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Abstract: Activity recognition using data collected with smart devices such as mobile and wearable
sensors has become a critical component of many emerging applications ranging from behavioral
medicine to gaming. However, an unprecedented increase in the diversity of smart devices in the
internet-of-things era has limited the adoption of activity recognition models for use across different
devices. This lack of cross-domain adaptation is particularly notable across sensors of different
modalities where the mapping of the sensor data in the traditional feature level is highly challenging.
To address this challenge, we propose ActiLabel, a combinatorial framework that learns structural
similarities among the events that occur in a target domain and those of a source domain and identifies
an optimal mapping between the two domains at their structural level. The structural similarities
are captured through a graph model, referred to as the dependency graph, which abstracts details of
activity patterns in low-level signal and feature space. The activity labels are then autonomously
learned in the target domain by finding an optimal tiered mapping between the dependency graphs.
We carry out an extensive set of experiments on three large datasets collected with wearable sensors
involving human subjects. The results demonstrate the superiority of ActiLabel over state-of-the-art
transfer learning and deep learning methods. In particular, ActiLabel outperforms such algorithms
by average F1-scores of 36.3%, 32.7%, and 9.1% for cross-modality, cross-location, and cross-subject
activity recognition, respectively.

Keywords: activity recognition; wearables; mobile health; machine learning; transfer learning;
model-independent; structural similarity

1. Introduction

Smart devices such as wearable and mobile sensors are increasingly utilized for
health monitoring and personalized behavioral medicine. These technologies use machine-
learning/deep-learning algorithms to detect lifestyle and physiological biomarkers and to
provide real-time clinical interventions [1–7]. However, the machine learning models are
designed based on labeled training data collected in a particular domain, such as with a
specific sensor modality, wearing site, or user. A significant challenge with this approach is
that a machine learning model trained with a specific setting performs extremely poorly in
new settings such as when the model is used with a sensor of a different modality, when
the on-body location of the sensor changes, or when a new subject adopts the system [8,9].
This generalizability challenge has limited scalability of sensor-based health monitoring
because collecting a sufficiently large number of labeled sensor data for every possible
domain is a time-consuming, labor-intensive, expensive, and often infeasible process.

To address the aforementioned challenges, we introduce ActiLabel, a combinatorial
framework that learns machine learning models in a new domain (i.e., target) without
the need to manually collect any labels. Our pilot application in this paper is activity
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recognition, where ActiLabel is designed to detect human activities from wearable sensor
data. A unique attribute of ActiLabel is that it examines structural relationships between
activity events (i.e., classes/clusters) in the two domains and uses this information for target-
to-source mapping. Such structural relationships allow us to compare the two domains
at a much higher level of abstraction than the common feature space and therefore enable
knowledge transfer across radically diverse domains. We hypothesize that even under
sever cross-domain spatial and temporal uncertainties (i.e., significant distribution shift
due to sensor modality change), physical activities exhibit similar structural dependencies
across the two domains. We aim to uncover such structural dependencies from the sensor
data gathered in the two domains and use this knowledge for mapping sensor data from
the target domain to the data in the source domain.

To the best of our knowledge, our work is the first study that develops a combinatorial
approach for structural transfer learning. Our notable contributions can be summarized
as follows: (i) we introduce a model-agnostic combinatorial optimization formulation for
transfer learning where no labeled data are available in the target domain, and we show
that this problem is non-deterministic polynomial-time hardness (NP-hard); (ii) we devise
methodologies for constructing a network representation of wearable sensor readings,
referred to as network graph, as integral components of our framework for understanding
structural dependencies among activity classes; (iii) we design algorithms that perform
community detection on the network graph to identify core activity clusters; (iv) we
introduce an approach to construct a dependency graph based on the core activity clusters
identified on the network graph; (v) we show that combinatorial transfer learning can be
transformed into a tractable assignment problem in the new knowledge transfer space given
by the dependency graphs; (vi) we propose a novel multi-layer matching algorithm for
mapping target-to-source dependency graphs; and (vii) we conduct an extensive assessment
of the performance of ActiLabel for cross-modality, cross-subject, and cross-location activity
learning using real sensor data collected with human subjects.

1.1. Transfer Learning

Transfer learning is the ability to extend what has been learned in one setting (i.e., source)
to another, nonidentical but related, setting (i.e., target). Based on the common analogy in
machine learning, we refer to the previous setting as the source domain . The sensor data
captured in this domain is referred to as the source dataset, which is fully labeled in our case.
The new state of the system, which may exhibit radical changes from the source domain, is
referred to as the target domain where we intend to label the sensor data autonomously [10].

Definition 1. (Transfer Learning). Given a source domain Ds and learning task Ts, a target
domain Dt and learning task Tt , transfer learning aims to help improve the learning of the target
predictive function Ft(.) in Dt using the knowledge in Ds and Ts, where Ds = Dt or Ts = Tt.

Depending on how the source and target tasks and domains are defined, one can cate-
gorize transfer learning techniques into inductive transfer learning, transductive transfer
learning, and unsupervised transfer learning. Inductive transfer learning refers to the case
where the tasks in the target and source are different. Therefore, we need some labeled
data to induce a prediction model in the target domain. In transductive transfer learning,
the source and target obtain the same tasks but different domains. In this setting, there
is no label in the target but a relatively large amount of labeled data is available in the
source domain. Finally, in the unsupervised transfer learning, the target task is different
from but related to the source, and no label is available in the target domain. Unsupervised
transfer learning aims to solve unsupervised learning problems such as clustering and
dimensionality reduction [11,12]. The transductive transfer learning, which is the focus of
this paper, can be defined as follows.
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Definition 2. (Transductive Transfer Learning) Given a source domain Ds and a corresponding
learning task Ts, a target domain Dt and a corresponding learning task Tt , transductive transfer
learning aims to improve the learning of the target predictive function Ft(.) in Dt using the
knowledge in Ds and Ts, where Ds 6= Dt and Ts = Ts . Additionally, some unlabeled target domain
data must be available at training time.

Transductive transfer learning is categorized into two cases: (1) source and target
adopt different feature domains Xs 6= Xt; (2) source and target adopt the same feature
domains, but the probability distributions of their observations are different P(Xs) 6= P(Xt).
This case is referred to as domain adaptation.

Transfer learning for cross-domain variations in the context of sensor-based monitor-
ing can be categorized into cross-user, cross-modality, cross-platform, and cross-location
activity recognition [13]. Researchers have proposed several transfer learning techniques to
address the challenge of domain shift in the context of sensor-based systems. Prior research
utilized intra-affinity of classes to perform intra-class knowledge transfer where 61.4%
accuracy for cross-location and cross-subject transfer learning was achieved [14]. Another
study proposed a feature-level transfer learning approach for activity recognition where
93.1% accuracy for cross-subject knowledge transfer was obtained [13]. Prior research also
developed OptiMapper as a transfer learning framework for the case where the target
domain provides data about only a subset of the classes [15]. However, as the degree
of divergence between source and target domains grows, the transfer learning task be-
comes more challenging. These gaps result in a performance decline of pre-trained activity
recognition algorithms. ActiLabel is proposed as a combinatorial optimization to address
the problem of autonomous learning across highly diverse domains (e.g., across different
sensor modalities, sensor locations, or users).

Prior research also proposed a deep convolution recurrent neural network to automate
the process of feature extraction and to capture general patterns from activity data [16]. In
deep learning based methods, the goal is to have a pre-trained model obtained in a source
domain and make it fit to our learning problem in the target domain by adding one more
training step. Additionally, deep learning based methods need a labeled set for training
and do not aim to label the unlabeled samples in the target domain. However, ActiLable
is model-agnostic and does not rely on a specific type of machine learning model. We
create a labeled training dataset in the target domain by mapping the target sensor data
onto the labeled samples in the source domain prior. This model-agnostic approach allows
designers to utilize the obtained training dataset and develop the machine learning of their
choice for use in a target domain without being limited to the specific architecture that
exists in the source domain.

We also note that deep learning models may perform very poorly in profoundly
different domains such as cross-modality knowledge transfer or when the two domains
exhibit a substantial amount of shift in the distribution of the sensor data. For example,
previous research achieved only 54.2% accuracy in classifying human gestures using deep
learning with computationally dense algorithms when the system was used with sensors of
different modalities than that of training [8,17]. More advanced models combine knowledge
of transfer and deep learning [18]. There have been studies attempting to transfer different
layers of deep neural networks across different domains. In one study, a cross-domain
deep transfer learning method was introduced that achieved 64.6% accuracy with four
activity classes for cross-location and cross-subject knowledge transfer [9]. Unlike our
transductive transfer learning approach in this paper, these approaches fall within the
category of inductive transfer learning, where some labeled instances are required in the
target domain.

1.2. Graph Modeling

Many areas of machine learning, such as clustering/community detection, dimension-
ality reduction, and semi-supervised learning, employ neighbor graphs to extract high-level
global structures from local information within a dataset [19,20]. As an example, nearest
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neighbor graphs are commonly used to classify unknown events using feature representa-
tions. During the classification process, certain features are extracted from unknown events
and classified based on the features extracted from their k-nearest neighbors.

The nearest neighbor or, in general, the k-nearest neighbor (k-NN) graph of a dataset
is obtained by connecting each data point to its k closest points from the dataset. The
closeness is defined based on a distance metric between the data points. The symmetric
k-NN graphs are a special case where each point is connected to another only if both are in
the k nearest vicinity of each other.

Definition 3 (Symmetric k-NN Grpah). A symmetric k-NN graph is a directed graph G = (V, E),
where V is the set of vertices (i.e., data observations) and E is the set of edges. Vi is connected to vertex
Vj if Vj is one of the k-NNs of Vi and vice versa according to a distance function δ : V ×V → R.

Community detection algorithms are widely used to identify clusters in large-scale
network graphs. Clusters, which represent groups of densely connected vertices with
sparse connections to each other, often provide useful structural information [21]. Recent
research compared different community detection algorithms with clustering techniques
suggesting that detecting communities from a network representation of data could result
in better clustering performance compared to traditional clustering algorithms [22,23] . We
define some of the essential features related to community detection in network graphs in
the following.

Definition 4 (Cut). Given a graph G(VN ,EN) and communities C = {C1, . . . , CK}, ”Cut” between
communities Ci and Cj is defined as the number of edges (u, v) with one end in Ci and the other
end in Cj, that is,

Cut(Ci, Cj) = |(u, v) ∈ EN : u ∈ Ci & v ∈ Cj| (1)

Definition 5 (Cluster Density). Given a graph G(VN ,EN) and communities C = {C1, . . . , CK}
within the graph G, ”community density”, ∆(Ci), for community Ci is defined as the number of
edges (u, v) with both ends residing in Ci.

∆(Ci) = |(u, v) ∈ EN : u ∈ Ci & v ∈ Ci| (2)

Definition 6 (Community Size). Given a graph G(VN ,EN) and communities C = {C1, . . . , CK}
within the graph G, ”Community Size”, σ(Ci), for community Ci is defined as the number of
vertices that reside in Ci.

σ(Ci) = |v ∈ VN : v ∈ Ci| (3)

2. Problem Statement

Figure 1 depicts an activity recognition framework when it is adopted on a new
wearable sensor of different modality from the initial one. As shown in Figure 1a, an
activity recognition system consisting of a wearable sensor (e.g., accelerometer) uses a
model learned based on annotated data. We refer to this setting as source domain. As
shown in Figure 1b, when the user replaces the existing sensor with a new sensor with
different modality (e.g., stretch sensor), the performance of the existing model declines.
We refer to this setting as the target domain. To overcome this challenge, we need to label
the dataset autonomously in the new setting (e.g., new sensor modality), as shown in
Figure 1c. Finally, as shown in Figure 1d, a more accurate classifier is trained using the
labeled training data in the target domain.
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(a) (b)

(c) (d)

Figure 1. Deployment of ActiLabel in real-world environments.

2.1. Problem Definition

We represent each sensor observation in an arbitrary domain (e.g., target domain) as
a k-dimensional feature vector Xi = { fi1, fi2, . . . , fik}, which are computed from a given
time window. We define the activity recognition task as assigning activity label li to an
observation Xi given a set of possible labels L = {l1, l2, . . . , lm}. The problem is to create
a labeled dataset in the target domain by transferring the knowledge from the labeled
observations in the source domain such that the activity misclassification in the target is
minimized. We define this problem as combinatorial transfer learning.

Problem 1 (Combinatorial Transfer Learning (CTL)). Let X = {X1 ,X2, . . . , Xn} be the set
of sensor observations (i.e., sensor readings represented in feature space) captured in the target
domain. Furthermore, let L = {l1, l2, . . . , lm} be the set of activity labels in the source domain
that the target domain aims to detect. Combinatorial transfer learning involves assigning labels to
Xi and developing a classification model using the labeled data such that the classification error is
minimized.



Sensors 2023, 23, 6337 6 of 25

Because mislabeled sensor data adversely impacts the performance of the learned
classifier, CTL can be viewed as the problem of assigning labels lj ∈ L to target observations
Xi in X such that the error of label assignment is minimized.

2.2. Problem Formulation

We formulate the CTL described in Problem 1 as follows:

Minimize
n

∑
i=1

εijxij (4)

Subject to:
n

∑
i=1

xij ≤ λj ∀j ∈ {1, . . . , m} (5)

m

∑
j=1

xij = 1, ∀i ∈ {1, . . . , n} (6)

xij ∈ {0, 1} (7)

where xij is a decision variable indicating whether or not Xi is assigned label lj, and εij
denotes error due to such a labeling. The constraint in (5) guarantees that at most λj target
observations are assigned label lj. Without such a constraint, a trivial solution is to label
no observations in the target domain. The constraint in (6) ensures that only one label is
assigned to each observation Xi in the target domain.

2.3. Solution Overview

The difficulty in solving Problem 1 arises not only from the hardness of the problem
but also from the fact that parameters λj and εij are not known a priori. Therefore, the
solution to the CTL problem in (4)–(7) needs to estimate λj and εij first. Since assigning a
label to every observation in the target is unlikely to result in a high labeling accuracy, we
propose to find groups of similar target observations that are reliable to receive the same
label. Unsupervised clustering is one approach to divide observations into groups, exclude
noisy observations from the labeling process, and therefore increase the specificity of the
labeling. We can estimate the value of λ by identifying clusters of observations that are safe
to receive the same activity label, namely, core clusters. Let CD

i = {X1, X2, . . . , Xk} be a ith

cluster in domain D. After clustering the target data, the goal is to assign activity labels
to the core clusters such that the label misassignment is minimized. Therefore, the CTL
problem can be reformulated as below.

Minimize
n

∑
i=1

m

∑
j=1

αijεij (8)

Subject to:
m

∑
j=1

αij = 1, ∀i ∈ {1, . . . , n} (9)

where αij is a binary variable indicating whether or not ith cluster in the target is assigned
with label lj from jth cluster in the source domain, and εij denotes the assignment error.
εij can be estimated as a structural dissimilarity between cluster Ct

i in the target and
cluster Cs

j in the source domain. Cluster Cs
j is a cluster of observations with label Lj in the

source domain. Note that computing the dissimilarity between the clusters will be further
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discussed in the next steps. The constraint in Equation (9) ensures that only one label is
assigned to each core cluster ci from the target domain.

αij =

{
1, if label lj is assigned to cluster Ci

0, otherwise
(10)

3. Actilabel

We propose ActiLabel as a solution to Equation (8). The overall approach in ActiLabel
is illustrated in Figures 2 and 3. The design process in ActiLabel involves the following
steps, where we refer to the first two steps as graph modeling and the next two steps as
optimallabel learning.

Figure 2. ActiLabel comprises of several steps. Network graph construction is done by quantifying
the pairwise similarity of sensor observations using statistical features and semantic information;
Core clusters are directly obtained through the available class labels; Dependency graph captures the
structural relationships between activity classes; and Optimallabel learning uses two bipartite, one of
which captures the cost of mapping each vertex in the source dependency graph to every vertex in
the target dependency graph. The other one quantifies the costs of edge-wise mapping between the
two domains.

Figure 3. An overview of ActiLabel design including graph modeling and optimal label learning.

1. Network graph construction: we first construct a network representation of sensor
readings and quantify the pairwise similarity of the network nodes (i.e., sensor obser-
vations) using a combination of statistical features and semantic information about
the network Figure 3a.

2. Core cluster identification: we use the network graph to identify core clusters in the
target domain where no labeled data are available. For the source domain, the core
clusters/classes are directly obtained through the available class labels as shown in
Figure 3b.

3. Dependency graph construction: we use the core clusters and network graph to build
a dependency graph in both domains, taking into account inter-class similarities as
shown in Figure 3c.
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4. Optimal Label Learning: we use the dependency graphs of the source and target
domains to build two bipartite graphs. The first bipartite graph captures the cost of
mapping each vertex in the source dependency graph to every vertex in the target
dependency graph. The second bipartite graph quantifies the costs of edge-wise
mapping between the two domains, as shown in Figure 3d–f.

The process of ActiLabel is summarized in Algorithm 1.

Algorithm 1 ActiLabel

Input :Dt, unlabeled target dataset, {Ds, Ls}, labeled source dataset.
Result: Labeled target dataset, {Dt, Lt}
Graph Modeling: . (Section 3.1)

1: Construct network graphs in both domains; . (Section 3.1.1)
2: Identify core clusters in both domains; . (Section 3.1.2)
3: Build dependency graphs; . (Section 3.1.3)
4: Extract structural relationships among the core clusters in both domains;

Optimal Label Learning . (section 3.2)
5: Perform graph-level min-cost mapping from target to source;
6: Assign labels to the observations in target;
7: Train activity recognition model in target using new labels;

3.1. Graph Modeling

The goal of our graph modeling is to construct a dependency graph that captures
structural dependencies among the events (i.e., physical activities) in both target and source
domains. Such dependency graphs are then used in optimal label learning to label sensor
observations and generate a training dataset in the target domain. As shown in Figure 4,
our graph modeling consists of three phases: (i) network graph construction; (ii) core
cluster identification; and (iii) dependency graph construction. This section elaborates on
each phase.

network graph core clusters dependency graph

𝐶1 𝐶2

𝐶6 𝐶3

𝐶4𝐶5

𝐶1

𝐶2

𝐶6

𝐶3

𝐶4

𝐶5

Node weight:{Ci, 𝑤𝑖
𝑢}

Edge weight:{Ci, Cj, 𝑤𝑖𝑗
𝑒 }

Figure 4. Graph modeling phases.

3.1.1. Network Graph Construction

We initially build a network representation of the sensor observations to quantify the
amount of similarity between pairs of observations. To this end, we construct a symmetric k-
nearest-neighbor network on the sensor data. The symmetric property of the network graph
eliminates many edges from inclusion in the network, thereby reducing the complexity of
future computations in ActiLabel.
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Definition 7 (Network Graph). The network graph refers GN(VN ,EN) is a symmetric k-NN
graph where vertices are a feature representation of the sensor data and distance function δ computes
the cosine similarity between the features.

Given the high dimensional feature space, we use Cosine distance as the measure of
affinity between each pair of sensor observations Xi and Xj, and as the distance function
δ(vi, vj) used to construct the network graph.

δ(vi, vj) = cos(Xi, Xj) =
Xi · Xj

||Xi|| · ||Xj||
(11)

3.1.2. Core Cluster Identification

To identify core clusters in ActiLabel, we propose a graph-based clustering algorithm
similar to the approach in prior research [24]. We refer to this approach as core cluster
identification (CCID). The core cluster identification algorithm is applied to the network
graph G(VN ,EN). We first partition the network graph into multiple communities of
approximately the same vertex size using a greedy community detection technique. We then
merge communities with the highest similarity score based on their dendrogram structure.

The amount of similarity αi,j between communities Ci and Cj is measured as the ratio
of the number of edges between the two communities (i.e., Cut(Ci,Cj)) to the average
number of edges that reside within the two communities. Therefore, the similarity score of
αi,j is given by

α(i, j) =
Cut(Ci, Cj)
|Ci |+|Cj |

2

(12)

where the terms |Ci| and |Cj| denote the number of edges that reside in Ci and Cj, respec-
tively. Note that the similarity score α is defined such that it is not adversely influenced by
the size of communities in unbalanced datasets.

3.1.3. Dependency Graph Construction

To capture high-level structural relationships among sensor observations, we devise
a structural dependency graph where the core clusters identified previously represent
vertices of the dependency graph.

Definition 8 (Dependency Graph). Given a network graph G(VN ,EN) where |VN | = |X | and
core clusters C = {C1, . . . , CK} obtained from the network graph, we define dependency graph
G(VD ,ED, Wv

D, and We
D) as a weighted directed complete graph as follows. Each vertex ui inVD is

associated with a core cluster Ci ∈ C. Thus, |VD| = |C|. Each vertex ui ∈ VD is assigned a weight
wu

i given by

wu
i =

∆(Ci)

σ(Ci)
(13)

where ∆(Ci) and σ(Ci) refer to cluster density and cluster size, respectively, for core cluster Ci.
Each edge (ui, uj) ∈ ED, associated with core clusters Ci and Cj, is assigned a weight we

ij given by

we
ij =

Cut(Ci, Cj)

σ(Cj)
(14)

3.2. Optimal Label Learning

Algorithm 2 summarizes the steps for optimal label learning. The goal of the optimal
label learning is to find a mapping from the dependency graph in the target domain to that
of the source domain. We note that graph isomorphism algorithms are not applicable to our
graph-level mapping problem because graph isomorphism algorithms only consider the
structure of the graphs and do not take into account important information such as edge
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weights and vertex weights in our dependency graphs [25]. The core of our optimization
in label learning is graph-level mapping, where we aim to find a mapping from the
dependency graph in the target domain to that of the source domain while minimizing the
amount of mapping error. We refer to this optimization problem as min-cost dependency
graph mapping and define it as follows.

Algorithm 2 Optimal Label Learning

Input :Gt
D and Gs

D, dependency graphs for target and source domains.
Result: Labeled target dataset, {Dt, Lt}

1: Construct bipartite graph BGe using edge components;
2: Obtain bipartite mapping Me on GBe;
3: Construct bipartite graph BGv on vertex components;
4: Obtain bipartite mapping Mv on GBv;
5: Construct bipartite graph BGc using Me and Mv;
6: Obtain bipartite mapping OptMapping on GBc;
7: Assign source labels to appropriate core clusters in target using OptMapping;

Problem 2 (Min-Cost Dependency Graph Mapping). Let Gs
D and Gt

D denote dependency
graphs obtained from datasets in the source and target domains, respectively. The min-cost depen-
dency graph mapping is to find a mapping R : Gt

D → Gs
D from Gt

D to Gs
D such that the cost of such

mapping is minimized.

Problem 2 can be viewed as a combinatorial optimization problem that finds an optimal
mapping in a two-tier fashion: (i) it initially performs component-level mappings where
vertex-wise and edge-wise mappings are found between source and target dependency
graphs; and (ii) it then uses the component-level mappings to reach a consensus about the
optimal mapping for the problem as a whole. Such a two-level mapping problem can be
represented using the objective in (15).

Minimize
|Vt

D |

∑
i=1

|Vs
D |

∑
j=1

1− µ(i, j)
M

(15)

where µ(i, j) represents the number of mappings between vi ∈ Vt
D and vj ∈ Vs

D obtained
through the component-level optimization. Furthermore, M is a normalization factor that
is equal to the total number of component-wise mappings. The objective in (15) attempts to
minimize the amount of mapping costs at the graph-level and, therefore, can be viewed as
the objective for Problem 2.

We build a weighted complete bipartite graph on the elements of the similarity matrix
to find the minimum double-cost mapping. Figure 5 is an illustration of such a bipartite
graph, where the nodes on the left shore of the graph represent elements (e.g., cluster
density) of the target similarity matrix and the nodes on the right shore of the bipartite
graph are associated with corresponding elements (e.g., cluster density) in the source
similarity matrix.
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𝑙1

𝑙2

𝑙3

𝑙4

Optimal assignment

𝑙5

𝐷

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

Bipartite graph

𝑙1

𝑙2

𝑙3

𝑙4

𝑙5

𝐷

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

Figure 5. Optimal label assignment includes constructing a component-wise bipartite graph and
finding an optimal mapping of those components from target to source.

In constructing a bipartite graph, a weight ωij is assigned to the edge that connects
node i in the target side to nodes j in the source side. This weight also represents the actual
mapping cost and is given by

ωij = |wsi − wtj| (16)

where wsi and wtj are, respectively, the weight values associated with element i in the source
domain and component j in the target domain. We note that these weights can be computed
using (13) and (14) for vertex-wise mapping and edge-wise mapping, respectively. We also
note that if the number of components in the source and target were not equal, we could
add dummy nodes to one shore of the bipartite graph to create a complete and balanced
bipartite graph.

We use the Hungarian algorithm (a widely used weighted bipartite matching algo-
rithm with O(m3) time complexity) [26] to identify an optimal mapping from the nodes on
the left shore of the bipartite graph to the nodes on the right shore of the graph.

The last step is to assign the labels mapped to each cluster to the target observations
within that cluster. A classification model is trained on the labeled target dataset for
physical activity recognition.

4. Time Complexity Analysis

Lemma 1. The optimal label learning phase in ActiLabel has a time complexity of O(n + m3),
where n denotes the number of sensor observations and m represents the number of classes.

Proof. To learn the optimal labels, ActiLabel finds an optimal matching between source
and target dependency graphs given the node and edge weight values. We solve the
dependency graph matching problem by running the Hungarian algorithm three times.
Given that the number of the core clusters is proportional to the number of labels, m, the
time complexity of running Hungarian algorithm three times is O(m3). Distributing the
labels to the cluster members can be done in O(n). Therefore, the optimal label learning
phase has a time complexity of O(n + m3).

The last step is to assign the labels to the target observations within each cluster. A
classification model is trained on the labeled target dataset for physical activity recognition.

Theorem 1. The time complexity of ActiLabel is quadratic in the number of sensor observations, n.
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Proof. Assuming that the number of classes, m, is much smaller than the number of sensor
observations, n, (i.e., m� n), the proof follows Lemma 2 and Lemma 1.

Theorem 2. CTL is NP-hard.

Proof. Proof by reduction is done from the well-known generalized assignment problem [27].
Theorem 2 claims that the CTL problem discussed in Problem 1 and formulated

in (4)–(7) is NP-hard. In this section, we prove that Problem 1 is NP-hard by reduction
from the generalized assignment problem (GAP), which is known to be NP-hard [27].
The generalized assignment problem aims to assign a set of tasks to a set of agents while
minimizing the total assignment cost. It needs to guarantee that each task is assigned to
one and only one agent. In GAP, each agent has a limited capacity. Additionally, each task
requires a given number of resources of each agent. Each task needs to be assigned to only
one agent.

An instance of GAP is given by (I,J,A,B,C) where I = {1, 2, . . . , n} represents the
set of n tasks; J = {1, 2, . . . , m} denotes the set of m agents; B={b1, b2, . . . , bm} maintains
resource capacity bj for each agent j in J; A = {aij} represents resource aij needed if task i is
assigned to agent j; and finally C={cij} represents the cost of assigning task i to agent j. The
generalized assignment problem can be formulated as follows:

Minimize
n

∑
i=1

m

∑
j=1

cijxij (17)

Subject to:
n

∑
i=1

aijxij ≤ bj ∀j ∈ {1, . . . , m} (18)

m

∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (19)

xij ∈ {0, 1} (20)

where xij is a decision variable indicating whether or not task i is assigned to agent j.
Consider an instance of the generalized assignment problem, (I,J,A,B,C). This problem

can be reduced to the combinatorial transfer. In fact, the generalized assignment problem
is equivalent to the CTL with

J = X (21)

I = L (22)

aij = 1 ∀i, j (23)

bj = λj ∀j (24)

cij = εij ∀i, j (25)

Lemma 2. The graph modeling in ActiLabel has a time complexity of O(n2), where ‘n’ denotes the
number of sensor observations.

Proof. Lemma 2 claims that the complexity of the graph modeling phase in ActiLabel is
O(n2), where ‘n’ represents the number of sensor observations. Here, we provide the proof
for this claim.
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The graph modeling phase includes three steps: network graph construction, core
cluster identification, and dependency graph construction, which have a complexity of
O(n2), O(nlog2(n) + m3), and O(m), respectively, as discussed below.

Our introduced network graph in ActiLabel is a knn graph constructed using the input
sensor observations. Constructing a knn graph requires computing pairwise distances
between sensor observations. Therefore, the knn construction process has a time complexity
of O(n2).

The core cluster identification algorithm consists of partitioning the network graph
and merging the partitions into a final set of clusters. We use the Clauset–Newman–Moore
greedy modularity maximization algorithm for network graph partitioning. Because
the network graph is sparse, the partitioning algorithm runs in O(nlog2(n)) [28]. In the
following, we show that the cluster merging process has a time complexity of O(m3 + mn).
Therefore, assuming n > m, the core cluster identification algorithm has a time complexity
of O(nlog2(n) + m3)

The cluster merging process requires (i) a computing pair-wise similarity between
the clusters in (12); (ii) finding a pair of clusters that are most similar; and (iii) merging
the two clusters, which involves updating the membership of the sensor observations
that reside in the merged clusters. We note that, in the worst case, steps (ii) and (iii)
will repeat until the entire network graph is merged into a single cluster. To compute
pair-wise cluster similarity, we use a fast algorithm that goes over non-zero elements
of the adjacency matrix (e.g., edges in the network graph) only once. For each non-
zero element, if the adjacent vertices in the network graph belong to the same cluster,
we update the cluster weight; otherwise, we update the edge weight between the two
clusters based on the similarity values. Therefore, computing the similarity measures
runs in O(n). Note that because the network graph is sparse, |E| ∼ |V| = n. Because
the number of clusters is proportional to the number of labels, m, the number of cluster-
pairs is O(m2). Therefore, finding a cluster-pair with maximum similarity takes O(m2) to
complete. Finally, updating the cluster membership for data points that reside in the merged
clusters takes O(n). Note that because steps (ii) and (iii) can repeat for at most m times, the
complexity of combined steps (ii) and (iii) is O(m3 + mn). Combining complexity of the
three steps (i), (ii), and (iii) in cluster merging process will give us an overall complexity of
O(m3 + mn + n) = O(m3 + mn).

The dependency graph is a weighted complete graph that is built on the core clusters.
The process to compute edge weights and vertex weights in such a graph is similar to
computing the pair-wise similarity score while merging the initial clusters. All the edge
weights and vertex weights can be therefore calculated during the cluster merging process
described earlier. Given that the number of the final clusters is proportional to the number
of the labels, m, the dependency graph construction can run O(m).

Combining time complexities for network graph construction, core cluster identi-
fication, and dependency graph construction will give us O(n2 + nlog2(n) + m3 + m) =
(n2 + m3). Assuming that in most real applications the number of sensor observations
is orders of magnitude larger than the number of class labels, we can conclude that the
complexity of the graph modeling phase is ActiLabel is O(n2). Hence,

O(n2 + nlog2(n) + m3 + m) = O(n2 + m3) = O(n2) (26)

5. Experimental Setup
5.1. Datasets

We used three sizeable human activity datasets to evaluate the performance of ActiL-
abel. We refer to these datasets as PAMAP2, a physical activity monitoring dataset used
in [29]; DAS, daily and sport activity dataset used in [30]; and Smartsock, a dataset con-
taining ankle-worn sensor data used in [31]. These datasets contained sensor data with a
variety of sensor modalities such as accelerometer, gyroscope, magnetometer, temperature,
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stretch sensor, and heart rate monitor. They also provided data collected with 29 subjects.
The number of wearing sites varied across the datasets, with a total of 8 body locations for
the three datasets. Table 1 has provided a summary of the datasets utilized in this study.

Table 1. Brief description on the datasets utilized for activity recognition.

Dataset # Subject # Activity # Sample # Feature Sensors Locations

PAMAP2 9 24 3,850,505 52
Accelerometer, Gyroscope, Heart rate

monitor, Temperature, Orientation,
Magnetometer

Chest, Hand, Ankle

DAS 8 19 1,140,000 45 Accelerometer, Gyroscope,
Magnetometer

Left Arm, Right Arm,
Left Leg, Right Leg,

Torso
Smartsock 12 12 9888 30 Accelerometer, Stretch sensor Chest

5.2. Pamap2

The data in PAMAP2 are collected from 9 participants performing 24 physical activities
of daily livings while wearing 3 IMUs (inertial measurement units) on their chest, ankle, and
hand while also wearing a heart rate monitoring device on the chest. The IMUs recorded
accelerometer (@100 Hz), gyroscope (@100 Hz), orientation (@100 Hz), and temperature
(@100 Hz) data, and the heart rate monitor recorded heart rate information (@9 Hz) during
the experiments. We only consider 12 activities for our analysis in this paper because
there were only 12 activities in the dataset that were performed by all the 15 subjects.
As Figure 6a, which visualizes the prevalence of the activities, suggests, PAMAP2 is an
imbalanced dataset.

(a) (b) (c)

Figure 6. Prevalence of physical activities in the PAMAP2 dataset.

5.3. Das

DAS dataset is a collection of 19 sports physical activities performed by eight subjects
between the ages of 20 and 30 (four females and four males). The subjects wore the
data collection devices, embedding accelerometer (@25 Hz), gyroscope (@25 Hz), and
magnetometer (@25 Hz) sensors, on their torso, left arm, right arm, left leg, and right leg.
Some of the activities were sitting, standing, lying on the back and right side, ascending
and descending stairs, walking, running, cycling, rowing, and jumping. DAS is a balanced
dataset as illustrated in Figure 6b.

5.4. Smartsock

The Smartsock dataset was collected from 12 participants (four females and eight
males) aged between 23 and 31. The participant performed 12 different physical tasks while
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wearing a Smartsock prototype on the dominant foot that measured the circumference
of the ankle using a stretch sensor. They also wore an accelerometer sensor on the chest
during the protocols. The activities were sit in chair, sit on floor, lay on floor, bend at
knees, bend at waist, jump in place, descending stairs, walking, and running. Figure 6c
visualizes the prevalence of the physical activities in the Smartsock dataset. The majority of
the observations belonged to the walking and running activities.

5.5. Comparison Methods

We compare the performance of ActiLabel with the following algorithms. We deploy
the 5-NN classifier on the feature representation of the data as the baseline classifier for the
Baseline, DirectMap, and upper-bound, as suggested in the Results section.

• Baseline refers to the case where we learn a feature-based activity recognition model in
the source domain and use it for activity recognition in the target domain.

• Deep Convolution LSTM (ConvLSTM) refers to using a deep convolution LSTM model
that was learned in the source domain and was utilized for activity recognition in
the target domain. The deep ConvLSTM consists of one layer of input, four layers
of convolution, two dense layers consisting of LSTM cells as the hidden units, and a
softmax layer as the output of the model as proposed by [16].

• DirectMap directly maps core clusters in a target domain to activity classes in a source
domain using the Hungarian algorithm. This algorithm assigns the labels from the
source cluster to the closest cluster in the target domain based on a similarity measure
on the mean value of the data points in each cluster.

• Upper-bound assumes that the actual labels are available in the target domain.

We assess the performance of ActiLabel and these competing algorithms in three
transfer learning scenarios as follows: (i) cross-modality transfer refers to the case when
sensors in the two domains have different modalities (e.g., the accelerometer and the
gyroscope); (ii) cross-subject refers to transfer learning across two different human subjects;
and (iii) cross-location refers to the case when the location of the wearable sensor is different
in the target domain from that in the source domain.

5.6. Implementation Details

The datasets are divided into 50% training, 25% test, and 25% validation parts with no
overlap to avoid possible bias. The input features are extracted from a 2-second window of
data. We extracted an exhaustive set of time-domain features from a sliding window of
size 2 s with 25% overlap. Table 2 lists the extracted features, which are shown to be useful
in human physical activity estimation using inertial sensor data [32,33].

Table 2. Extracted time-domain features. E(.) represents the expected value of the input variable.
Functions min(.), max(.), mean(.), median(.), tan(.), and size(.) compute the minimum, maximum,
average, median, tangent, and size of an input vector, respectively.

Feature Computation for Signal S

Peak amplitude of the signal max(S)−mean(S)

Median of the signal median(S)

Mean value of the signal µ = ∑N
i=1 Si
N

Maximum value of the signal max(S)

Minimum value of the signal min(S)

Variance of the signal v = ∑N
i=1 |si−µ|2

N−1
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Table 2. Cont.

Feature Computation for Signal S

Standard deviation of the signal σ =

√
∑N

i=1 |Si−µ|2
N−1

Root mean square of the signal ∑N
i=1 S2

i
N

Peak to peak difference max(S)−min(S)

Zero crossing rate size({Si |Si==0,i=1,2,..,N})
N

Entropy of the signal −∑N
i=1 Silog(Si)

Skewness of the signal s = E(S−µ)3

σ3

Kurtosis of the signal k =
E(S−µ)4

σ4

Mean magnitude of the signal M =
∑N

i=1

√
Si x2+Siy2+Siz2

N
Energy of the signal e = ∑N

i=1 S2
i

Range of the signal r = max(S)−min(S)

Angle of the signal a = max(tan( Sz
S2

x+S2
y
))

Mean absolute deviation of the signal m = ∑N
i=1 |si−µ|

N

We performed dimensionality reduction based on the UMAP [34] algorithm prior
to clustering since distance-based clustering algorithms are negatively affected by high
dimensionality in feature space. The k parameter in the Baseline graph construction was set
to the 2% or 5% of the size of the Baseline graph, as suggested by the results in Section 6.1.

In the following subsections, we discuss performance metrics, comparison algorithms,
and parameter settings for our evaluation of ActiLabel.

5.7. Evaluation Metrics

We adopt four metrics to evaluate the performance of ActiLabel in this paper.

• To evaluate the performance of the core cluster identification, we report normalized
mutual information (NMI) and purity. NMI is an entropy based method that is a measure
of information sharing between the ground truth labels and clustering. Purity shows
how much each cluster contains a single class.

NMI(L, C) =
2× I(L; C)

[H(L) + H(C)]
(27)

where L is the actual class labels and C is the cluster labels. Function H(.) computes
the entropy of the input vector, and I(Y; C) denotes the mutual information between Y
and C. To calculate purity, we assume each cluster Ci is assigned to the most frequent
label label in the cluster.

purity(C, L) =
∑k max

j
|wk

⋂
cj|

N
(28)

where C = {c1, c2, . . . , ck} is the set of clusters and L is the set of labels. Both NMI and
purity are normalized between 0 and 1 [35]

• To evaluate the performance of the double-weighted matching algorithm, we report
labeling accuracy. The labeling accuracy is defined as the ratio of the target sensor
observations that are correctly mapped to an activity label in the source.

Labeling− Accuracy =
∑k

i=1
TPi+TNi

TPi+TNi+FPi+FNi

k
(29)
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where k refers to the number of classes. For each cluster ci with label li, TPi refers to
the samples that are correctly labeled as li, FPi represents the samples that are falsely
labeled as li, TNi is defined as the samples that are correctly not labeled as li, and FNi
represents the samples that are falsely not labeled as li

• To evaluate the performance of the ActiLabel framework as a whole, we report the
F1-score of the activity recognition algorithm that is autonomously trained because
it better represents the performance of the model when dealing with imbalanced
data [36]. F1-score is defined as the weighted average of the precision and recall [36].

F1− score =
2× (Recall × Precision)

Recall + Precision
(30)

where precision refers to the average agreement of the actual class labels and classifier-
predicted labels, and recall is the average effectiveness of the classifier to identify each
class label. Precision and recall are computed by the following equations:

Precision =
∑k

i=1
TPi

TPi+FPi

k
, Recall =

∑k
i=1

TPi
TPi+FNi

k
(31)

where k refers to the number of classes. For each activity class Ai with label li, TPi refers
to the samples that are correctly classified as li, FPi represents the samples that are falsely
classified as li, TNi is defined as the samples that are correctly not classified as li, and FNi
represents the samples that are falsely not classified as li [37].

6. Results

As mentioned previously, the main focus of ActiLabel is to create a labeled dataset
in a target domain. This dataset can then be used to train an activity recognition model.
Therefore, the methodologies presented in this paper are independent of the choice of
the classifier that can be used for activity recognition. For validation purposes, however,
we performed an extensive experiment to identify the most accurate classification model
that can be used for activity recognition. Table 3 compares the F1-score for k-NN with
k = 5, support vector machine (SVM) with RBF kernel, logistic regression (LR), random
forest (RF) with bagging of 100 decision trees, artificial neural network (ANN), Naive
Bayes (NB), and quadratic discriminant analysis (QDA). k-NN (K = 5) achieves the highest
performance, such as 93.8% average F1-score over different sensor locations in PAMAP2
dataset, 94.5% over different sensor modalities, and 97.1% over different sensor modalities
for DAS dataset. ANN achieved the best F1-score for the rest of the cases.

Table 3. Average F1-score(%) for activity classification over different sensor modalities and locations
for PAMAP2, DAS, and Smartsock datasets.

Dataset Type k-NN SVM LR RF MLP NB QDA

PAMAP2 Modalities 78.9 65.6 65.5 81.6 73.6 55.0 65.7
Locations 93.8 57.0 87.5 73.6 93.3 73.2 90.6

DAS Modalities 94.5 75.7 86.4 93.1 87.7 69.5 88.9
Locations 97.1 85.9 87.1 95.2 94.1 69.1 90

Smartsock Modalities 83.7 74.6 65.3 89.0 71.8 59.5 62.8

In what follows, we discuss the performance of ActiLabel for core cluster identification,
labeling accuracy, and activity recognition accuracy.

6.1. Performance of Core Cluster Identification

We analyzed the effect of parameter k in the k-NN network graph on the performance
of the core cluster identification as measured by normalized mutual information (NMI)
and clustering purity. As shown in Figure 7, the value of parameter k is set according to
the size of the network graph. Specifically, measure NMI and purity for k range from 0.5%
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to 50% of the network graph size. Note that purity decreases as k grows because a higher
purity (e.g., 0.85 to 0.98) can be achieved when detecting more clusters. A smaller k results
in sparser network graph, which in turn leads to the acquisition of more clusters. As shown
in Figure 7, NMI achieved its highest value (i.e., 0.67 for PAMAP2, 0.88 for DAS, and 0.83
for Smartsock) when k was set to 2% or 5% of the graph network size. This translates into a
k = 8 for PAMAP2 and Smartsock and k = 11 for DAS datasets.
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Figure 7. Performance (i.e., normalized mutual information and purity) of core cluster identification
versus parameter k in network graph construction.

Figure 8 compares the average NMI score and purity of clustering between the pro-
posed core cluster identification (CCI) method and well-known clustering and community
detection algorithms. We chose the algorithms that do not require prior knowledge on the
cluster counts because the activity labels are unknown in the target domain. Note that
the community detection algorithms were applied to a symmetric k-NN graph (k = 10)
built on the feature representation of observation after dimensionality reduction using the
UMAP [34] algorithm.

• Affinity propagation is a graph-based clustering algorithm that extracts the clusters
by relaying messages between pairs of samples until convergence [38].

• Mean shift is a centroid-based algorithm that extracts clusters on a smooth density
of data [39]

• DBSCAN clustering algorithm detects the cluster based on a density measure [40].
• Fast greedy finds the communities in the graph using Clauset–Newman–Moore greedy

modularity maximization [28].
• Lovain–Ward detects the communities in the graph by maximizing the modularity

using the Louvain heuristics [41].
• Label propagation finds the communities in the graph using a semi-synchronous label

propagation method [42].
As shown in Figure 8, CCI outperforms state-of-the-art clustering and community

detection algorithms. The NMI for the competing methods ranged from 0.37–0.65 for
PAMAP2, 0.25–0.77 for DAS, and 0.52–0.76 for Smartsock. The proposed algorithm CCI in-
creased NMI to 0.67, 0.87, and 0.85 for PAMAP2, DAS, and Smartsock datasets, respectively.

Affinity propagation, DBSCAN, Lovain–Ward, fast greedy, and label propagation
algorithms achieved 0.50–0.67, 0.44–0.73, and 0.51–0.69 purity for PAMAP2, DAS, and
Smartsock datasets, respectively. Mean shift achieved the lowest purity compared to other
comparison algorithms (0.32 for PAMAP2, 0.16 for DAS, and 0.40 for Smartsock). Using
our core cluster identification The purity measure reaches 0.77 for PAMAP2, 0.88 for DAS,
and 0.80 for Smartsock dataset. Note that the clustering was generally more accurate for
Smartsock and DAS datasets because PAMAP2 contained data from sensor modalities
(e.g., temperature) that might not be a good representative of the activities of interest.
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Figure 8. Performance comparison between core cluster identification in ActiLabel and standard
clustering and communication detection algorithms.

6.2. Labeling Accuracy in ActiLabel

Because ActiLabel generates a labeled training dataset in the target domain, it is
reasonable to assess the accuracy of the labeling task. Figure 9 shows the labeling accuracy
for various transfer learning scenarios and datasets. For brevity, the results from cross-
subject labeling are not included in this figure.
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Figure 9. Labeling accuracy of ActiLabel for (a) cross-modality and, (b) cross-location learning.

6.2.1. Cross-Modality Transfer

As the heatmap in Figure 9a shows, ActiLabel achieved 70.2–88.0% labeling accuracy
when the accelerometer was the target modality. With the accelerometer being the target
modality, the highest labeling accuracy (>80%) was obtained when the source modality was
the magnetometer, the stretch sensor, or another accelerometer. We also observed that the
labeling accuracy ranged from 60% to 75% when the target modality was magnetometer or
orientation sensor. We also noted that transferring labels between orientation and heart
rate sensors achieved the lowest accuracy (i.e., 45–0.65%), mainly because these sensor
modalities are not as good representative of the physical activities as the accelerometer. The
proposed mapping algorithm obtained > 80% labeling accuracy for the remaining transfer
scenarios except for ”magnetometer to orientation” mapping (77.9%) and for ”temperature
to temperature” mapping (74.0%).

6.2.2. Cross-Location Transfer

The heatmap in Figure 9b shows the labeling accuracy between sensor locations in
PAMAP2 and DAS datasets. Note that the Smartsock dataset contained only one sensor
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location, and therefore a cross-location transfer did not apply to this dataset. As expected,
mapping labels between the same or similar body locations such as “chest to chest”, “hand
to hand”, “ankle to ankle”, “torso to torso”, “left arm to left arm”, “left leg to left leg”,
and “left arm to right leg” achieved a relatively high labeling accuracy (i.e., >70.3%).
Furthermore, ActiLabel achieved 70.3–80.1% labeling accuracy for transfer tasks between
chest, ankle, and hand in PAMAP2. One reason for a relatively high labeling accuracy in
such transfer tasks involving dissimilar sensor locations is that PAMAP2 contains a rich
collection of sensors (accelerometer, gyroscope, magnetometer, orientation, temperature,
and heart rate sensors) that provide sufficient information about inter-event structural
similarities captured by our label learning algorithms in ActiLabel.

6.3. Performance of Activity Recognition

Table 4 shows activity recognition performance (e.g.,F1-score) for ActiLabel as well as
the algorithms under comparison, including baseline (BL), deep convolution LSTM (CL),
DirectMap (DM), and upper-bound (UB), as discussed previously.

Table 4. Activity recognition performance (F1-score).

Scenario Dataset Baseline ConvLSTM DirectMap ActiLabel Upper-Bound

Cross-modality
PAMAP2 7.8 8.1 40.4 59.3 80.8

DAS 9.3 8.2 44.8 66.2 86.1
Smartsock 16.2 12.8 66.0 72.7 84.2

Cross-location PAMAP2 14.3 12.7 63.4 70.8 93.2
DAS 13.2 12.4 60.7 68.4 89.8

Cross-subject
PAMAP2 65.8 61.9 85.4 82.7 98.1

DAS 67.1 56.8 79.0 80.3 92.5
Smartsock 59.8 61.8 82.6 80.0 95.2

Average 31.6 29.3 63.4 71.9 89.9

6.3.1. Cross-Modality Transfer

For this scenario, we examined transfer learning across these sensor modalities:
accelerometer, gyroscope, magnetometer, orientation, temperature, heart rate, and stretch
sensor. The cross-modality results in Table 4 reflect average performance over all possible
cross-modality scenarios. The baseline and ConvLSTM performed poorly with F1-scores of
7.8% and 8.1% in PAMAP2, 9.3%, and 8.2% in DAS, and 16.2% and 12.8% in Smartsock. This
demonstrates a highly diverse distribution of data across sensors of different modalities.
The DirectMap approach achieved 40.4%, 44.8%, and 66.0% F1-score for PAMAP2, DAS,
and Smartsock datasets, respectively. ActiLabel outperformed DirectMap by 19.3%, 21.4%,
and 6.7% for PAMAP2, DAS, and Smartsock, respectively.

6.3.2. Cross-Location Transfer

We examined transfer learning among chest, ankle, hand, arms, legs, and torso. The
cross-location results in Table 4 represent the average values over all possible transfer
scenarios. The baseline and ConvLSTM methods achieved F1-scores of 14.3% and 12.7%
for the PAMPA2 dataset, respectively. Similarly, the baseline and ConvLSTM algorithms
achieved 13.2% and 12.4% F1-scores, respectively, for DAS dataset. The relatively low
F1-scores of the baseline and ConvLSTM algorithms can be explained by the high level of
diversity between the source and target domains during cross-location. The DirectMap and
ActiLabel both outperformed the baseline and ConvLSTM models, specifically, DirectMap
and ActiLabel 63.4% and 70.8% F1-scores for PAMAP2, respectively, and 60.7% and 68.4%
F1-scores for DAS.

6.3.3. Cross-Subject Transfer

For this particular experiment, we included only four subjects from each dataset because
there were only four subjects who performed all the activities in the protocol of the datasets.
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The baseline and ConvLSTM achieved 65.8% and 61.9% F1-score for PAMAP2, 67.1% and
56.8% F1-score for DAS, and 59.8% and 61.8% F1-score for Smartsock datasets. The baseline
feature-based classifier achieved slightly higher performance than deep ConvLSTM. This
can be explained by the fact that complex deep learning models may not be superior to
feature-based algorithms when applied to data with low-dimensional feature space. Such
deep learning models have been shown superiority to feature-based estimation models when
adopted to datasets with high-dimensional channels (e.g., >100). However, the datasets used
for our analysis had few channels of data from a few locations and sensors.

The DirectMap approach and ActiLabel obtained F1-scores of 85.4% and 82.7% in
PAMAP2, 77.59% and 82.6% in DAS, and 82.6% and 77.5% in Smartsock, respectively. All
the algorithms achieved higher F1-score values than the cross-location and cross-modality
scenarios. This observation suggests that cross-subject transfer learning is an easier task to
accomplish compared to cross-modality and cross-location because of the lower amount of
variation in the distribution of the sensor data during cross-subject learning. These results
suggest that data variations among different subjects can be normalized using techniques
such as feature scaling, and feature selection before classification.

7. Discussions and Future Work

In this section, first, we discuss our work from several perspectives and discuss
promising directions that will overcome some of the limitations of our work.

First, from the transfer learning perspective, the performance of different transfer
learning algorithms depends on four factors. First, how well the target can distinguish
between different physical activities when some correct labels are available. Second, how
pure observations in target and source domains could be clustered into activity labels. Third,
the accuracy of mapping between the source and target core clusters. Lastly, the capability
of the source dataset in distinguishing between different activities when some labels are
available. Table 4 shows that ActiLabel obtained an average F1-score of 59.3% in activity
recognition of the PAMAP2 dataset, compared to 66.2% and 72.7% F1-scores for the DAS
and Smartsock datasets, respectively. The collection of more diverse sensor modalities such
as accelerometer, gyroscope, magnetometer, orientation, temperature, and heart rate, which
are less representative of human physical activity events, affects every step in Actilabel,
including core cluster identification, min-cost mapping, and activity recognition. As shown
in Table 3, the strongest baseline classifier (e.g., 5-NN) achieved 78.9% average F1-score in
detecting the activities from different sensor modalities from the PAMAP2 dataset; 5-NN
reached a 94.5% activity recognition F1-score; and random forest obtained a 89.0% average
F1-score for sensor modalities in DAS and Smartsock datasets, respectively.

Second, from the structural perspective, we note that the community detection-based
algorithms outperform clustering algorithms in our setting. From Figure 8, we can observe
that fast greedy, Lovain–Ward, and label propagation community detection algorithms
obtained NMI of 0.16–0.51 and purity of 0.25–59 for PAMAP2, DAS, and Smartsock datasets,
respectively, while the clustering methods, including affinity propagation, mean shift, and
DBSCAN, achieved NMI of 0.42–0.70 and purity of 0.62–0.78 for these datasets, respectively.
CCI, which is proposed as an extension to the community detection algorithms, achieved
up to 20.4% higher NMI and 17.5% purity than these techniques. These results suggest
that community detection algorithms are more reliable in the unsupervised clustering
of datasets, in particular, human physical activity, when the models do not have prior
knowledge on the number of the clusters. Although the clustering algorithms, such as
affinity propagation and mean shift, eliminate the need to specify the number of clusters,
they have other parameters, such as “preference” and “damping” for affinity propagation
and “bandwidth for mean shift, that are challenging to optimize [43,44]. We note that
tuning the structure of the input graph (e.g., modifying k for K-NN graphs) and merging
strongly connected communities again, as proposed in CCI, improves the clustering quality
comparing to the other community detection algorithms such as label propagation.
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Finally, from the machine learning viewpoint of the activity recognition, we discuss
the problem of poor performance of the baseline models (e.g., 31.6% F1-score, as shown
in Table 4). Specifically, in the cross-modality scenario, the gap between the baseline and
other transfer learning methods is the highest (e.g., gap of 32.6% to 59.9% in F1-score). One
explanation is that the features adopted different distributions across different domains. We
note that ConvLSTM did not meet the expectations in solving the problem of cross-domain
transfer learning; the main reason that ConvLSTM could not improve the performance
(e.g., 29.3% F1-score) of the baseline was an inadequate amount of data as the deep neural
networks acquire a considerable amount to data to extract effective features through the
deep convolution layers [45]. We believe that adding more data to the training dataset
will improve the performance of the baseline method. Overall, assuming a lower F1-
score for the baseline represents higher diversity between domains and, therefore, a more
challenging transfer scenario, the cross-modality with 40.4–72.7% F1-score for DirectMap
and ActiLabel is the most challenging transfer learning scenario. Overall, assuming a
lower F1-score for the baseline represents higher diversity between domains and, therefore,
a more challenging transfer scenario, the cross-modality with a 40.4–72.7% F1-score for
DirectMap and ActiLabel is the most challenging transfer learning scenario.

There are few limitations to the evaluation process of the ActiLabel. First, we assume
that the target activity labels are a subset of ones in the source domains. However, there
are cases in real-word settings in which some of the activities in the target are not known
to the source. The straightforward solution to this scenario is to add dummy nodes in
the construction of bipartite graphs for the domain with fewer activities (e.g., source
domain). However, such a solution is naive and results in mapping the dummy nodes
from the source to the nodes associated with unknown activity labels from the target
domain in the best case. To solve this issue, our ongoing work involves investigating
practical approaches that allow for more complex mapping scenarios such as many-to-
many mappings that capture all possible complex mapping situations that might occur in
real-world and uncontrolled settings. Second, graph-based algorithms such as ActiLabel
might encounter scalability challenges when deployed in large real-world datasets. We are
planning to investigate the efficacy of replacing the k-NN graph with less computationally
expensive graph structures such as kd-graphs and minimum spanning trees to enhance the
scalability of the ActiLabel. Finally, the practical challenges of deploying our system in a
real-world scenario will provide valuable information on the applicability of ActiLabel and
help us improve our system. Therefore, one interesting future direction is the optimization
of various computational components of ActiLabel for time, power, and memory efficiency
given the dynamics of real-world scenarios.

Based on our analysis, Table 5 illustrates the merits and potential demerits of ActiL-
abels against analogous methods.

The aim of ActiLabel is to leverage the knowledge from a source domain where
labeled data is abundant and use it to improve the performance of activity recognition
task in a target domain where labeled data is limited. It is designed to handle transfer
learning scenarios with different modalities, subjects, and sensor locations. The Ac-
tiLabel framework initiates community detection algorithms to identify core clusters
of similar activities in the target domain and then maps them to corresponding activ-
ities in the source domain. By leveraging the relationships between activities and the
knowledge from the source domain, ActiLabel aims to improve the activity recognition
performance in the target domain. Additionally, ActiLabel’s performance is evaluated
in three transfer learning setups: cross-modality transfer, cross-subject transfer, and
cross-location transfer. These scenarios reflect the scope of application of ActiLabel in
real-world situations where activity recognition needs to be performed across different
sensor modalities, different individuals, and different sensor locations. While the focus
of this study is activity recognition using wearable sensor data, the ActiLabel method’s
underlying principles of transfer learning and community detection could potentially
be applied to other domains and tasks where transfer learning deems fit. However,
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further research and experimentation would be needed to explore its effectiveness in
those specific domains.

Table 5. Comparison of different transfer learning techniques.

Method Advantages Disadvantages

ActiLabel
- Leverages community detection algorithms
- Graph-based modeling captures relationships

between activities
- Performs well in scenarios with similar sensor modal-

ities and diverse source datasets

- Depends on availability of diverse sensor modalities
- Scalability challenges with large datasets
- Assumes target labels are subset of source domain

labels

Deep Learning Models
- Can learn complex representations from raw sensor

data
- Strong performance with large labeled datasets
- Can handle different modalities and adapt to

domain shifts

- Requires large labeled datasets for training
- Computationally expensive
- May suffer from overfitting if training dataset is not

representative

Uninformed Transfer
Learning Techniques - Simple and straightforward implementation

- Applicable in scenarios with scarce labeled data
- Provide a starting point for activity recognition
- May not effectively leverage source domain knowl-

edge
- Do not adapt to domain shifts
- Limited performance and applicability in

diverse scenarios

8. Conclusions

We introduced ActiLabel, a computational framework with combinatorial optimiza-
tion methodologies for transferring physical activity knowledge across highly diverse
domains. ActiLabel extracts high-level structures from sensor observations in the tar-
get and source domains and learns labels in the target domain by finding an optimal
mapping between dependency graphs in the source and target domains. We showed
that deep learning models and uninformed transfer learning techniques do not gener-
alize well when transferring across different locations and sensor modalities, although
their performance is acceptable in cross-subject learning. ActiLabel, however, provides
consistently high accuracy for cross-domain knowledge transfer in various learning
scenarios. Our extensive experimental results showed that ActiLabel achieves average
F1-scores of 59.2%, 70.8%, and 82.7% for cross-modality, cross-location, and cross-subject
activity recognition, respectively. These results suggest that ActiLabel outperforms the
competing algorithms by 36.3%, 32.7%, and 9.1% in cross-modality, cross-location, and
cross-subject learning, respectively.
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