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Abstract: Massive and high-quality in situ data are essential for Earth-observation-based agricultural
monitoring. However, field surveying requires considerable organizational effort and money. Using
computer vision to recognize crop types on geo-tagged photos could be a game changer allowing
for the provision of timely and accurate crop-specific information. This study presents the first
use of the largest multi-year set of labelled close-up in situ photos systematically collected across
the European Union from the Land Use Cover Area frame Survey (LUCAS). Benefiting from this
unique in situ dataset, this study aims to benchmark and test computer vision models to recognize
major crops on close-up photos statistically distributed spatially and through time between 2006
and 2018 in a practical agricultural policy relevant context. The methodology makes use of crop
calendars from various sources to ascertain the mature stage of the crop, of an extensive paradigm
for the hyper-parameterization of MobileNet from random parameter initialization, and of various
techniques from information theory in order to carry out more accurate post-processing filtering
on results. The work has produced a dataset of 169,460 images of mature crops for the 12 classes,
out of which 15,876 were manually selected as representing a clean sample without any foreign
objects or unfavorable conditions. The best-performing model achieved a macro F1 (M-F1) of 0.75 on
an imbalanced test dataset of 8642 photos. Using metrics from information theory, namely the
equivalence reference probability, resulted in an increase of 6%. The most unfavorable conditions
for taking such images, across all crop classes, were found to be too early or late in the season. The
proposed methodology shows the possibility of using minimal auxiliary data outside the images
themselves in order to achieve an M-F1 of 0.82 for labelling between 12 major European crops.

Keywords: plant recognition; agriculture; computer vision; deep learning; data valorization; mapping
from imagery; image classification algorithms

1. Introduction

The deep learning (DL) paradigm is regarded as the gold standard of the machine
learning (ML) community [1]. While the trade-off between the better performance of a
model and the amount of data and resources necessary is still present, there is clearly a sig-
nificant improvement with DL methods, especially so in image classification tasks. Recent
advancements in convolutional neural networks (CNNs) have made popular classification
tasks ever more affordable.

In an operational context, the ability to perform on-device processing provides an
option to anyone wanting to implement the technology to keep computational overhead low.
A leading architecture in this regard is MobileNet [2] and its third generation flavours [3].
MobileNets are convenient, as they perform on par with other state-of-the-art architectures
on popular benchmarking datasets, but have up to 20 million fewer parameters.

Sensors 2023, 23, 6298. https://doi.org/10.3390/s23146298 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7326-7684
https://orcid.org/0000-0002-2734-4538
https://orcid.org/0000-0002-6606-490X
https://orcid.org/0000-0002-9103-7081
https://doi.org/10.3390/s23146298
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146298?type=check_update&version=1


Sensors 2023, 23, 6298 2 of 20

Another point in making DL models operational is the proper use of post-processing
techniques, meaning any manipulations executed on the model’s output data. In an image
classification setting, this refers to operations executed on the data after the output of the
softmax activation function. Popular post-processing approaches include combining ran-
dom forest or support vector machine classifiers after the CNN output, majority voting [4],
patch aggregation [5], and thresholding. The latter is a popular choice, as it is simple to
implement; one must keep only the examples, for which the network has a maximum
probability (MP) for the winning class higher than the threshold. Recent developments try
to re-map the base probabilistic output to a metric of higher versatility, taking notions from
information theories such as Shannon information and entropy [6].

The agricultural sector is adopting these technological developments [7], with DL-
aided computer vision (CV) in particular being crucial for robotic tasks such as the in-
spection, evaluation, and execution of management interventions [8]. Ultimately, these
innovations should decrease costs and increase the resource use efficiency and the pre-
cision of food production systems. This may relate to the certification of management
practices [9], the traceability of products [10], communications towards consumers [11],
and activities in the realm of citizen science and food related topics [12], including biodi-
versity [13]. In technical terms, the possibilities have already been successfully tested for
weed management [14], crop disease recognition and management [15], and harvesting
operations [16].

Activities also focus on training data collection and curation for increasingly spe-
cific applications, such as precision agriculture in field conditions [17,18] and robotic CV
control [19]. In the Earth observation (EO) domain, datasets such as CropHarvest [20],
which has more than 90,000 worldwide geographically diverse samples with labels, and the
LUCAS 2018 Copernicus polygons [21], which have almost 60,000 stratified samples in the
European Union (EU), demonstrate the push from the community to have open and free
data to facilitate ML- and DL-driven research. In this manuscript, we focus on recognizing
crops on a selection of legacy close-up photos from the five tri-annual Land Use/Cover
Area frame Survey (LUCAS) surveys from 2006 to 2018 in the EU [22].

A fitting application in the EU context is the ability of technology to deliver to the
needs of regulating bodies that administer the technical regulations of the EU’s Common
Agricultural Policy (CAP). The CAP is the largest item on the EU budget, amounting
to EUR 58.38 billion in 2022, including funds allocated for rural development, market
measures, and income support (European Commission, The common agricultural pol-
icy at a glance, https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-
agricultural-policy/cap-glance_en, accessed on 17 May 2023). Thus, developing technology
for automatizing the application process and the provision of evidence for practices re-
quired under subsidy schemes is in demand by paying agencies of the member states (MS).

While Copernicus-Sentinel-based monitoring of the CAP area subsidies is being de-
veloped and implemented [23], ground-based information in the form of geo-tagged
pictures [24] can support and complement the checks by monitoring approach (CbM).
CbM relies on Copernicus application-ready data (CARD), in conjunction with geospatial
information from the land parcel identification systems (LPIS) and geo-spatial aid applica-
tions (GSAA) to provide wall-to-wall coverage of EU territory by extracting parcel-level
information of markers of specific practices (see Devos et al. [23]). In situations in which
Sentinel-based checks do not lead to conclusive results, geo-tagged pictures can be used
to support and complement checks. Such processing chains may have to be developed
for each specific agri-environmental practice for which evidence is needed. In the cur-
rent CAP programming period (2023–2027), this includes practices under GAEC (Good
Agricultural and Environmental Conditions) conditionality, as well as eco-schemes and
agri-environmental and climate measures.

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
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Objectives

The aim of the present research is to benchmark and test computer vision models to
recognize major and mature European crops (MMEC) on close-up photos in a practical
agricultural-policy-relevant context. Specific objectives are:

• To select and publish a subset of LUCAS cover photos representative of major and
mature crops across the EU for training purposes.

• To deploy and benchmark a set of MobileNet computer vision models to recognize
crops on close-up pictures and identify the best-performing model.

• To explore the use of probability- and entropy-based metrics to threshold and filter
correct and incorrect classifications.

• To illustrate the applications and limitations of the model for inference in a practical
and agricultural-policy-relevant context.

2. Materials and Methods

The methodological approach in the manuscript consists of (1) the procedure to
select close-up LUCAS cover MMEC photos; (2) the training, validating, and testing of
a large set of MobileNet-based computer vision models; (3) applying the best model to
inference photos across the EU; (4) evaluating model performance using metrics derived
from information theory to filter and understand why photos are not classified well;
(5) testing model performance against images exhibiting a series of unfavorable/out-of-
scope conditions; (6) illustrating practical implications for protocol development. More
specifically, the workflow is presented in Figure 1.

Figure 1. Conceptual diagram of the study. The used data are shown on the left. LUCAS attributes
are fused with harmonized crop calendars for the selected crops, after which the combined dataset
undergoes a process of manual annotation using the pyGeon library. After annotating enough images
of sufficiently high quality, a stratified sample across EU countries is chosen to select the training and
inference sets, followed by the DL paradigm (described further in Section 2.2). The DL workflow
produces the best-parameterized model, which, in turn, is used to make inferences over a large
imbalanced set, where post-processing and further operational context work takes place.

2.1. Data
2.1.1. LUCAS Cover Photos

LUCAS Cover has been a part of the core LUCAS survey since its inception, and
accordingly, data have been collected for all five campaigns form 2006 to 2018. A total of
875,661 LUCAS Cover photos have been collected, and 874,646 of those were published
after anonymization and curation [22]. In contrast to other types of LUCAS core imagery
(four N, S, W, E, photos in the cardinal directions, and the point photo P), the Cover (C)
photos, by protocol, must show the cover on the ground at the GPS location where the
survey is carried out in such a way that the relevant crop or plant can easily be identified
during data quality control operations. An example of one photo per selected crop is shown
in Figure 2. The selection was made with reference to the main crops that are monitored and
forecast by the European Commission’s Joint Research Centre crop forecasting activities
(AGRI4CAST, formerly MARS; see van der Velde et al. [25]). By omitting some classes due
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to data insufficiency and including temporary grassland, the number of crops became 12.
These are: common wheat (B11), durum wheat (B12), barley (B13), rye (B14), oats (B15),
maize (B16), potatoes (B21), sugar beet (B22), sunflower (B31), rape and turnip rape (B32),
soya (B33), and temporary grassland (B55). The LUCAS Cover dataset is one of the two
main inputs to the study, as shown on the left in Figure 1.

Figure 2. Example of one image per class for the 12 selected major European crops.

2.1.2. Crop Calendars and Harmonization

One of the objectives of the study is the identification of mature crops on geo-tagged
LUCAS imagery. The rationale for this is that, from an operational standpoint, the mature
stage of the crop is the one in which it is most recognizable. The mature stages of the
selected crops have to be firstly ascertained. One way of doing so is by collecting all
crop calendars from the variety of sources available, harmonizing them into a common
format, extracting the harvest period for each crop, and finally, through the use of expert
knowledge, derive the pre-harvest mature stage of the crop.

A crop calendar (CC) is a schedule that provides timely information about crops in
their respective agro-ecological zones. They are usually provided in tabular or gridded
form and cover the space of a calendar year by dividing it into the planting, vegetative,
and harvest stages of the respective crop. For the present purposes, CCs were gathered
from various sources (Table A1) and harmonized to a common style (AGRI4CAST) that
hosts the data in tabular and numeric format, facilitating further processing. Because of a
lack of alternative data sources, the intended use of CCs was not taken into consideration
(see Section 4.3). From a processing standpoint, certain steps had to be taken to account for
instances where more than one variety (spring/winter, or early/late ware varieties) of the
same crop was cultivated in a country. The decision was made to exclude countries that
cultivate both varieties and use the CC information for only those countries that cultivate
the winter and early ware variety, with the information for the excluded countries being
populated by expert knowledge.
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2.1.3. Expert Knowledge Gap Filling and Mature Pre-Harvest Stages

After harmonizing the CCs and extracting harvest stages at a national level, this
study filled the gaps and validated the result by means of expert knowledge. One way
of identifying gaps is using the information from the JRC MARS bulletins [26]. These
bulletins offer information on crop growth conditions and yield forecast at the EU level
and for neighbouring countries, such as the UK, Ukraine, Black Sea area, and Maghreb.
The rationale here is that if there is information in the bulletin about the yield of a certain
crop for a certain country, then the crop is obviously cultivated in the respective country,
and, ergo, CC information about it should be present. After identifying the gaps, they were
filled with all available information, which was comprised of interpolations from the COST
725 phenology network [27], and expert knowledge. A breakdown of all the information
gathered and the sources it was collected from is available in Appendix A, Figure A1.
The final step was acquiring the mature, pre-harvest conditions of the crops. This was
accomplished again with the use of expert knowledge and was conducted in accordance
with the following rules: for cereals, rapeseed, sunflower, and soya, we removed the last
half-month and then added 2 months at the beginning of the harvest stage; for potatoes,
sugarbeet, maize, and rice, we removed the last half-month and added 3 months.

2.1.4. Manual Photo Pre-Processing by Visual Assessment

The dataset was then visually assessed with the use of the PyGeon library to remove
examples not suited for the study. The protocol consists of selecting a subset of at least
400 photos from the previously identified stack of mature crops photos, loading them into
Pygeon, and flagging their suitability of use. Photos were selected on the basis of what
one could expect in farmer photos: artificial backgrounds (map, hand, leg, and pivots)
and low-quality photos (e.g., against the sun, shadowed, etc.) were not allowed. Close
ups showing individual leaves, ears, grains were also removed. Overview photos where
the crop appeared somewhere in the background, usually mixed with other elements (a
road, neighbouring field, etc.) were also removed. Photos with seeds only on a bare soil
background (which mostly occurred for cereals, soy, and maize) and other obviously wrong
photos were also eliminated, although this happened only a few times.

Photos flagged as not suitable to train on in this stage were later manually classified
into one of the six categories of unfavorable conditions. These were out of season (too
early or late in the season), out of protocol (too close or too far away to image the plant
matter adequately), or either being blurred or there being a foreign object in the photo. A
total of 354 images were selected in this way while making sure that there was at least one
photo per year per LUCAS land cover class and per unfavorable condition. An example of
unfavorable conditions for common wheat (B11) is shown on Figure 3.

Figure 3. The six classes of unfavorable conditions for common wheat (B11).

The final clean dataset used in this study is available for download from an FTP server
(https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/LUCASvision/, accessed on
10 July 2023).

2.2. Method

The study makes use of a CNN for an image classification CV exercise with a balanced
training and inference set. There are two rounds of training and parallelized inferencing
that make up the hyper-parameterization workflow (Figure 4): one without and one
with data augmentations (flip, brightness, etc.). After the final augmented inference, the

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/LUCASvision/
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best model was identified, and it was fed with a much larger imbalanced inference set,
which was supposed to represent a quasi-operational scenario. Specific and innovative
post-processing techniques are also explored.

Figure 4. Deep learning processing chain. The numbers in the top left corners of the black contoured
boxes indicate the two rounds of training and inferencing–without and with image augmentations.

2.2.1. Sample Selection for Training and Inference Set(s)

The selected number of photos per class for training was set to 400 following the
current state of the art [28]. In order to select the set, a stratified sample across NUTS0
regions in the EU was made from the MMEC dataset (from Section 3.1). This was carried
out with the idea of having equal representation across EU countries, which allows for
articulating conclusions on the European scale.

In order to shorten the processing time, instead of using the entire leftover (post-
training-set-selection) set of images for inferencing, this study makes use of a custom
inference set sampled out of the leftover set. A total of 85 (the total number of examples
of the least represented class (B12)) images per class were selected with a geographic
distribution that matched that of the training set. This “balanced” inference set was used
during the first and second stages of inferencing (Figure 4).

The last set of images to be discussed is the “imbalanced” inference set, which includes
all the photos left after the training set selection with all classes capped at 1000 examples
per class. This set includes the previous “balanced” set, which is the one used on the
identified best model in order to judge the possibility of using the model as an operational
tool. This was also the set that any further developments were tested on.

2.2.2. Hyper-Parameter Search and Best Model Selection

The network used was MobileNet V2. It was selected because it is light, easily trainable,
open-source with possibility to transfer learn, and with the option to do on-device infer-
encing. Furthermore, the achieved results are comparable to those of other state-of-the-art
architectures [3]. The images vary in their native resolution (see Appendix A Table A2), but
every image in the training and inference set is re-scaled to the net input size of 224 × 224.
The effects of this re-scaling are discussed in Section 4.4. The V2 MobileNets are trained for
3000 epochs with the following settable parameters: learning rate, momentum, optimizer,
and batch size. These variables were experimented within a random space [29] to generate
values for initializing the learning process. In this way, 157 model configurations were tried
in order to find the best approximation for solving the problem. The model’s performance
was then tested by carrying out an independent inference exercise on the dedicated bal-
anced set. The models were then ranked based on their overall accuracy (OA) to find the
top five performers. This completed the first round of training.
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For the second round, the top five performers arewerun through another cycle of
training with the same configuration but adding image augmentations, in this case, random
brightness and horizontal image flips. The same inferencing on the balanced set was carried
out to rank the augmented models based on OA. The best-performing of these models was
then taken as the overall best model.

2.2.3. Operational Use

After the best model was identified, it was used on the imbalanced inference set (see
Section 2.2.1). Because of the class imbalance, it was necessary to use a different metric, the
macro-F1 (M-F1) [30]. The results from this inference run are presented in Section 3. It is
also on these results that the effectiveness of innovative post-processing techniques were
tested and upon which all the discussion was carried out.

2.2.4. Computational Infrastructure

All the code developed for this study is available openly on a git repository (https:
//github.com/Momut1/LUCASvision, accessed on 10 July 2023). The working environ-
ment was carried in a docker image. The processing pipeline was fully reproducible and
automated to work by calling shell scripts that carried out the hyper-tuning, inferencing,
results derivation, post-processing, and plotting. For more information, the interested
reader should consult the readMe of the git repository. The processing was carried out on
the JRC BDAP, an in-house, cloud-based, versatile, petabyte-scale platform for heavy-duty
processing [31]. The offered GPU services work on a NVidia GeForce GTX 1080 Ti with
11 GB memory, CUDA version 10.1, and a CUDA driver version 418.67. Pre-processing,
launching, and post-processing were carried out in the JEO-lab layer of the platform in a
Jupyter notebook docker container running Tensorflow 1.3.0.

2.2.5. Equivalent Reference Probability Filter

Post-processing the results from ML/DL exercises is an established practice in practi-
cally all such workflows [32–34]. What it usually consists of is the selected removal, based
on some criteria, of a substantial enough number of the incorrectly classified examples
in order to increase model performance while simultaneously not falling into the trap of
“cherry-picking” one’s results.

In classification problems, analysts can employ a filter on probability, thus keeping
only examples for which the network has output an MP of the winning class above a
threshold. The analyst then decides where to put the threshold in order to control the
rigorousness of the filter; it should be higher for more stringent classification and lower
for a more lenient one. The first problem with this is that it depends heavily on the user’s
decision and is thus, to a degree, arbitrary. The next problem is that the filter is one-
dimensional, so one can only set a threshold along a single axis. Introducing other, or
indeed multiple, dimensions to this process would allow for different spreads of the data in
the given space. The intuition is that given the chosen dimensions, the data would neatly
split between correct and incorrect classifications and allow for more precise filtering. The
desired outcome from such filtering would be to remove the biggest amount of incorrectly
classified examples without removing too many correctly classified examples.

The proposed method works with a metric based on information theory, the equiva-
lent reference probability (ERP), as described in Bogaert et al. [6]. In information theory,
information is the measure of surprise from an event. Rare or low probability events are
surprising and hence carry more information, and vice versa (Equation (1)). Entropy is the
information for the probability distribution of the events of a given variable (Equation (2)).
A low entropy means there is a more pronounced difference between the MP for a given
class and the rest of the probabilities for the remaining classes. In Bogaert et al. [6], the
authors make use of the difference of information (Equation (3)) between a reference class
(preferably the most probable class) and all the other classes in the probability vector. Be-
cause E[D(i||i∗)] is unrestricted in terms of potential values, and because it needs an upper

https://github.com/Momut1/LUCASvision
https://github.com/Momut1/LUCASvision
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and lower band in order to be interpreted, the authors suggest using ERP (Equation (4)).
It is a single metric where ERP ∈ {0, . . . , 1}; values approaching 1 mean a very high
confidence in the most probable class with the most equal distribution of the remainder to
the other k classes.

h(x) = −log2(p(x)) (1)

H(X) = −
n

∑
i=1

Pilog2Pi (2)

E[D(i||i∗)] = log p∗i −
1

1− p∗i
∑
i\i∗

pi log pi (3)

p∗ =
exp(E[D(i||i∗)])

exp(E[D(i||i∗)]) + k− 1
(4)

The appropriate thresholds for ERP and probability were ascertained with a custom
function that iteratively moves the threshold down the line. At each step, it counts the
number of disqualified incorrect images while trying to keep the number of correctly
classified ones below a certain percent. The settable parameter for this function is thus
the percentage of correctly classified examples the analyst is willing to discard. After
ascertaining the thresholds, the space within the scatter plot is divided into four quadrants.
Through the iterative exclusion of one or combinations thereof of the examples in these
quadrants, the analyst can perform more precise filtering on the results.

3. Results

Results are divided into five sections. First, we present the MMEC dataset, and second,
the best-performing model is presented. Third, the confusion matrix and M-F1 score for
the best-performing model are shown alongside the producer (PA) and user (UA) accuracy.
Fourth, we show the improvement generated from employing an ERP filter, and lastly, we
present the performance of the model when faced with images from unfavorable conditions
for each class, simulating the operational use of the model.

3.1. Mature Major European Crops

The processing chain from Sections 2.1.2 and 2.1.3 produces a dataset of 169,460 LUCAS
photos of mature crops across 25 EU member states. Utilizing the manual labelling as
described in Section 2.1.4, the study also publishes 15,876 high-quality, ready-to-train-on
photos, each of which has been manually checked and verified to exhibit a clear view of the
crop in its mature, pre-harvest stage with no visual obstructions or foreign objects into the
frame. Each class has more than 400 photos, allowing for considerable leeway in training
set selection. A summary of the final cleaned dataset across MS and crops is provided in
Table 1, where we see the 12 output classes and the number of examples per class. The
geographical visualisation of the same information is found in Figure 5.

Table 1. All visually inspected MMEC photos labelled as good to train on from the manual annotation
using PyGeon. The marginal rows labelled MMEC show the total number of photos that show mature
crops, which have not been visually inspected. The formats of the data are the images themselves,
alongside a table with the crop labels and all collected LUCAS information.

B11 B12 B13 B14 B15 B16 B21 B22 B31 B32 B33 B55 Total Total MMEC

AT 136 32 139 103 29 69 48 67 18 85 122 124 972 3595
BE 59 2 71 4 3 39 93 49 0 23 0 62 405 2127
BG 179 5 129 19 12 148 11 0 110 90 4 3 710 2855
CY 15 1 29 0 2 0 6 0 0 0 0 0 53 207
CZ 72 4 28 32 20 47 30 45 4 194 12 55 543 6691
DE 156 40 157 176 133 114 177 152 17 220 6 212 1560 24,055
DK 132 2 93 105 27 55 21 24 0 184 0 175 818 3226
EE 20 0 16 7 8 1 5 0 0 26 0 14 97 612
EL 62 81 88 0 25 62 6 7 22 9 0 4 366 1386
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Table 1. Cont.

B11 B12 B13 B14 B15 B16 B21 B22 B31 B32 B33 B55 Total Total MMEC

ES 68 58 85 105 80 22 59 58 34 50 0 178 797 19,582
FR 121 97 116 130 118 82 139 143 75 186 142 193 1542 40,989
HR 38 0 22 4 7 53 6 2 16 9 34 16 207 434
HU 74 34 103 66 30 53 17 8 49 135 49 8 626 7354
IT 136 54 175 17 130 54 50 98 17 21 378 166 1296 13,387
LT 82 6 65 72 50 1 28 4 0 147 0 31 486 2313
LU 3 0 7 2 0 1 0 0 0 1 0 6 20 149
LV 66 3 72 44 33 9 12 1 0 110 0 42 392 1763
NL 150 0 53 23 2 134 200 115 0 3 0 54 734 1805
PL 66 12 40 105 61 98 89 93 1 173 7 67 812 20,542
PT 28 7 24 40 50 22 19 0 1 0 0 68 259 877
RO 71 28 39 13 25 159 22 16 189 51 88 32 733 3649
SE 89 0 67 47 85 11 34 55 0 95 0 167 650 2742
SI 29 6 26 2 2 30 6 0 1 5 0 27 134 364
SK 89 13 95 27 16 51 18 25 42 164 55 18 613 3091
UK 155 0 134 8 84 78 126 105 0 182 0 179 1051 5665

Total 2096 485 1873 1151 1032 1393 1222 1067 596 2163 897 1901 15,876 -

Total
MMEC

47,143 8062 31,500 7296 6582 32,175 4113 4414 6830 13,958 1603 5784 - 169,460

Figure 5. Geographical distribution of 15,876 LUCAS Cover photos across the EU, which have been
manually screened and validated as ready-to-train-on. Map projection EPSG:3035.

3.2. Best Performing Model

The models were ranked using OA on an independent inference set of 85 images per
class (Table 2). The best model was identified as number 78, achieving an OA of 79.4%. The
relevant parameter settings are a learning rate of 0.0035148759, a batch size of 1024, and
momentum of zero; the optimizer used was gradient descent (GD). The M-F1 and OA on
the test set are identical, as we are dealing with a balanced inference set. The last column
shows the best model (78) applied over the imbalanced inference set (see Section 2.2.1). The
model was exposed to 7722 more examples, and the drop in M-F1 was 0.0369, meaning
the model is trained and generalizes very well over larger datasets. While the second-
and third-best-performing models had higher training accuracies, their test accuracies
were considerably lower. The lowest-performing model (id 139) was evaluated with a
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test accuracy of 0.702, illustrating the range of performances encountered, with a nearly
0.1 difference between the top and bottom performers.

Table 2. Output for the three highest-performing models with augmentations plus the output
from the best model ran on the imbalanced set. The applied augmentation were left–right flip and
random brightness. Shown (in order) are the model number, along with the relevant configuration
(learning rate, batch size, momentum, and optimizer), the number of labelled images, the training
and validation accuracy, and the M-F1.

Ranking 1 2 3 Best

Model 78 88 4 78
Level Augm Augm Augm Best Model

LR 0.0035 0.0073 0.0096 0.0035
BS 1024 512 512 1024

Momentum 0 0 0 0
Optimizer GD GD GD GD

Number of Images 1020 1020 1020 8642

Validation Accuracy 0.7768 0.7789 0.7747 0.7768
Training Accuracy 0.8945 0.8965 0.9238 0.8945

Test Accuracy 0.7941 0.7775 0.7755 0.7854
M-F1 0.7941 0.7775 0.7755 0.7572

3.3. Confusion Matrix

The confusion matrix for the best model (78) run over the imbalanced operational
inference set is presented in Figure 6. It is clear that the majority of confusion happens
between the cereal classes (B11–B15) and with grasslands (B55). In fact, the difference
between the average PA of all crops, excluding grasslands, and the average PA of the
cereal classes is 27.9, and for UA, the difference is 30.9. The class that is most commonly
miss-classified as a false positive is durum wheat (B12) with a UA of 10.8; the low score
arguably has much to do with the unequal representation of the class. The best-performing
class is maize (B16), with a PA of 95.5 and UA of 95, followed closely by rape and turnip
rape (B32), showing the clear separation of both from the other classes.

Figure 6. Confusion matrix for best model (78) over imbalanced inference set. The outermost marginal
rows show the user and producer accuracy (UA and PA), or precision and recall, respectively.



Sensors 2023, 23, 6298 11 of 20

3.4. Equivalent Reference Probability Filter

The application of the quadrant filtering method using ERP and MP is shown in
Figure 7. The dotted lines represent the thresholds identified by the functions described
in Section 2.2.5. The settable parameter is fixed at losing no more than one percent of the
correctly classified images, meaning the identified thresholds are the most conservative
ones. They are 0.46 for MP and 0.2 for ERP. The inscribed feature shows the number of
true and false classifications in each quadrant as labelled by their respective quadrant
ID. Although similar, there is a notable difference in the distribution of the true and false
classifications, which is visible in the smooth fitted lines for each group.

Figure 7. Scatter plot of ERP and probability quadrant filtering with marginal density plots for each
variable. In red are the incorrect classifications, and in blue, the correct classifications are shown.
Numbers within quadrants indicate the quadrant ID. The data are fitted with smooth lines for correct
and incorrect classifications. The uppermost corner shows the results from the quadrant filtering. In
order, the columns represent the quadrant method ID, the quadrants included in the method, the
number of images, and the M-F1 achieved through the inclusion of the respective Qs. In order, the
QMs represent the following: 1. MP only, 2. ERP only, 3. both above their respective thresholds, and
4. at least one above its threshold.

The results achieved from employing such filtering are presented in Figure 7 in the
uppermost right corner. There is an M-F1 increase of 0.6 from not using any filter and of 0.2
from using only the MP filter.

3.5. Unfavorable Conditions

The best model (78) was applied over a stratified sample of 1 photo per year, per
LUCAS LC1 class, and per unfavorable condition, totalling an inference set of 354, meaning
59 photos per unfavorable condition (see the examples in Figure 3). A boxplot of the
Top1 probability for each unfavorable condition is presented in Figure 8. The conditions
were compared firstly to a reference set of quality images that were randomly sampled
to have the same distribution as the sets of the conditions and secondly to the entire
imbalanced inference set. Model 78 is most confused about photos with foreign objects,
landscape photos, and photos showing the crop after its harvest period, with blurry, early,
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and especially close-up photos performing significantly closer to the reference in terms of
Top1 probability.

Figure 8. Top1 probability for all examples for a given unfavorable condition with reference to
random sample of the same size of the balanced inference set and to the entire imbalanced inference
set. Number of examples in each box is given above the condition label.

The actual classification results are presented in Table 3. The worst results are achieved
with photos exhibiting post-harvest conditions with an OA of 20%, and early crops and
examples with a foreign object in the frame, with values of 31% and 37%, respectively. The
unfavorable conditions that impact the performance the least are blurry and overly close-up
photos (54%). This illustrates that a clear protocol is needed when such automated proce-
dures are used within operational workflows, such as for the CAP [24]. In addition, models
can progressively be trained with a set of photos covering a wider range of conditions to
improve their generalisation capacity.

Table 3. Number of true and false classifications and overall accuracy for each unfavorable condition.

False True OA

Blurry 27 32 0.54
Close 27 32 0.54
Early 41 18 0.31

Landscape 35 24 0.41
Object 37 22 0.37

Post-harvest 47 12 0.20

4. Discussion
4.1. Context

Recently, several relevant studies were published. Zheng et al. [18] presented the
CropDeep dataset, over which they tested state-of-the-art classification and detection DL
algorithms. They achieved an averaged accuracy of 99.81% over the CropDeep datasets.
These results are impressive, although not directly comparable, as the images were collected
from robots in a sterile greenhouse environment, allowing for image conditions to be
identical between acquisitions. They furthermore used average accuracy as a metric over an
imbalanced inference set, which is not in accordance with the literature [35]. Gao et al. [36]
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achieved an accuracy of 99.51% in differentiating 30 wheat cultivars at the flowering (most
mature) stage. This is very impressive, considering the present study suffered the most
error when trying to discriminate between the various cereal classes. The difference is
again in the lab quality of the images taken, whereby each image exhibits a single plant on
a white background. d’Andrimont et al. [4] achieved a M-F1 score of 62.3% for 10 classes
using street-level images. The current study outperformed the cited work by 13.4%, though
this can be attributed to the lower presence of noise in the images fed to the model.

This study presents the first use of the LUCAS cover dataset for automatic crop
identification. Indeed, it is the first study to apply DL for crop identification on still images
that were not taken in a controlled environment and that come from a wide variety of
sensors, which truly mimics an operational scenario. Secondly, the study produces an
automated method to attach crop life-cycle stage information to a database of photos.
Third, the introduction of quadrant filtering is a step towards a new state of the art for
more precise post-processing filtering. Whether using crop calendars to extract photos
for specific crop life-cycle stages, or using the dataset as a whole, the authors believe that
various lines of research may be developed using the LUCAS cover photos.

4.2. ERP Filtering

A main achievement of this study is the exploration of methods for filtering classifica-
tion results to achieve better performance and to quantify uncertainty. This study made use
of ERP as a metric for assessing this uncertainty. According to the literature, ERP has been
shown to be more robust than MP in classifying pixel-level thematic uncertainty [6], more
precise than majority voting in post-processing speckle removal of classified maps [37], and
more flexible than OA in terms of the independence of the distribution of the validation
data [38].

In practice, MP and ERP are connected, which is clearly visible in the distribution
of both groups (correct and incorrect) in the space where the joint probability reference
distribution is not null in Figure 7. From the marginal distribution plots, we can see that
this connection is inverted; there is a high peak in the low values of MP for the incorrectly
classified points and a high peak in the high values of ERP for the correctly classified
points. Furthermore, as shown in Figure 9, ERP performs significantly better than MP
in post-processing filtering. Because ERP and MP are both probabilities that are in the
range between zero and one, their direct comparison in this regard is straightforward.
Firstly, in subplot A, for an equal threshold value, the M-F1 value is always higher when
utilising ERP over MP. This means that ERP is a much better estimator of uncertainty and
manages to capture to a finer degree the nuances that distinguish an incorrect from a correct
classification. It needs to be mentioned that this is partly due to the fact that, while for MP,
the smallest possible threshold value is relatively high (0.20), with ERP, it is found at the
first stage of filtering (0.01). As seen on the secondary Y axis, which shows the number of
images left in the set after performing the filter, this process is not without cost; the number
is, for every threshold value, less for ERP than for MP. Nevertheless, it is always preferable
to have a larger spread of the data over which to set thresholds, which is especially true
when the analysis needs to be conservative regarding the number of correct classifications
it is willing to lose.

Furthermore, the histograms in subplots B and C show the points at which the propor-
tions of correct and incorrect classifications for each threshold value, represented by the
height of the gray and yellow bars, relative to the red bar, change in favour of the correct
ones. While with MP this point arrives at 0.54, for ERP, the change is already present at 0.24.
Hence, the relative cost in terms of number of examples disqualified due to the threshold
setting is proportionately lower with ERP in order to achieve the same increase in M-F1.
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Figure 9. Comparison between using MP and ERP for applying filtering on results. Plot (A)’s first Y
axis shows the evolution in M-F1 in connected points when applying a threshold on the inference
set, and its secondary Y axis shows the diminishing number of photos in continuous planes when
applying the same thresholds. Plots (B,C) represent the distributions on a logarithmic scale (base 10)
of values present in the inference set in terms of ERP and MP, respectively. The red bars in both
histograms are the incorrect classifications.

4.3. Limitations

Although several novel aspects have been highlighted, some limitations are present
in our study. Firstly, there are issues with the pre-processing of the data, including, in
particular, the fact that CC information comes from a variety of sources. Although these
are official CCs, which have been harmonized, the fact that the study treats them as a priori
semantically harmonized could be problematic. Because organizations, based on their
goals, have different data collection, processing, and publishing protocols, it is conceivable
that the data were intended for a different use. For example, some CCs might be designed
to track crop phenology, to help manage labour or funds, or to track fertilizer, pesticide
application, or other agricultural practices. Because data on specific crops are scarce at
the EU scale, all CCs were treated as phenology-relevant. This issue becomes even more
pronounced when considering the expert knowledge and model output gap filling. Indeed,
the concern that the latter would introduce error into the results was such that the study
went ahead and calculated the M-F1 for each country (NUTS0 region) for which the crop
calendar information was derived from expert knowledge or model output, and this was
then compared to the reference M-F1. No clear drop in M-F1 based on the origin of the
mature crop information was registered from this analysis.

Another data issue is that bias can be introduced during manual selection by visual
assessment. Other than errors due to distraction during annotation, the annotator un-
doubtedly bases their decision on which images to keep and discard based on their own
discretion. For example, the annotator had to consider questions whether there should
be any sky or abundance of soil visible on the image; if the crop on a given image could
be considered mature enough; and, especially for the cereal classes, if a given label was
correct. The matter is even more pronounced when selecting examples for unfavorable
conditions, during which, for example, the distinction between “blurry” and “close” was
sometimes hard to make. Often, the object in the “object” class and the visual appearance
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of the landscape in the “landscape” class were very varied, and sometimes the image
showed more than a single unfavorable condition, such that the crop can be both early in
the season and blurred out, in which case, one could have used multi-tags. Such issues were
considered prior to undertaking each task, yet the possibility of bias has to be mentioned.

Secondly, there are issues related to the processing logic of certain steps. One such issue
is the identification of threshold points for MP and ERP to generate quadrants. The way the
custom function works is by peeking into the correct–incorrect classification results in order
to iteratively arrive at the threshold, with the main consideration being keeping the number
of disqualified correct classifications below a certain percentage. In a sense, this means
putting the proverbial data cart before the horse, as instead of simply using the values of
whichever chosen metrics, the function also considers the result of the classification.

4.4. Recommendations

There are several recommendations that would be a logical continuation of the work.
In terms of class selection, the major part of the confusion stems from the cereal classes
(Section 3). This makes sense, as to distinguish between them can sometimes be troublesome
even for a skilled professional. When cereals are treated as a grouped cereal class, they are
easily set apart from the rest of the crops, but when assessing the differences between the
cereals, the structure of the fruit, stem, and leaf organs can look too similar. Indeed, the
approach in Gao et al. [36] yields such good results exactly because the model is designed
to pick up on the subtle differences between the varieties. In the present case, grouping the
cereals together would produce a M-F1 of 88.2 without and 90.4 with quadrant filtering,
which is 12.5 and 14.7 points higher than the achieved result. Ideally, one could capture the
cereal class first at these higher ranges of M-F1 and then have a separate model that deals
solely with classifying the type of cereal, variety, or cultivar.

Concerning the point of being more robust in identifying thresholds, or more gen-
erally on the topic of splitting the space in Figure 7, one could build a kind of Bayesian
discriminant rule in order to generalize the combination of the two 1-D thresholds to a 2-D
threshold. This can be executed by taking into consideration the joint distributions and
would yield a single curve that separates correctly and incorrectly classified examples.

An always-current topic in DL for CV is the effect of resolution on the results. In this
case, one can discuss both the input resolution of the source images and the input resolution
of the net in use. Firstly, the range of values of images’ resolutions in the inference set
vary from 480 to 3504 in height and 640 to 4672 in width—a 7.3 times difference in each
dimension. Almost 65% of the images are of a resolution of 1600 × 1200, with another 22%
being 2048 × 1563 (for a full breakdown of available image resolutions, check Appendix A
Table A2). With such a spread, one can imagine that the level of detail visible on images
from either end of the range is quite different. When measuring the correlation between
image resolution and the proportion of correctly classified examples for each resolution
bin (Figure A2), the study found an R-squared value of 0.009, meaning the correlation
for this set of LUCAS photos is almost none. Secondly, the net input size is 224 × 224,
meaning each parallelogram image of the training and inference set is re-scaled to this
square size. Intuitively, one can say that larger images would lose more information during
re-scaling than smaller ones. In reality, the re-scaling turns the problem into a detection
of the major structural features of the crops (e.g., broad leaf vs. cereals, colouring, having
recognisable flowers or not), where resolution does not matter as much. This would also
shed light as to the reason why the network has trouble distinguishing between cereal
classes. The analysis still serves to illustrate that the method is developed to handle images
from different resolutions equally well. This further showcases the policy relevance of the
work, as in an operational context, a regulating body is expected to receive evidence images
in a variety of image resolutions.
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5. Conclusions

This study provides a subset of LUCAS Cover photos for 12 major crops across the EU
to deploy, benchmark, and identify the best configuration of MobileNet for the classification
task, to showcase the possibility of using entropy-based metrics for the post-processing
of results, and finally, to show the applications and limitations of the model in a practical
and policy-relevant context. This work has produced a dataset of 169,460 images of mature
crops for 12 classes, out of which 15,876 were manually selected as representing a clean
sample without any foreign objects or unfavorable conditions. The model that performed
best in identifying crops achieved a macro F1 (M-F1) of 0.75 on an imbalanced test dataset
of 8642 photos. Using metrics from information theory resulted in achieving an increase of
6%. The most unfavorable conditions for taking such images, across all crop classes, were
found to be too early or late in the season. The proposed methodology shows the possibility
of using minimal auxiliary data outside the images themselves in order to achieve an M-F1
of 0.817 for labelling 12 major European crops.
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Appendix A

Table A1. Crop calendar sources and references.

Sources Crops

AGRI4CAST 1 Corn, winter wheat, durum wheat, rice

USDA 2 Sunflower, barley, rye, soybeans, spring wheat, rapeseed, oats

EUROPABIO 3 Potato, sugar beet
1 AGRI4CAST, Joint Research Center AGRI4CAST Resource Portal, https://agri4cast.jrc.ec.europa.eu/
DataPortal/Index.aspx?o=", accessed on 10 November 2022). 2 USDA, United States Department of Agri-
culture Foreign Agriculture Service, https://ipad.fas.usda.gov/rssiws/al/crop_calendar/europe.aspx, accessed
on 10 November 2022. 3 EUROPABIO, EUROPABIO official website, https://www.europabio.org/, accessed on
10 November 2022.

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/LUCASvision/
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/LUCASvision/
https://github.com/Momut1/LUCASvision
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o="
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o="
https://ipad.fas.usda.gov/rssiws/al/crop_calendar/europe.aspx
https://www.europabio.org/
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Table A2. Breakdown of the kinds of image sizes present in the operational inference set
(8642 images).

Range of Pixels W × H Included % of Images

Less than 1 million 640 × 480, 1024 × 768, 800 × 600 1.39
1–2 million 1600 × 1200, 1280 × 960, 1632 × 1224, 1200 × 1600, 1200 × 900, 1605 × 1204, 1728 × 1152, 1288 × 966,

1600 × 1198, 1612 × 1212, 1700 × 1130, 1600 × 963, 1261 × 817, 1600 × 900, 1397 × 1048, 1593 × 1200,
1319 × 989, 1280 × 1024, 1552 × 1164

64.73

2–3 million 1664 × 1248, 2048 × 1360, 1920 × 1080, 1824 × 1216, 1733 × 1300, 1792 × 1312, 1936 × 1288, 1656 × 1242,
1984 × 1488, 2048 × 1104, 2000 × 1333, 1824 × 1368, 1936 × 1296, 1936 × 1452, 1920 × 1440, 1662 × 1246,
2080 × 1368, 1360 × 2048, 2048 × 1376, 1800 × 1350, 1632 × 1232

6.68

3–4 million 2048 × 1536, 2304 × 1728, 2272 × 1704, 2288 × 1712, 1536 × 2048, 2352 × 1568, 2592 × 1458, 2200 × 1650,
2042 × 1532, 2133 × 1600, 2240 × 1680, 2080 × 1544

22.32

4–5 million 2560 × 1712, 2560 × 1920, 2400 × 1800, 2344 × 1758, 2464 × 1632, 1932 × 2580, 2576 × 1932 2.33
5–6 million 2592 × 1944, 2816 × 2112, 3.46
6–7 million 2848 × 2136, 3072 × 2048, 3456 × 1946, 2896 × 2172, 0.95
7–8 million 3072 × 2304, 3264 × 2448, 3584 × 2016 3.08
Over 8 million 3968 × 2976, 3488 × 2616, 4320 × 2432, 3664 × 2748, 4672 × 3504, 3840 × 2880 0.81
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Figure A1. Extracted harvest conditions of each crop for each country in the EU after CC harmonization and expert knowledge gap filling.
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Figure A2. Scatter-plot of the effects of image resolution, represented by the product of the image
dimensions in numbers of pixels, on the validity of the classification, represented by the proportion
of correctly classified examples in each resolution bin. The correlation between the two is given by
the R-squared value at the bottom of the plot.
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