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Abstract: The non-axisymmetric exciting guided wave can detect the thinning section of the elbow,
and the time domain energy value of the signal collected at the outer arch position of the receiving
end displays a downward trend as the remaining thickness of the erosion area decreases. To address
the difficulty in detecting the erosion degree of the elbow with high accuracy, this paper uses the
linear frequency modulation (LFM) signal to excite a non-axisymmetric guided wave that propagates
in the 90◦ elbow and collects signals through four PZT receivers. To predict the erosion degree,
the corresponding relationship between the energy value of the four signals after fractional Fourier
filtering and the degree of elbow erosion is established through the particle swarm optimization
(PSO)–least squares support vector machine (LSSVM) algorithm. The results show that the method
proposed has an average accuracy rate of 98.1864%, 94.7167%, 99.119%, and 99.9593% for predicting
the erosion degree of four elbow samples, and 94.0039%. and 81.2976% for two new erosion degrees,
which are higher than the nonlinear regression model, LSSVM algorithm, and BP neural network
algorithm. This study has guiding significance for real-time monitoring of elbow erosion.

Keywords: erosion monitoring; least squares support vector machine (LSSVM); fractional Fourier
transform (FrFT); asymmetric ultrasonic-guided wave; particle swarm optimization (PSO)

1. Introduction

The pipeline system is a cost-effective way of transporting oil and gas, widely used
in the petrochemical industry. As an essential part of changing the flow direction of the
pipeline system, elbows are prone to erosion damage under the erosion of the internal
conveying medium [1–3]. Therefore, it is necessary to accurately predict the remaining
wall thickness.

Traditional nondestructive testing techniques have some limitations [4–7]. For exam-
ple, magnetic particle testing can only detect ferromagnetic materials [8] and requires a
low environment temperature; eddy current testing [9] can only detect conductive metal
materials and non-metallic materials that can generate eddy currents; and radiographic
testing [10] has high detection costs and slow detection speeds. Compared with these tech-
niques, ultrasonic-guided wave detection has the advantages of small energy attenuation,
an extensive detection range, and a fast detection speed. Therefore, it is more suitable for
detecting the erosion degree of the elbow [11–14].

The pulse signal is generally used to excite axisymmetric guided waves to detect
structural damage, and the position and depth of defects are judged by the amplitude and
receiving time of echo signals. This method has a good detection effect on symmetrical
parts [15,16]. However, when detecting the elbow, the following problems exist: the
axisymmetric guided wave will produce non-axisymmetric reflection in the bending part of
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the elbow and mode conversion will occur, which increases the difficulty of identifying the
corresponding mode from the echo signal; in some frequency ranges, it is difficult to ensure
that a single axisymmetric mode is excited; axisymmetric guided waves are less effective in
detecting axial and circumferential defects; when the test piece can only be contacted in a
limited space, it is difficult to install sensor arrays required to excite axisymmetric guided
waves [17,18]. Some scholars have tried to use non-axisymmetric guided waves to detect
circular tube structures [19], cracks in rivet holes [20], and straight pipes [21,22] and have
achieved good results. Therefore, we consider using non-axisymmetric guided waves to
detect the erosion degree of elbow erosion.

The LFM signal has a large time-bandwidth product, a long detection distance, and
a high-range resolution, widely used in radar, electronic communication, and fault diag-
nosis [23–27]. Its characteristics are suitable for detecting the erosion degree of the elbow.
However, the strong coupling of the LFM signal in the time–frequency domain makes
it difficult to separate the signal from the noise. Fractional Fourier transform (FrFT) has
chirp basis decomposition characteristics, suitable for LFM signal filtering [28–31]. Some
scholars have successfully detected cracks in reinforced concrete using the method of
horizontal fusion of CODA waves and multi-ultrasonic sensor signals [32,33]. Inspired by
this, we consider arranging multiple sensors on the elbow to receive signals and use ma-
chine learning algorithms to establish the internal relationship between the signals and the
erosion degree.

Least squares support vector machine algorithm (LSSVM) has a fast solution speed and
good robustness [34], and its characteristics are suitable for predicting the erosion degree
of the elbow. The regularization parameter and kernel parameter affect the performance of
LSSVM, and the determination of the values of these two parameters by empirical or grid
methods suffers from subjectivity and arbitrariness, making the results inaccurate. Particle
swarm optimization (PSO) is an evolutionary algorithm with fast convergence speed, a
simple solution process, and global search capability, which can effectively optimize the
above two parameters [35,36].

Based on the above discussion, to solve the problem that it is difficult to predict the
erosion degree of the elbow qualitatively with the existing ultrasonic detection technology,
this paper combined the non-axisymmetric guided wave detection with the FrFT filtering
of the LFM signal, using the PSO–LSSVM algorithm to obtain the intrinsic relationship
between the time domain energy of the signals and the erosion degree, and finally realize
the accurate prediction of the erosion degree of the elbow.

The LFM signal excites the PZT sensor pasted on the outer arch of one end of the
elbow to generate a non-axisymmetric guided wave and collect signals through four PZT
sensors arranged at the other end. The time domain energy value of the signal filtered
by FrFT and the corresponding remaining wall thickness of the erosion area are used as
samples to train the PSO–LSSVM model. Finally, the same test sample is used to test
the model’s accuracy in predicting the erosion degree and compare it to the nonlinear
regression analysis method, BP neural network, and LSSVM. The results show that the
method proposed in this paper is more accurate than other methods, and it has a guiding
significance for real-time monitoring of the elbow erosion.

2. Theoretical Background
2.1. The FrFT Filtering Principle of LFM Signal

As a generalized form of Fourier transform, Namias [37] redefined the concept of FrFT
in a purely mathematical way from the perspective of eigenvalues and eigenfunctions,
and gave a high-order differential form of FrFT in 1980. After Almeida [38] pointed out
that FrFT can be understood as the rotation of the time–frequency plane, and Ozaktas [39]
proposed a discrete algorithm with a calculation amount equivalent to FFT, more scholars
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have begun applying FrFT to the signal processing field [40,41]. The p-order fractional
Fourier transform of a one-dimensional signal is defined as follows [42]:

Xp(u) =
∫ +∞

−∞
Kp(u, t)x(t)dt (1)

where Kp(u, t) is the kernel function, and its expression is

Kp(u, t) =


√

1− j cot αejπ(u2 cot α−2ut csc α+t2 cot α), α 6= nπ

δ(u− t), α = 2nπ

δ(u + t), α = (2n± 1)π

(2)

where α = pπ/2 is the rotation angle, p is the order of the FrFT, and δ is the impulse
function. Equation (2) shows that the FrFT kernel is essentially a set of LFM signals whose
modulation frequency is cotα. When changing the order p, the rotation angle α changes
simultaneously, and then the basis of different modulation frequencies can be obtained. An
LFM signal can be represented as follows:

x(t) = ej(2π f0t+πKt2+ϕ0) (3)

where 0 ≤ t ≤ tn, f0 is the initial frequency, K is the modulation frequency, and ϕ0 is
the initial phase of the signal. Substituting Equation (3) into Equation (1) and making
cotα = −K, the p-order FrFT of the LFM signal can be obtained by deducing that

Xp(u) =
√

1 + jKejϕ0−jπu2Kδ(u csc α− f0) (4)

Equation (4) shows that, within the value range of the order p, the continuous FrFT
is performed on the noise-containing LFM signal with a certain step size. When the LFM
signal’s modulation frequency is consistent with a certain set of bases, the signal’s FrFT
is an impulse function that exhibits time–frequency focusing. However, noise signals do
not have this property. Using this principle can realize the filtering of the LFM signal, as
shown in Figure 1.
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2.2. The Principle of LSSVM

LSSVM is an improved algorithm of SVM. Introducing an error sum of squares term
into the objective function changes the inequality constraint in the quadratic programming
problem to an equality constraint, which overcomes the abnormal regression caused by
rough datasets and large fluctuations. It can effectively solve the problem of the standard
SVM solution being too slow [43]. The regression model of LSSVM in high-dimensional
space is as follows [44]:

y(x) = ωT ϕ(x) + b (5)

where ϕ(x) is a non-linear mapping function that maps the input data to a high-dimensional
space, making it separable; ω is the weight vector; and b is the bias vector. The hyperplane
ωT ϕ(x) + b = 0 can separate all samples. The optimization function of LSSVM is defined
as follows:

minω,ξ J(ω, ξ) = minω,ξ
1
2

ωTω +
γ

2

N

∑
i=1

ξ2
i (6)

where ξi is the error term and γ is a regularization parameter used to balance the proportion
of misclassified samples and model complexity. The constraint of this optimization function
is as follows:

yi

[
(ωTxi) + b

]
= 1− ξi, i = 1, 2, 3, . . . , N (7)

The Lagrange function is used to solve the above optimization problem:

L(ω, b, ξi, αi ) = J(ω, ξ)−
N

∑
i=1

αi(yi(ω
Txi + b)− 1 + ξi) (8)

where αi is the Lagrange multiplier. According to the KKT optimization condition, let the
partial derivatives of the four parameters in ω, b, ξi, and αi in the Lagrangian function be 0,
and finally obtain the LSSVM model expression:

y(x) = sign

[
N

∑
i=1

αiyiK(x, xi) + b

]
(9)

Considering that the radial basis function has the advantages of simple form and
fast convergence, this paper chooses it as the kernel function of LSSVM, and its form is
as follows:

K(x, xi) = exp
(
−‖x− xi‖2/σ2

)
(10)

where σ is a kernel function parameter. The regularization parameter γ and kernel parame-
ter σ affect the performance of LSSVM when the sample and kernel function are determined.
So, obtaining the optimal global solution of these two parameters becomes the key to
the problem.

2.3. The Principle of PSO

PSO is a swarm intelligence optimization algorithm inspired by the movement of
bird groups [45], which regards the group collaboration process of birds foraging as an
algorithm optimization solution. The algorithm consists of a particle swarm that iteratively
searches to obtain the optimal solution and find the best position, as shown in Figure 2.
The principle is as follows:

Suppose there are M random particles in the d-th dimensional solution space, and
the position of each particle represents a possible optimal solution. The position, velocity,
and the optimal position searched so far of the i-th particle are set to Xi = (xi1, xi2, . . . , xid),
Vi = (vi1, vi2, . . . , vid), and Pi =

(
pg1, pg2, . . . , pgD

)
, respectively. The RMSE between the

predicted value and the actual value of the remaining wall thickness of the elbow is defined
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as the fitness function of the particle, and the updated equations of particle velocity and
position are as follows [46]:{

vk+1
id = ωvk

id + c1rk
1(pk

id − xk
id) + c2rk

2(pk
gd − xk

gd)

xk+1
id = xk

id + xk+1
id , d = 1, 2, . . . , D

(11)

where ω is the inertia weight and the value range is usually [0.5, 1]; vk
id and xk

id are the
speed and position, respectively, of the ith particle in the dth dimension in the kth iteration;
c1 and c2 are the learning factors; r1 and r2 are random numbers between [0, 1]; and pk

id
and pk

gd are the individual optimal position of the d-dimensional particle i and the optimal
global position of the entire particle swarm, respectively.
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2.4. The Calculation Process

We proposed a prediction model for the elbow’s erosion degree based on the LFM
signal’s time domain energy filtered by FrFT and the PSO-LSSVM algorithm. Figure 3
shows the algorithm flow, and the detailed steps are as follows:

1. An LFM signal is used to generate a non-axisymmetric guided wave that propagates
in the 90◦ elbow and collects the signal through four PZT receivers arranged around
the other end.

2. Perform fractional Fourier filtering on the collected signals. Use the filtered time
domain energy value and the elbow’s corresponding remaining wall thickness value
as sample data. The sample data are randomly divided into training and test sets.

3. Convert the regularization parameter γ and kernel parameter σ2 of the LSSVM model
into the two-dimensional coordinates of the particles, and initialize the parameters of
the PSO algorithm.

4. When the fitness of a particle is better than the current optimal value, update its
optimal fitness and record the current position; when the individual fitness of all
particles is higher than the current global fitness, record the current position and
update the global fitness as well as the speed and position of the particles.

5. The optimization search ends when the calculation result meets the end condition
and builds the LSSVM model based on the obtained optimal global values of the
regularization parameter γ and kernel parameter σ2. The model is trained by taking
the filtered time domain energy value of the extracted four position signals of the
elbow as input and the corresponding remaining wall thickness as output.
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6. The erosion degree of the elbow can be predicted according to the input sample data
after the training is completed.
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3. Experimental Setup
3.1. Experimental Device

The ultrasonic testing system for elbow erosion is shown in Figure 4. It mainly
comprises a function signal generator, a high-precision digital oscilloscope, a handheld
grinder, and an ultrasonic thickness gauge. The detection object is a 90◦ metal elbow with a
nominal diameter of DN = 50.8 mm and an average wall thickness of 4 mm.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 4. The ultrasonic testing system. 

3.2. Experimental Program 
The most severe erosion area is located near the outlet end of the elbow and the over-

all defect morphology is symmetrical about the center plane of the elbow, showing a par-
abolic shape [47,48]. Therefore, we used a handheld grinder to make oval-shaped pits to 
simulate the actual erosion area during the experiment. The depth of grinding is roughly 
the same each time, and the average value of multiple measurements of the central area 
of the bottom of the erosion pit is measured with an ultrasonic thickness gauge [42]. 

In practical applications, other parts are usually installed at both ends of the elbow. 
The collected signal energy will be small if only one end is installed with a sensor to excite 
and receive signals. Therefore, we chose to paste a PZT on the outer arch of one end as a 
signal exciter, start from the outer arch at the other end, and paste a PZT every 90° along 
the circumferential direction of the pipe as a signal receiver. The PZT receiver at the outer 
arch point is defined as PZT-A; the inner bending point is PZT-D; and the left and right 
ends of the connection between PZT-A and PZT-D are PZT-B and PZT-C, respectively. 
The artificially simulated erosion area and the PZT pasting position are shown in Figure 
5. The PZT specifications and materials used in the test are the same, and the properties 
of the PZT material are shown in Table 1 [42].  

 
Figure 5. PZT paste position and the erosion area. 

Figure 4. The ultrasonic testing system.



Sensors 2023, 23, 6311 7 of 17

3.2. Experimental Program

The most severe erosion area is located near the outlet end of the elbow and the overall
defect morphology is symmetrical about the center plane of the elbow, showing a parabolic
shape [47,48]. Therefore, we used a handheld grinder to make oval-shaped pits to simulate
the actual erosion area during the experiment. The depth of grinding is roughly the same
each time, and the average value of multiple measurements of the central area of the bottom
of the erosion pit is measured with an ultrasonic thickness gauge [42].

In practical applications, other parts are usually installed at both ends of the elbow.
The collected signal energy will be small if only one end is installed with a sensor to excite
and receive signals. Therefore, we chose to paste a PZT on the outer arch of one end as a
signal exciter, start from the outer arch at the other end, and paste a PZT every 90◦ along
the circumferential direction of the pipe as a signal receiver. The PZT receiver at the outer
arch point is defined as PZT-A; the inner bending point is PZT-D; and the left and right
ends of the connection between PZT-A and PZT-D are PZT-B and PZT-C, respectively. The
artificially simulated erosion area and the PZT pasting position are shown in Figure 5. The
PZT specifications and materials used in the test are the same, and the properties of the
PZT material are shown in Table 1 [42].
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Table 1. The properties of PZT.

Property Value Property Value

Density 7.5 g/cm3 Curie temperature 340 ◦C
Relative dielectric constant 1720 Mechanical quality factor 600
Electromechanical coupling

coefficient 0.6 Frequency constants 1990 Hz·m

Piezoelectric coefficient 450 × 1012 C/N Dielectric loss 0.02

By conducting a large-scale frequency sweep test on the sample, it is determined that
the excitation frequency of the LFM signal is 60–200 kHz, the signal amplitude is 10 V, the
sweep time is 0.1 s, and the sampling frequency is 2 MHz. The form of the excitation signal
is shown in Figure 6. During the grinding test, the sample’s artificially simulated erosion
thinning process is shown in Table 2 (C0 is the unpolished state).
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Table 2. The remaining thickness values under each erosion degree.

Erosion Degree Remaining Thickness/mm

C0 3.98
C1 3.75
C2 3.34
C3 3.05
C4 2.63
C5 2.24
C6 1.97

3.3. Time Domain and Energy Analysis of Signals

Taking the signal received by PZT-A as an example, Figure 7a is the offset diagram of
the received signal under different erosion degrees, and Figure 7b is the time domain signal
synthesis diagram of erosion degrees C0, C2, C4, and C6. It can be found that there is no
significant difference in the time domain signal waveform and amplitude under different
erosion degrees. It is difficult to directly obtain the relationship between the erosion degree
and the received signals in the time domain, and further analysis is required.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17 
 

 

  
(a) (b) 

Figure 7. The time domain diagram of the received signal by PZT-A: (a) time domain signals of each 
erosion degree; (b) time domain signal synthesis diagram of multiple erosion degrees. 

Taking the signal collected by PZT-A when the erosion degree is C0, the STFT is per-
formed on the signals before and after FrFT filtering, and the time–frequency diagram is 
obtained, as shown in Figure 8. The noise signals in the original signal are effectively fil-
tered out, and the LFM signal is well preserved. This shows that FrFT can effectively filter 
out the noise in the acquisition signal, thereby reducing the error caused by the noise. 

 
Figure 8. Time–frequency diagram of STFT before and after filtering. 

Calculate the time domain energy value of the signals after FrFT filtering and repre-
sent them with EiA, EiB, EiC, and EiD (i = 0~6 represents seven erosion degrees. A, B, C, and 
D represent the four receiving positions). Take the average value of the time domain en-
ergy at the same erosion degree and position, and construct a graph as shown in Figure 9. 

0.00 0.02 0.04 0.06 0.08 0.10

0

1

2

3

4

A
m

pl
itu

de
 (V

)

Time (Sec)

 C0  C1  C2  C3  C4  C5  C6 

0.00 0.02 0.04 0.06 0.08 0.10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

A
m

pl
itu

de
 (V

)

Time (Sec)

Figure 7. The time domain diagram of the received signal by PZT-A: (a) time domain signals of each
erosion degree; (b) time domain signal synthesis diagram of multiple erosion degrees.
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Taking the signal collected by PZT-A when the erosion degree is C0, the STFT is
performed on the signals before and after FrFT filtering, and the time–frequency diagram
is obtained, as shown in Figure 8. The noise signals in the original signal are effectively
filtered out, and the LFM signal is well preserved. This shows that FrFT can effectively
filter out the noise in the acquisition signal, thereby reducing the error caused by the noise.
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Figure 8. Time–frequency diagram of STFT before and after filtering.

Calculate the time domain energy value of the signals after FrFT filtering and represent
them with EiA, EiB, EiC, and EiD (i = 0~6 represents seven erosion degrees. A, B, C, and D
represent the four receiving positions). Take the average value of the time domain energy
at the same erosion degree and position, and construct a graph as shown in Figure 9.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 9. The time domain energy values after filtering for each received position signal under dif-
ferent erosion degrees. 

As the erosion degree increases, the reflected guided wave at the erosion area grad-
ually increases and the time domain energy of the signal at point A of the outer arch gen-
erally shows a downward trend, but there are also cases of abnormal energy (such as when 
the erosion degree is C1). The erosion area is on the shortest path between the guided 
wave exciting point and the outer arch PZT-A. In erosion degree C0, the metal oxide layer 
on the inner surface of the erosion area reduces the time domain energy of the signal re-
ceived by PZT-A. In erosion degree C1, the metal oxide layer in this area is removed. 
Therefore, the time domain energy of the signal collected by the outer arch back PZT-A is 
higher than that of erosion degree C0.  

After the non-axisymmetric guided wave is excited, the guided wave will form a 
wavefront in the elbow and propagate to the surroundings. The sources of the guided 
wave signals received by PZT-B and PZT-C are complex, and the erosion area is not on 
the minimum path between the two PZT sensors and the excitation point. Therefore, there 
is no apparent correspondence between the energy values of PZT-B and PZT-C acquisition 
signals and the surface morphology and depth of the erosion area. With increasing ero-
sion, the guided wave is refracted and reflected in the erosion area, and its propagation 
path changes. For the elbow measured in this test, the specific performance is that the time 
domain energy of the signal received by PZT-D of the inner bend gradually increases.  

The above results show that, for the elbow in this test, there is a correspondence be-
tween the time domain energy of the signals received by PZT-A on the back of the outer 
arch and PZT-D on the inner bend and the erosion degree. However, it is difficult to accu-
rately predict the erosion degrees of the elbow from the energy point of view alone. 

4. Establishment of the Prediction Model for Erosion Degree of the Elbow 
4.1. Extract Sample Set 

Extracting more signal data for each erosion degree to train the prediction model can 
effectively reduce the variability in signal energy caused by experimental measurement 
errors. In this experiment, the four PZT receivers collected 20 sample datasets at each ero-
sion degree (10 sets at erosion degree C6). In order to better verify the regression ability 
of the model, the remaining thicknesses were measured multiple times under each erosion 
degree and corresponded to the time domain energy value of the signals collected from 
the four PZTs after FrFT filtering; partial sample data are shown in Table 3. Under the 
same erosion degree, the difference between the time domain energy of the signal col-

C0 C1 C2 C3 C4 C5 C6
100

200

300

400

500

600

Ti
m

e-
do

m
ai

n 
en

er
gy

 v
al

ue
 (V

2 )

Erosion degree

 EiA  EiB
 EiC  EiD

Figure 9. The time domain energy values after filtering for each received position signal under
different erosion degrees.

As the erosion degree increases, the reflected guided wave at the erosion area gradually
increases and the time domain energy of the signal at point A of the outer arch generally
shows a downward trend, but there are also cases of abnormal energy (such as when the
erosion degree is C1). The erosion area is on the shortest path between the guided wave
exciting point and the outer arch PZT-A. In erosion degree C0, the metal oxide layer on the
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inner surface of the erosion area reduces the time domain energy of the signal received by
PZT-A. In erosion degree C1, the metal oxide layer in this area is removed. Therefore, the
time domain energy of the signal collected by the outer arch back PZT-A is higher than that
of erosion degree C0.

After the non-axisymmetric guided wave is excited, the guided wave will form a
wavefront in the elbow and propagate to the surroundings. The sources of the guided
wave signals received by PZT-B and PZT-C are complex, and the erosion area is not on the
minimum path between the two PZT sensors and the excitation point. Therefore, there is
no apparent correspondence between the energy values of PZT-B and PZT-C acquisition
signals and the surface morphology and depth of the erosion area. With increasing erosion,
the guided wave is refracted and reflected in the erosion area, and its propagation path
changes. For the elbow measured in this test, the specific performance is that the time
domain energy of the signal received by PZT-D of the inner bend gradually increases.

The above results show that, for the elbow in this test, there is a correspondence
between the time domain energy of the signals received by PZT-A on the back of the
outer arch and PZT-D on the inner bend and the erosion degree. However, it is difficult to
accurately predict the erosion degrees of the elbow from the energy point of view alone.

4. Establishment of the Prediction Model for Erosion Degree of the Elbow
4.1. Extract Sample Set

Extracting more signal data for each erosion degree to train the prediction model can
effectively reduce the variability in signal energy caused by experimental measurement
errors. In this experiment, the four PZT receivers collected 20 sample datasets at each
erosion degree (10 sets at erosion degree C6). In order to better verify the regression ability
of the model, the remaining thicknesses were measured multiple times under each erosion
degree and corresponded to the time domain energy value of the signals collected from
the four PZTs after FrFT filtering; partial sample data are shown in Table 3. Under the
same erosion degree, the difference between the time domain energy of the signal collected
by the same PZT sensor is much smaller than the difference between different erosion
degrees. Expanding the training sample by measuring the ultrasonic signal multiple times
can reduce the error in the signal acquisition process as much as possible.

Table 3. Partial sample set data table.

Sample Number EiA/V2 EiB/V2 EiC/V2 EiD/V2 Remaining Thickness Values/mm

C0-1 315.8 250.3 286.6 220.1 3.95
C0-2 317.2 250.7 288.1 220.5 3.90
C0-3 317.5 250.6 287.9 220.6 4.08

. . .
C3-1 580.3 190.3 383.3 124.5 2.98
C3-2 579.9 190.5 383.9 124.5 3.06
C3-3 555.0 190.6 383.9 124.4 3.12

. . .
C6-8 520.0 243.6 500.0 151.1 1.97
C6-9 515.3 243.8 500.6 151.2 1.98

C6-10 515.8 243.7 499.9 151.2 1.96

4.2. PSO–LSSVM Model

The PSO algorithm is used to find the optimal value of the regularization parameter
γ and kernel parameter σ2 iteratively. The initialization settings of relevant PSO parameters
are shown in Table 4, and using random functions generate the initial position and velocity
of particles. After 30 iterations, the optimal global values of these two parameters are
obtained and the PSO–LSSVM model is established.
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Table 4. PSO parameter settings.

Sample Number Remaining Thickness Values/mm

Iterations 30
Particle number 200

Learning factor c1, c2 0.5, 0.5
Inertia weight ω 0.95, 0.4

The value range of γ 0.01~300
The value range of σ2 0.01~200

4.3. Predict the Erosion Degree of Elbow

In order to test the regression fitting effect, the training set data are input into the
model, and the comparison between the real value and the predicted value of the training
sample is shown in Figure 10.
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Figure 10 shows that the model has excellent learning and regression-fitting abilities
on the training set, with an accuracy rate of 99.4178%. In order to test the predictive ability
of the model, 21 sets of test set data were input for prediction, and the results are shown in
Figure 11. The model predicts with 98.1864% accuracy on the test set, indicating that the
model can accurately predict the remaining thickness value of the elbow.
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5. Comparison and Analysis
5.1. Other Methods

In order to further verify the effectiveness and accuracy of the method proposed in
this paper in predicting the erosion degree of the elbow, we use the same experimental
data as input and predict the remaining thickness using the nonlinear regression analysis
method, LSSVM algorithm, and BP neural network.

When using the nonlinear regression analysis method, the independent variables are
the time domain energy values of the signals after FrFT filtering received by the four PZT
receivers, and the regression model formula is defined as follows:

t = CEiA
a1 EiB

a2 EiC
a3 EiD

a4 (12)

where C, a1, a2, a3, and a4 are the regression coefficients and t is the predicted remaining
thickness value. Substitute the training set data into Equation (12) to establish the nonlinear
relationship between 109 groups of the independent variable and the remaining thickness.
This set of multiple regression equations is solved to obtain the values of each regression
coefficient and establish the nonlinear regression empirical equation for the prediction of
the remaining thickness of the elbow:

t = EiA
1.1206EiB

−1.1338EiC
−1.2588EiD

1.5476 (13)

In the LSSVM algorithm, the kernel function is the radial basis function shown in
Equation (10). The value ranges of the regularization parameter γ and the kernel function
parameter σ2 are set to be [0, 300] and [0, 200], respectively. The grid method is used to fold
the value range of the two parameters ten times to obtain their optimal value and input it
into the LSSVM. The LSSVM model is trained using the training set data.

When building the model based on the BP neural network, the input is the feature
matrix of the training set samples and the output is the predicted value of the remaining
thickness. The model uses a three-layer neural network, and its related parameter settings
are shown in Table 5.

Table 5. BP neural network parameter settings.

Property Value

Number of hidden layers 1
Number of neurons 10

Network convergence accuracy 0.001
Maximum number of iterations 100

Learning algorithm L-M optimization algorithm
Number of hidden layers 1

5.2. Results and Discussion

Input the sample data into the above models to obtain the prediction accuracy of each
model and compare it to PSO–LSSVM, as shown in Figure 12. The results show that the
prediction accuracy of the training set samples by the four methods is higher than that of
the test set samples under the same circumstances, indicating that the above models all
have good regression fitting performance. PSO–LSSVM has the highest prediction accuracy
for training and test samples, at 99.4178% and 98.1864%, respectively.
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Figure 12. Comparison of model prediction accuracy.

In order to verify the applicability of the method proposed in this paper, we used the
same experimental method to test the two other elbows (the nominal diameters of elbow 2
and elbow 3 are 50.8 mm and 108 mm, respectively, and the average thicknesses are 4 mm
and 8 mm, respectively) and analyzed the extracted data.

Figure 13 shows the accuracy of the above four prediction models for the remaining
thickness of the two elbows. Both the nonlinear regression model and the LSSVM model
have lower accuracy in predicting the remaining thickness of the elbows. The prediction
accuracy of the BP neural network model on the test set data of Elbow 2 and Elbow 3 is
86.8205% and 97.1253%, respectively, which shows that its predictive ability is not stable
enough. The PSO–LSSVM model has the highest and most stable prediction accuracy for
the remaining thickness of these two elbows, reaching 94.7167% and 99.119%, respectively.
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Figure 13. Comparison of the prediction accuracy of each method model for two elbows: (a) elbow 2
and (b) elbow 3.

In order to test the accuracy of the prediction of the new erosion degree, we conducted
a test on a DN219 elbow. We extracted 20 sets of data under eight erosion degrees for
analysis. The remaining wall thickness values are shown in Table 6. The sample set under
each erosion degree is randomly divided into the training set and test set according to the
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ratio of 4:1. Three different training sets and test set sample features are used to verify the
method proposed in this paper, as shown in Table 7.

Table 6. The remaining thickness values under each erosion degree of DN219 elbow.

Erosion Degree Remaining Thickness/mm

C0 9.67
C1 8.53
C2 7.72
C3 6.90
C4 6.03
C5 5.07
C6 4.25
C7 2.91

Table 7. Verification methods for different training sets and test sets.

Verification Method Training Set Test Set

A All erosion degrees All erosion degrees
B All erosion degrees except C3 C3
C All erosion degrees except C7 C7

The accuracy rates of each model are shown in Figure 14. It can be seen that, under
these three verification methods, the accuracy rates of PSO-LSSVM are 99.9593%, 94.0039%,
and 81.2976%, respectively, which are still higher than those of the other methods.
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Figure 14. The accuracy of each model for the three verification methods.

Measurement errors during experimentation, ambient noise, and sample parameters
used to train the model can affect predictions. The measurement error mainly comes from
the influence of the PZT sensor pasting process. Therefore, during the test, it should be
ensured that the glue layer between the PZT sensor and the elbow is as thin as possible
under the premise of insulation, and it should be ensured that the sensor has been firmly
pasted on the elbow before the test. FrFT can filter the error caused by environmental
noise in the method proposed, so it does not need to be considered. Increasing the erosion
state and the number of samples contained in the model training samples can improve the
model’s accuracy.
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6. Conclusions and Future Work

1. In this paper, the LFM signal is used to excite the non-axisymmetric guided wave to
detect the erosion degree of the elbow, and the collected signals are filtered by FrFT.
The results show that, with the increase in the erosion degree, the time domain energy
of the position signal of the outer arch gradually decreases, the time domain energy of
the position signal of the inner bend gradually increases, and the time domain energy
variation of the symmetrical position signals on both sides is not apparent.

2. A prediction method of the erosion degree of the elbow based on FrFT and
PSO-LSSVM model is proposed. The accuracy on the test set samples of the four
elbows reached 98.1864%, 94.7167%, 99.119%, and 99.9593% respectively, and the
accuracy of predicting the two new erosion degrees is 94.0039% and 81.2976%, respec-
tively, which is better than the nonlinear regression analysis method, LSSVM, and BP
neural network algorithm.

3. The method proposed in this paper has successfully realized the prediction of the
erosion degree of the elbow under laboratory conditions. In the follow-up work, we
will optimize the detection method proposed in this paper according to the actual
engineering situation, study the influence of the characteristic parameters of the
signal on the prediction accuracy of the elbow erosion degree, and finally realize the
real-time monitoring of the pipeline elbow in practical application.
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