tests in different oper-
ating conditions are used to train the physics discovery NN. The primary goal of the phys-
ics discovery model is to capture the impact of operating conditions on the degradation 
rate rather than temporal patterns in degradation intensity. In this approach, it is assumed 
that the physics of degradation can be modeled based on the degradation rate (first-order 
gradient of degradation intensity with respect to time). However, if the degradation be-
havior undergoes significant changes over time [29], it is important to consider the degra-
dation acceleration (second-order gradient of degradation intensity with respect to time) 
or higher-order gradients in modeling the underlying physics. This case can be a part of 
the future extensions of the current study. 

The model’s ability to discover physics is reflected in its goodness of fit, indicating how 
effectively it captures the relationship between the variables. Additionally, the model’s ca-
pacity to discover can be further evidenced by the subsequent enhancements to the predic-
tive model’s estimations achieved by incorporating the underlying mechanism. 

𝑀𝑆𝐸 ൌ 1𝑁෍ቈሺ𝜕𝐷𝜕𝑡 ሻ௜ − ሺ𝜕𝐷෢𝜕𝑡 ሺ𝒙,𝝎,𝜽ሻሻ௜቉ଶே
௜ୀଵ  (1) 

The predictive NN estimates the degradation intensity probabilistically. The uncer-
tainty in the estimated degradation intensity can be presented by different parametric dis-
tributions. Assuming a normal distribution with the mean of 𝐷ఓ and standard deviation 
of 𝐷ఙ , the outer layer of the predictive NN has two neurons for 𝐷ఓ  and 𝐷ఙ . Since 𝐷ఙ 
must be a positive value, the Softplus activation function, which ensures a positive output, 
is used for the corresponding neuron in the outer layer. Softplus is a smooth and non-
linear activation function, defined as the logarithm of the exponential function applied to 
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the input [30]. For the other neurons, different activation functions can be used based on 
the ultimate performance of the model. Hyperbolic Tangent (Tanh) and Rectified Linear 
Unit (ReLU) are the most common activation functions for regression problems. However, 
some extensions of ReLU, most commonly Leaky ReLU, were also used before. Tanh may 
suffer from the vanishing gradient problem, which can impact training NNs. 

On the other hand, ReLU avoids the vanishing gradient and is also computationally 
efficient. However, ReLU can cause, in some instances, some neurons to become perma-
nently inactive. That is why the ReLU extensions were considered before. Leaky ReLU 
solves the inactive neuron issue, but its hyperparameter needs to be manually set, which 
requires additional hyperparameter tuning [30]. 

Equation (2) shows the cost function of the predictive NN, which has two terms: (1) 𝐿ௗ௔௧௔ for fitting the data and (2) 𝐿௣௛௬௦௜௖௦ for following the underlying physics learned by 
the physics discovery NN. The model is trained using the labeled data and 𝐿ௗ௔௧௔ repre-
sents the error between the estimates (i.e., the network’s output) and the observed (true) 
values. 𝐿௣௛௬௦௜௖௦ is a constraint in the optimization process of the network cost function 
and the scalar parameter 𝜆  weights the constraint. The proposed approach aims to 
achieve consistency of the predictions with the underlying physics, which is discovered 
by the first NN, by minimizing 𝐿௣௛௬௦௜௖௦. The output of the predictive NN is a parametric 
distribution, which is why the negative log-likelihood of the actual values of degradation 
intensity is used as the loss term for fitting the data. In Equation (2), 𝑡 is time, 𝝍 repre-
sents the vector of weights, and 𝜼 is the vector of bias parameters of the network. The 
automatic differentiation technique [31] is used to calculate డ஽ഋ෢డ௧  term in 𝐿௣௛௬௦௜௖௦. 𝐶𝑜𝑠𝑡 = 𝐿ௗ௔௧௔ + 𝜆 × 𝐿௣௛௬௦௜௖௦ 𝐿ௗ௔௧௔ = 12 ቈ𝐷 − 𝐷ఓ෢ሺ𝑡,𝝍,𝜼ሻ𝐷ఙ෢ሺ𝑡,𝝍,𝜼ሻ ቉ଶ + 12 𝑙𝑜𝑔 [√2𝜋 × 𝐷ఙ෢ሺ𝑡,𝝍,𝜼ሻ]ଶ 

𝐿௣௛௬௦௜௖௦ = 𝜕𝐷ఓ෢(𝑡)𝜕𝑡 − 𝑁ఠ,ఏ(𝒙) 

(2)

The physics discovery model guides the predictive model to learn the parameters so 
that they follow the physics alongside fitting the data. After training, only time is needed 
as the input for predicting field degradation intensity, as no sensor measurements are 
available regarding future operating conditions. It means the sensor measurements from 
short-term tests are used indirectly to help the predictive NN to find the right parameters 
for linking degradation intensity to time. So, for the prediction of degradation intensity in 
the future, the only available feature is use/exposure time, which is required as input. 

The proposed approach uses two different datasets to train the two NNs. The first da-
taset, used to train the physics discovery model, has sensor measurements as input features 
and degradation rates as labels. However, further feature selection/extraction and data pre-
processing methods can be used as required. This dataset can be obtained from short-term 
tests in various operating conditions. For example, samples of materials from a considered 
system/structure can be exposed to different environmental factors, such as temperature 
and humidity, within the range of its actual operating conditions in the field, and the deg-
radation rate for each condition be measured. Using sensors, the environmental factors as-
sociated with degradation rates can be measured. The degradation rate can be quantified 
differently depending on the considered degradation mechanisms. For example, the degra-
dation rate can be expressed as the resulting mass loss rate for the corrosion mechanism. 

Duration and specifications of the tests vary case by case and depend on the nature 
of the systems and the associated failure mechanism. However, it is crucial to include crit-
ical variabilities and initial conditions that affect degradation, such as variations in geom-
etry and environmental conditions, in the training dataset, to ensure that the physics dis-
covery model represents and closely mimics the degradation process. To include variabil-
ity in initial damages in the developed model, samples with different levels of initial 
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degradation can be used in the short-term tests. It is worth noting that these tests are per-
formed under operational conditions rather than accelerated conditions. The primary ad-
vantage of conducting short-term tests is the emphasis on obtaining degradation rate la-
bels, which can be promptly collected, as opposed to measuring degradation intensity 
which is time-consuming for long-term degradations. The second dataset, which includes 
the exposure times as input features and associated degradation intensities as labels, is 
used for training and testing the predictive model. Similar to the first dataset, degradation 
intensity can be measured differently by considering the degradation mechanism. Two 
examples include mass loss due to corrosion and crack growth because of fatigue. 

3. Case Study 
The proposed framework is designed to predict the degradation in systems and 

structures when there is limited knowledge about the complex underlying physics of deg-
radation and the impact of various operating conditions on lifetime. This case study ap-
plies the proposed framework to the steel structure of a subsystem within an aircraft 
working in marine environments and subject to degradation due to corrosion. However, 
because of the unavailability of datasets associated with the degradation of such a steel 
structure, degradation in coupons made from the steel is considered for this case study. 
Different parts of aircraft under high mechanical stresses during operation, such as land-
ing gears, are made of steel. 

In this case study we use data from the degradation of C1010 steel coupons from a 
previous study [32]. The C1010 is a low-carbon steel alloy known for its high weldability, 
ductility, and tensile strength. The coupons used in this study were exposed to atmospheric 
corrosion in a marine environment at the U.S. Naval Research Laboratory Key West, a test-
ing facility situated on Fleming Key in Florida, within the U.S. Naval Air Station. The expo-
sures were conducted between 28 August 2014 and 28 August 2015. The coupons were 3” × 3” × 1/6” in dimension and were affixed with two 3/16” diameter mounting holes fac-
ing south to ensure consistent mounting. Coupons had a glass bead blasted surface. On-site 
environmental data were collected from a weather station. Two datasets were gathered, one 
for short-term and another for long-term exposure. The link to the datasets can be found in 
[33]. Some specific information, such as the test standards used to prepare the coupons and 
the test conditions, as well as details of the instrumentation used for measurements are un-
known. However, these details do not impact the results of this case study. 

In this study, it is assumed that coupons represent simplified forms of a structure and 
degradation intensity is defined as the mass loss of the coupons resulting from corrosion 
over time. Mass loss was calculated as the difference between the initial mass of a coupon 
and its final mass after the removal of corroded mass. Thus, the initial and final mass was 
recorded before exposure and at the designated checkpoints for each coupon. 

The first dataset contains operating conditions and degradation measurements for 72 
coupons with no initial damage which were in the field between 24 to 36 days. The oper-
ating conditions, including temperature, humidity, and solar radiation, were collected 
every 30 min, as shown in Figure 2, and the mass losses were recorded before removing 
the coupons (i.e., 72 data points). Figure 3 shows the distribution of the calculated degra-
dation rates using this dataset. The second dataset is similar to the first dataset, except that 
the coupons were kept in the field for one year and the mass loss measurements were 
collected cumulatively at the end of each month, as shown in Figure 4. 
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Figure 2. Measured operating conditions. 

 
Figure 3. Distribution of mass loss rate (i.e., degradation rate) obtained from monthly removed coupons. 

 
Figure 4. Mass loss (i.e., degradation intensity) of coupons. 
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The first dataset (i.e., short-term degradation data) is used for modeling the underlying 
physics by the physics discovery NN. The second dataset (i.e., cumulative degradation data 
for a whole year) trains and tests the physics-guided predictive NN. Different initial observa-
tions of cumulative degradations in the second dataset are used to train the predictive model, 
while the remaining observations are used to test the predictive model’s performance. 

Twelve features, including means and standard deviations of air temperature (°C), 
relative humidity (%), and total radiant exposure (KJ/mଶ), as well as their gradients with 
respect to time over the month before each mass loss measurement, are used as inputs for 
the framework. Because of the high dimensionality of the feature space and considering 
the size of the dataset, a dimension reduction technique is used to extract influential fea-
tures in a lower dimensional space. There are different methods for data dimension re-
duction, such as principal components analysis (PCA) [34], t-distributed Stochastic Neigh-
borhood Embedding [35], and autoencoders [36] that can be used. However, to avoid the 
complications of data preprocessing, which is not in the scope of this paper, the straight-
forward linear PCA is considered. Using the PCA as an effective method for reducing the 
number of input features, the twelve environmental features were reduced into only two 
to avoid the need for a large network with many parameters. The two extracted features 
are linear combinations of the twelve original features, representing a signification frac-
tion of the variance. The first two principal components, with a total variance ratio of 
around 0.8, retain most of the relevant information. It is worth mentioning that the first 
three principal components reflect a total variance ratio of above 0.9. However, using the 
three principal components did not improve the model performance, so the first two prin-
cipal components were considered in the analysis. 

A NN with a hidden layer containing four neurons is trained to model the degrada-
tion rate (i.e., mass loss rate) based on the first two principal components. The optimal 
size for the NN is selected based on the size of the dataset and by trial and error [37]. For 
larger datasets, deeper NNs can be used [38]. Tanh activation function is used in the NN 
as it showed desirable model performance in this case study. The goodness of fit is as-
sessed using the mean absolute error (MAE) and the mean absolute percentage error 
(MAPE) of the estimates. The model produces a MAE of 0.0004 and a MAPE of 0.13, indi-
cating a relatively good fit. The inaccuracies in the estimates may be due to the complexity 
of the corrosion degradation phenomenon, which depends on many conditions beyond 
the three conditions considered here. Therefore, it may not be possible to estimate the 
corrosion rate solely based on these factors accurately. Nevertheless, the model still par-
tially learns the underlying physics relationships between the inputs and the output of the 
NN. This acquired knowledge can be valuable in guiding the development of a more ac-
curate predictive model in the next step. 

To guide the predictive model to achieve physics-consistent estimates and limit the 
search space for its parameters, the physics discovery model is incorporated into the training 
process of the predictive model. Figure 5 compares the degradation predictions made by the 
guided neural network (GNN) with those made by a regular NN for different portions of 
training data. The dashed lines represent the distance of 2 × 𝐷ఙ (the standard deviation of 
degradation intensity) above and below 𝐷ఓ (the mean degradation intensity), which corre-
sponds to a 95% confidence interval for the estimates. Both networks have the same struc-
ture: a one-dimensional input layer (representing time), one hidden layer of six neurons 
with Tanh activation functions, and two neurons at the output layer for the parameters of 
the probability density function of the degradation intensity (𝐷ఓ and  𝐷ఙ) with linear and 
Softplus activation functions. The only difference between the two NNs is in their cost func-
tions, where the GNN’s cost function includes a term that accounts for the physics of deg-
radation (𝐿௣௛௬௦௜௖௦ in Equation (2)). A weight of 10ହ is considered for the physics term (𝜆 =10ହ). The sensitivity analysis for the weight is provided in Appendix A. 

The only input for both GNN and regular NN is time. However, the GNN is trained 
so that the estimated degradation intensities conform to the discovered physics (i.e., 𝑁ఠ,ఏ) 
during the training. For this purpose, 200 random data points (collocation points) are 
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generated from uniform distributions within the sensor measurements range in the first 
dataset. These data points are then fed into the network to adjust the network parameters 
by forcing the model to make the automatic differentiation of the mean of the estimated 
distribution for degradation intensity (i.e., డ஽ഋ෢డ௧ ) close to the expected value determined by 

the physics discovery model (i.e., డ஽෢డ௧  ) for each of the collocation data points. This is 
achieved by minimizing the penalty term for the physics in the cost function (i.e., 𝐿௣௛௬௦௜௖௦). 
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Figure 5. Comparing estimations of guided neural network (GNN) with regular neural network 
(NN) for different portions of training data: (a) 2 months; (b) 3 months; (c) 4 months; (d) 5 months. 

Comparing the predictions of the two NNs for the test data (i.e., the green data points 
in Figure 5) reveals that guiding the NN significantly improves its performance. In the 
case with limited training data (Figure 5a,b), the regular NN overfits the training data 
points and fails to learn the underlying pattern. However, the GNN provides relatively 
acceptable estimates for long-term degradations. 

Increasing the initial observation time (i.e., the portion of training data shown by blue 
dots in Figure 5) results in more accurate estimations. Observing the initial degradation in-
tensities for the first four months, the predictions of the GNN are excellent, while the regular 
NN shows significant errors and requires at least 5 months of training data to generate close 
estimations of the actual values, as demonstrated in Figure 5c,d, respectively. 

To further evaluate the proposed method’s performance, its prediction accuracy is 
compared to other machine learning techniques, including support vector regression 
(SVR), linear regression (LR), and polynomial regression (PR) (see Table 1). Non-linear 
models of PR and SVR with polynomial kernel function show the worst performances, as 
shown in Figure 6. Although they represent a good fit for the training data, their estimates 
for the test data points are considerably inaccurate. 

Linear models, including LR and SVR with linear kernel, perform better than the non-
linear models. However, they cannot consistently predict the degradation intensities with 
accuracy. This is because the degradation phenomena have a highly non-linear nature, 
which makes the linear models perform well only on certain parts of the period (e.g., the 
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middle portion in Figure 6d). In addition, when the training data is limited, their estimates 
differ significantly from the actual values, as shown in Figure 6a. 

Table 1. Considered models for comparison with the guided neural network (GNN). 

# Model Specifications 
1 Support vector regression Linear kernel, C = 0.1, ε = 0.05 
2 Support vector regression Polynomial kernel, degree 2, C = 0.1, ε = 0.05 
3 Linear regression Least squares method 
4 Polynomial regression Degree 2, Least squares method 

Table 2 presents the goodness of fit to the test data for the considered models with 
different observation times (i.e., training data), allowing for a comparison of their perfor-
mance in predicting the degradation intensity. Four evaluation metrics are used: MAE, 
maximum error (ME), MAPE, and 𝑅ଶ , which are calculated using Equations (3)–(6), 
where 𝐷 is actual degradation intensity, 𝐷෡ is estimated degradation intensity, 𝑁 is the 
number of data points, 𝐷ഥ is the mean of the actual values of degradation intensity, and 𝜈 
is a small positive number to avoid undefined function when 𝐷 is zero. MAE൫𝐷,𝐷෡൯ = 1𝑁෍ห𝐷௜ − 𝐷෡௜หே

௜ୀଵ  (3) ME൫𝐷,𝐷෡൯ = 𝑚𝑎𝑥 (ห𝐷௜ − 𝐷෡௜ห) (4) MAPE൫𝐷,𝐷෡൯ = 1𝑁෍ ห𝐷௜ − 𝐷෡௜ห𝑚𝑎𝑥 (𝜈, |𝐷௜|)ே
௜ୀଵ  (5) 

𝑅ଶ൫𝐷,𝐷෡൯ = 1 −∑ (𝐷௜ − 𝐷෡௜)ଶே௜ୀଵ∑ (𝐷௜ − 𝐷ഥ௜)ଶே௜ୀଵ  (6) 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Comparing degradation prediction by different machine learning models for different por-
tions of training data: (a) 2 months; (b) 3 months; (c) 4 months; (d) 5 months (SVR: support vector 
regression, LR: linear regression, PR: polynomial regression, GNN: guided neural network). 
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Among the considered models, GNN exhibits the best performance, although for one 
of the cases (3 months of observation) LR shows a slightly better fit based on three of the 
parameters (MAE, MAPE, and 𝑅ଶ). However, the ME of the GNN is still lower than the 
LR model, which means even for this specific case LR estimations are worse than GNN 
for some parts of the period. It should be noted that LR is a linear model and not suitable 
for modeling physical degradation progress due to its disability to capture non-linearity. 
The good performance of LR observed for some cases (e.g., 3 months and 4 months of 
observation cases in Table 2) is likely due to the low level of non-linearity of the cases 
considered for the specific period (1 year). However, collecting degradation data over a 
longer time (more than a year) would likely result in a higher non-linearity and can un-
derline the weakness of LR more clearly. On the other hand, GNN’s ability to learn non-
linear patterns in the data is evident from Figure 6. 

Table 2. Metrics for quantifying the quality of degradation predictions (test data). 

Training 
Data Model Mean 

Absolute Error Max Error Mean Absolute 
Percentage Error 𝑹𝟐 Score 

2 months 

SVR (linear) 0.257 0.387 0.535 −2.450 
SVR (poly) 0.995 3.100 1.725 −93.357 

LR 0.135 0.215 0.285 0.030 
PR 0.383 1.094 0.681 −11.801 

Regular NN 0.335 0.539 0.683 −5.042 
GNN 0.095 0.170 0.227 0.520 

3 months 

SVR (linear) 0.115 0.185 0.236 0.05 
SVR (poly) 1.667 4.553 2.902 −315.067 

LR 0.047 0.130 0.102 0.776 
PR 0.767 1.871 1.372 −58.94 

Regular NN 0.206 0.347 0.394 −2.157 
GNN 0.059 0.109 0.119 0.723 

4 months 

SVR (linear) `0.084 0.152 0.166 0.163 
SVR (poly) 1.303 3.287 2.242 −284.497 

LR 0.048 0.108 0.095 0.697 
PR 0.238 0.589 0.417 −8.231 

Regular NN 0.134 0.217 0.249 −1.042 
GNN 0.032 0.075 0.068 0.849 

5 months 

SVR (linear) 0.060 0.142 0.107 0.136 
SVR (poly) 1.149 2.626 1.958 −324.905 

LR 0.069 0.162 0.123 −0.166 
PR 0.335 0.726 0.578 −25.327 

Regular NN 0.064 0.108 0.116 0.199 
GNN 0.036 0.088 0.068 0.704 

The models considered in this study exhibit good fits to the training data for all cases, 
except for the 2-month observation data, as shown in Table 3. This indicates the potential for 
overfitting for the models with low performance on the test data. GNN exhibits the worst fit 
for the training data yet performs the best on the test data. This suggests that the GNN model 
is not overfitting the training data. In contrast, the other models exhibit lower performance on 
the test data compared to their performance on the training data, indicating overfitting. 

Finally, although in this case study the performance of the GNN on test and training 
data is evaluated to demonstrate the proposed approach capability for predicting degra-
dation intensity, there are other approaches, such as the formal methods described in 
[39,40] that can be employed to validate the model. Considering these approaches can 
benefit future extensions of this study. 
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Table 3. Metrics for quantifying the quality of fitting degradation data (training data). 

Training 
Data Model 

Mean 
Absolute Error Max Error 

Mean Absolute 
Percentage Error 𝑹𝟐 Score 

2 months 

SVR (linear) 0.022 0.047 0.291 0.200 
SVR (poly) 0.022 0.047 0.291 0.200 

LR 0.022 0.057 0.270 0.283 
PR 0.022 0.057 0.270 0.283 

Regular NN 0.022 0.057 0.269 0.283 
GNN 0.0307 0.089 0.289 −0.655 

3 months 

SVR (linear) 0.022 0.047 0.252 0.657 
SVR (poly) 0.020 0.047 0.233 0.681 

LR 0.020 0.061 0.213 0.705 
PR 0.018 0.057 0.210 0.729 

Regular NN 0.020 0.062 0.220 0.688 
GNN 0.021 0.076 0.195 0.632 

4 months 

SVR (linear) 0.025 0.050 0.244 0.808 
SVR (poly) 0.023 0.050 0.221 0.831 

LR 0.021 0.064 0.181 0.864 
PR 0.020 0.059 0.183 0.871 

Regular NN 0.021 0.067 0.185 0.853 
GNN 0.024 0.098 0.191 0.757 

5 months 

SVR (linear) 0.029 0.070 0.219 0.875 
SVR (poly) 0.030 0.061 0.219 0.871 

LR 0.025 0.074 0.166 0.893 
PR 0.025 0.061 0.172 0.907 

Regular NN 0.027 0.081 0.172 0.881 
GNN 0.029 0.103 0.195 0.849 

4. Conclusions 
Machine learning models used for degradation prediction are purely data-driven ap-

proaches and may not accurately predict degradation when insufficient data exist. Fur-
thermore, they do not consider the underlying physics of degradation. This paper pro-
poses a GNN framework for incorporating complex physics to facilitate physics-con-
sistent prediction of field degradation with limited data. The proposed method is a dual 
NN framework consisting of two NNs for discovering the underlying physics and pre-
dicting degradation intensity. The physics discovery NN relies on environmental factors 
such as temperature and humidity affecting the degradation rate. Therefore, the underly-
ing physics can be discovered by modeling the degradation rate based on the data ob-
tained from short-term tests and be added as a penalty term to the cost function of the 
predictive NN for estimating degradation intensity. The predictive model can be trained 
with limited data by respecting the discovered physics as a constraint that limits the search 
space for the model parameters. Further, fitting the data and following the physics simul-
taneously makes the model generalize well for unseen field data. 

The performance of the proposed framework is evaluated through a case study of the 
atmospheric corrosion of steel coupons as simplified forms of a structure. The results in-
dicate the potential of the proposed GNN for predicting long-term degradations based on 
limited observations of the initial degradation intensities. At the same time, other machine 
learning models may overfit the data. The proposed approach enables the efficient evalu-
ation of the lifetime of systems and structures, thereby ensuring their safety and reliability 
as well as minimizing their maintenance costs. Accurate lifetime estimation allows for ap-
propriate risk management measures to prevent accidents and ensure reliable 
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functionality. Additionally, optimized predictive maintenance can be implemented to 
avoid unnecessary repairs and unexpected downtimes. 

Finally, it is important to acknowledge the limitations of the proposed framework. 
Firstly, the framework requires degradation data for training purposes, albeit less data than 
a regular NN. However, collecting such data can be time-consuming and expensive as deg-
radation is often a slow process. Moreover, the framework primarily focuses on degrada-
tion. However, potential failures may occur in the field due to discrete over-stress conditions 
rather than gradual and temporal degradation. Lastly, systems may involve high variations 
and uncertainties in their degradation behaviors in real-world situations, depending on 
their operating conditions. These variations may exist even in identical systems. This paper 
has not considered these variations and the resulting uncertainties in the degradation pre-
dictions. Such assessments can be viewed as future extensions of this work. 

Author Contributions: Conceptualization, H.H.N.A. and M.M.; methodology, H.H.N.A.; software, 
H.H.N.A.; validation, H.H.N.A.; formal analysis, H.H.N.A.; investigation, H.H.N.A.; resources, 
M.M.; data curation, H.H.N.A.; writing—original draft preparation, H.H.N.A.; writing—review and 
editing, M.M.; visualization, H.H.N.A.; supervision, M.M.; project administration, M.M.; funding 
acquisition, M.M. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data is publicly available at https://osf.io/sgeun/(accessed on 22 January 
2023). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 
Figure A1 presents the sensitivity analysis results for the physics term weight λ. For 

lower values of λ (10ଶ and 10ସ), the model prioritizes fitting the training data over follow-
ing the physics. So, it overfits the training data, which is why the prediction error for unseen 
test data is relatively high. For higher values of λ (10ହ, 10଺, and 10଼), the prediction error 
drops since increasing λ value improves the model’s generalization ability as it considers 
both fitting the training data and adhering to the physics. This leads to a more accurate pre-
diction. However, when λ value exceeds 10ହ, the model adheres more to the physics and 
gives less consideration to fitting the data, resulting in a minor increase in prediction error. 

 
Figure A1. Sensitivity analysis of physics term weight λ for test dataset with different portions of 
training data. 
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