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Abstract: Benefiting from the advantages like large surface area, flexible constitution, and di-
verse structure, metal-organic frameworks (MOFs) have been one of the most ideal candidates
for nanozymes. In this study, a nitro-functionalized MOF, namely NO2-MIL-53(Cu), was synthe-
sized. Multi-enzyme mimetic activities were discovered on this MOF, including peroxidase-like,
oxidase-like, and laccase-like activity. Compared to the non-functional counterpart (MIL-53(Cu)),
NO2-MIL-53(Cu) displayed superior enzyme mimetic activities, indicating a positive role of the nitro
group in the MOF. Subsequently, the effects of reaction conditions on enzyme mimetic activities
were investigated. Remarkably, NO2-MIL-53(Cu) exhibited excellent peroxidase-like activity even
at neutral pH. Based on this finding, a simple colorimetric sensing platform was developed for the
detection of H2O2 and glucose, respectively. The detection liner range for H2O2 is 1–800 µM with a
detection limit of 0.69 µM. The detection liner range for glucose is linear range 0.5–300 µM with a
detection limit of 2.6 µM. Therefore, this work not only provides an applicable colorimetric platform
for glucose detection in a physiological environment, but also offers guidance for the rational design
of efficient nanozymes with multi-enzyme mimetic activities.

Keywords: nanozyme; metal-organic frameworks; multi-enzyme mimetics; glucose; colorimetric sensor

1. Introduction

Nanozymes are a class of synthetic nanomaterials that exhibit enzyme-like catalytic
activity. Compared with natural enzymes, nanozymes offer numerous advantages, includ-
ing diverse structures, facile synthesis, high stability, and easy regulation and storage [1,2].
These characteristics have led to their widespread use in various fields, such as disease
diagnosis, biosensing, environmental remediation, and so on [3–5]. Previous research
has demonstrated that various nanomaterials can mimic different natural enzymes, in-
cluding peroxidase [1–3], oxidase [4–6], superoxide dismutase [7], catalase, laccase, and
others [8–10]. However, most of these studies have focused on the activity of single en-
zymes [6,7]. Recently, there has been a growing interest in multi-enzyme nanozymes, which
can exhibit multi-enzyme mimetic activities alone or in combination, leading to synergis-
tic effects, cascade reactions, and environmental response selectivity [8], as well as even
broader application prospects. Despite the potential benefits, the development of highly
efficient nanozymes with multiple activities is still in demand due to the limited number of
nanozymes with well-defined structures, and multi-enzyme mimetic activities [9–12].

Metal-organic frameworks (MOFs) are porous crystalline materials composed of metal
junctions and organic linkers [2]. Due to their large surface area, flexible constitution,
and diverse structure, MOFs have emerged as ideal candidates for nanozymes [13,14].
Furthermore, the highly tunable and ordered structure of MOFs makes them attractive
microreactors for dual-enzyme or multi-enzyme tandem-catalyzed reactions [15]. These
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characteristics suggest a great potential to construct nanozymes with multi-enzyme mimetic
activities, which warrants further investigation.

Glucose, which is the crucial substance that produces energy in organisms, is very
important for keeping the body functioning in good order [16,17]. Therefore, measuring
blood glucose levels is essential for maintaining physiological health and treating dis-
eases. Although there has been well-established research on glucose sensors, colorimetric
techniques have gained high attention because of the development of the miniaturization
concept, like paper—based analytical devices and image capture instruments [18]. Among
the various colorimetric sensing modes, glucose oxidase (GOx)—based enzyme-catalyzed
oxidation has proved to be a simple and reliable method for glucose detection. During
the detection, glucose is hydrolyzed into gluconic acid, and H2O2 by GOx, and the in
situ generated H2O2 is then catalyzed by peroxidase to oxidize the substrate for a visible
color change. However, limited by the low catalytic efficiency, many previously reported
peroxidase-like nanozyme to suffer from a low sensitivity for glucose detection. On the
other hand, the instability of H2O2 and the difficulty of substrate oxidization under neutral
pH have significantly hampered the development of this cascade reaction [19–21]. That
means, most previous reports conducted the GOx incubation under neutral pH, and then,
they had to adjust the pH into acid for peroxidase incubation. To overcome these shortcom-
ings, it is still in demand to fabricate a novel peroxidase-like nanozyme with high catalytic
efficiency under neutral pH, thus, constructing a simple and sensitive colorimetric platform
for glucose detection.

In this work, we synthesized NO2-MIL-53(Cu) via a simple hydrothermal method.
The regular complex structure centered on Cu allowed this material to mimic the activity
of multiple enzymes, including peroxidase-like, oxidase-like, and laccase-like activity
(as shown in Figure 1. To figure out the role of the functional group, MIL-53(Cu) was
synthesized as a counterpart, and the activities were compared between NO2-MIL-53(Cu)
and MIL-53(Cu). Then, the effects of different reaction conditions on enzyme mimetic
activities were explored. Based on the excellent peroxidase-like activity of NO2-MIL-
53(Cu) at neutral pH, a colorimetric sensing platform to detect H2O2 and glucose under a
physiological environment was constructed.
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Figure 1. Triple-enzyme mimetic activities of NO2-MIL-53(Cu) and corresponding colorimetric
platform for glucose detection via cascade reaction of GOx and its peroxidase-like activity.
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2. Materials and Methods

All the reagents were of analytical grade and used as received without further purifica-
tion. Copper (II) acetate monohydrate (Cu(CH3COO)2·H2O), nitroterephthalic acid (NO2-
BDC), terephthalic acid (H2BDC), N,N-dimethylformamide(DMF), 2-(N-Morpholino)ethan
esulfonic acid(MES), glucose and urea (CH4N2O) were purchased from Aladdin Co., Ltd.
(Shanghai, China). Glucose oxidase (GOx) was provided by Sigma-Aldrich (Shanghai,
China). o-phenylenediamine (OPD), 2,4-dichlorophenol (2,4-DP), and 4-aminoantipyrine
(4-AP) were obtained from Macklin (Shanghai, China). Methanol was supplied by CHUAN-
DONG Chemical (Chongqing, China). Milli-Q ultra-pure water with a resistivity of above
18.25 MΩ cm was used throughout the experiments.

The detection limits are calculated as LOD = 3σ/S, where σ was the standard deviation
from 20 blank probe sample measurements, and s was the slope of the calibration plot from
UV absorbance of solutions with different concentrations of targets (H2O2 or glucose).

2.1. Synthesis and Characterization of NO2-MIL-53(Cu)

The synthesis of NO2-MIL-53(Cu) was carried out using a modified version of a previously
reported method [22]. A total of 0.6334 g of NO2-BDC and 0.7986 g of Cu(CH3COO)2·H2O
were dissolved in 30 mL of H2O and stirred vigorously for 30 min. A total of 0.3903 g of
urea was added to the mixed solution and stirred for another 30 min. The mixture was then
transferred to a hydrothermal reactor with 50 mL of Teflon and subjected to solvothermal
treatment at 150 ◦C for 5 h. After cooling to room temperature, the resulting precipitate
was separated by using a 0.22 µm filter membrane and washed thoroughly with deionized
water. Then, the collected product was washed with DMF and methanol several times.
Finally, the obtained solid was dried at 60 ◦C for further characterization and application.

MIL-53(Cu) was synthesized by using 0.4984 g of H2BDC while keeping other
steps unchanged.

The morphology and size of NO2-MIL-53(Cu) and MIL-53(Cu) were characterized
by scanning electron microscopy (SEM, Gemini 300, Zeiss, Oberkochen, Germany). X-
ray diffraction (XRD) patterns of the materials were measured with a scanning speed
of 5◦/min. Fourier transform infrared (FT-IR) spectra were acquired by PerkinElmer.
Ultraviolet-visible (UV-vis) spectra were examined by a UV-2450 spectrophotometer (Unico,
Shanghai, China).

2.2. Peroxidase-like Catalytic Feature Evaluation of NO2-MIL-53(Cu)

The peroxidase-like activity of NO2-MIL-53(Cu) nanozyme was measured by catalyz-
ing the chromogenic substrate OPD with the presence of H2O2 at 37 ◦C. In detail, 100 µL
NO2-MIL-53(Cu) suspension (0.2 mg mL−1), 30 µL H2O2 (10 mmol L−1), and 30 µL OPD
(10 mmol L−1) solution were added in 840 µL Tris-HCl solution (0.01 M, pH 7.4), and
incubated at 37 ◦C for 30 min. The final solution was analyzed via UV-vis spectrometer at
420 nm.

2.3. Colorimetric Detection of H2O2 and Glucose

For detection of H2O2, a series of H2O2 solutions with different concentrations over
the range 0–1.4 mM were added to 100 µL of 200 mg/L NO2-MIL-53(Cu) suspension, and
30 µL OPD (10 mmol L−1) solution in Tris-HCl solution (0.01 M, pH 7.4). After incubation
at 37 ◦C for 30 min, different UV absorption at 420 nm was recorded.

Glucose detection was as follows: firstly, 5 µL of Gox (1 mg/mL) and 20 µL of glucose
solution with different concentrations were added to 115 µL of Tris-HCl buffer (0.01 M,
pH 7.4), followed by incubation for 30 min at 37 ◦C. Subsequently, 100 µL NO2-MIL-
53(Cu) suspension (0.2 mg/mL), OPD (10 mmol L−1), and Tris-HCl buffer (0.01 M, pH 7.4)
were consecutively added to obtain a total volume of 1000 µL. The resulting mixture was
incubated for another 30 min at 37 ◦C, and then measured by UV-vis spectrometer.
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2.4. Oxidase-like Catalytic Feature Evaluation of NO2-MIL-53(Cu)

To explore the oxidase-mimicking behavior, 200 µL of NO2-MIL-53(Cu) suspension
(0.2 mg mL−1) was added to an OPD solution (1 mM) in 0.01 M Tris-HCl buffer (pH 7.4)
with a total volume 1 mL. The solution was also incubated at 37 ◦C for 30 min and finally
monitored via UV-vis spectrometer.

2.5. Laccase-like Catalytic Feature Evaluation of NO2-MIL-53(Cu)

The laccase catalytic activity of NO2-MIL-53(Cu) nanozyme was measured through
the chromogenic reaction of phenolic compounds with 4-AP. First, 4-AP (1 mg/mL, 100 µL)
and 2,4-DP (1 mg/mL, 100 µL) solutions were mixed with MES buffer (30 mM, pH 6.8,
700 µL), followed by the addition of 100 µL NO2-MIL-53(Cu) suspension (1 mg/mL). After
1 h of reaction at 30 ◦C, the mixture was centrifuged for 3 min at 7000 rpm. Finally, the
absorbance of the supernatant was recorded at 510 nm.

3. Results and Discussion
3.1. Synthesis and Characterization of NO2-MIL-53(Cu)

Previous research has demonstrated that the enzyme mimetic activity of nanozymes
can be influenced by their functional groups [23]. In order to obtain nanozymes with
superior activity, a nitro-functionalized MOF was synthesized according to the previous
method with some modifications. As shown in Figure 2, the resulting NO2-MIL-53(Cu)
exhibited a leaf-like structure with plan view sizes ranging from 2 to 4 µm (Figure 2a).
In contrast, MIL-53(Cu), which was synthesized using the same method, displayed a
stick-shaped structure with plan view sizes ranging from 0.2 to 1.5 µm (Figure 2b). The
difference in morphology may be attributed to the addition of urea, a weak base used
during the preparation process to deprotonate the groups in the organic linker and facilitate
the coordination between metal ions and the organic linker. The protonation differences
between BDC and NO2-BDC likely altered the kinetics of MOF formation [24,25].
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Figure 2. SEM images of (a) NO2-MIL-53(Cu), (b) MIL-53(Cu).

Figure 3a shows the XRD patterns of NO2-MIL-53(Cu) and MIL-53(Cu). Both MOFs
exhibited characteristic peaks similar to the MIL-53 simulation pattern, confirming their
good crystalline structure [26,27]. The FT-IR spectra of NO2-MIL-53(Cu) and MIL-53(Cu)
are shown in Figure 3b. Peaks near 1629 cm−1 and 1387 cm−1 represented the symmetric
and asymmetric C=O stretching of COO-, respectively, indicating successful coordina-
tion between the BDC and the Cu ion [28]. Compared to MIL-53(Cu), NO2-MIL-53(Cu)
displayed additional peaks in the region of 1510–1615 cm−1 and 1320–1390 cm−1, which
corresponded to the antisymmetric stretching vibration of the nitro group. These char-
acterizations provided further evidence of the successful synthesis of MIL-53(Cu) and
NO2-MIL-53(Cu).
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Figure 3. XRD patterns (a) and FT-IR (b) of NO2-MIL-53(Cu) and MIL-53(Cu).

3.2. Multi-Enzyme Mimetic Activity of NO2-MIL-53(Cu)

To evaluate the multi-enzyme mimetic activity of NO2-MIL-53(Cu), various incubation
systems were employed. The peroxidase-like activity of NO2-MIL-53(Cu) was assessed by
oxidizing OPD in the presence of hydrogen peroxide in Tris-HCl (0.01 M) buffer. Figure 4a
illustrates that strong absorbance and color changes (from colorless to yellow) were ob-
served after NO2-MIL-53(Cu) was incubated with OPD/H2O2 for 30 min. In contrast,
nearly negligible absorbance and color change were observed in the reaction systems of
NO2-MIL-53(Cu)/OPD, NO2-MIL-53(Cu)/H2O2 or OPD/H2O2, indicating the excellent
peroxidase-like activity of NO2-MIL-53(Cu). It should be noted that a small adsorption
peak was also observed when NO2-MIL-53(Cu) reacted with OPD in the absence of H2O2,
suggesting the oxidase-like activity of NO2-MIL-53(Cu). To confirm this oxidase-like ac-
tivity, we re-tested the absorbance after incubating NO2-MIL-53(Cu) with OPD under a
different reaction condition, in which the concentrations of catalyst and OPD increased
into 40 mg/L and 1 mM, respectively (Figure 4b). These changes in concentration would
promote the oxidase-like activity of NO2-MIL-53(Cu) via offered more active sites to ini-
tiate the redox reaction between oxygen and OPD. As expected, the solution presented a
clear OPD oxidation peak at 420 nm, accompanied by a distinguishable color change from
colorless to yellow. No peak was observed in the solution of NO2-MIL-53(Cu) and OPD
alone, confirming the oxidase-like activity of NO2-MIL-53(Cu). Laccases were a family of
copper-containing oxidases. To test the feasibility of NO2-MIL-53(Cu) as a laccase mimic,
we incubated 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) with NO2-MIL-
53(Cu). As shown in Figure 4c, an absorption peak at 510 nm was observed after incubation,
which can be attributed to the oxidation product of 2,4-DP. No absorption was observed
with each compound alone. Similar results were observed in the image, in which only the
solution with NO2-MIL-53(Cu) turned pink. The above results distinctly indicated that the
prepared NO2-MIL-53(Cu) had laccase-like activity.

To uncover the role of the nitro group in the organic linker, MIL-53(Cu) was used as a
non-functional counterpart to NO2-MIL-53(Cu). As shown in Figure S1, all of the incubation
systems containing NO2-MIL-53(Cu) catalyzed substrates to produce high characteristic
peaks, accompanied by obvious color change. In contrast, the systems containing MIL-
53(Cu) only produced weak characteristic peaks and color changes. These results indicated
that NO2-MIL-53(Cu) exhibited overwhelming enzyme mimetic activities, and the nitro
group appears to play a positive role in the multi-enzyme mimetic catalysis. In previous
reports by Wei et al., the nitro group was proposed as an electron-absorbing group that
made the metal nodes in MOFs more electron-deficient, thereby promoting electron transfer
between substrates and active sites [23]. This explanation could also be used to account for
the improved activity of NO2-MIL-53(Cu).
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Figure 4. UV-vis spectra of (a) peroxidase-like, (b) oxidase-like, and (c) laccase-like activity of NO2-
MIL-53(Cu) and corresponding images of different incubation systems (the solution in the image from
left to right is consistent with the line from up to down; all of the images were taken under daylight).

3.3. Optimization of the Peroxidase-like Activity for NO2-MIL-53(Cu)

As it is known, the peroxidase-like activity of nanozyme is always dependent on
reaction conditions. Therefore, the effects of typical conditions for NO2-MIL-53(Cu) were
investigated. For solution pH, the peroxidase-like activity increased before pH 7.4 and
decreased when pH exceeded 7.4 (as shown in Figure 5a), suggesting that the optimal pH for
this reaction was around 7.4, which was consistent with the physiological environment. This
applicability was further confirmed by testing different substrates. As shown in Figure S2,
when we replaced OPD with other typical enzyme-linked chromogenic substrates, such as
3,3′,5,5′-tetramethylbenzidine (TMB), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid (ABTS), NO2-MIL-53(Cu) was able to catalyze the oxidation of different substrates
under neutral conditions, demonstrating the wide applicability of peroxidase-like NO2-
MIL-53(Cu).

To study the effect of catalyst concentrations, seven concentrations, including 5, 10,
15, 20, 25, 30, and 35 mg/L of NO2-MIL-53(Cu), were selected. As shown in Figure 5b, a
growth trend was observed as the catalyst concentration increased, but the trend slowed
down when the catalyst concentration exceeded 20 mg/L.

We also explored the effects of OPD concentrations and reaction time, as shown
in Figure 5c,d, respectively. When the OPD concentration increased to 0.3 mM, further
increases in reaction concentration had little effect. A similar phenomenon was observed
when the reaction time reached 30 min.

The stability of the peroxidase-like activity for NO2-MIL-53(Cu) was evaluated by
storing NO2-MIL-53(Cu) in aqueous solution at 2–8 ◦C. Its peroxidase-like activity was
measured for seven consecutive days. As shown in Figure S3, it was found that the activity
of NO2-MIL-53(Cu) remained above 90% on the seventh day, indicating good stability.

3.4. Optimization of the Oxidase-like Activity and Laccase-like Activity for NO2-MIL-53(Cu)

Factors affecting the oxidase-like activity of NO2-MIL-53(Cu) were also investigated,
including pH (ranging from 4 to 9), catalyst concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50 mg/L) and reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50 min). As shown in Figure S4a,
NO2-MIL-53(Cu) exhibited high catalytic efficiency at pH values ranging from 7 to 8.5. With
respect to reaction time, the absorbance of oxidized OPD increased with increasing reaction
time and reached an appropriate UV measure range at 30 min (as shown in Figure S4b).
Regarding the effect of catalyst concentration, the background absorbance from the catalyst
should be taken into account. As shown in Figure S4c, the oxidase-like activity of NO2-
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MIL-53(Cu) reached stable when the catalyst concentration was up to 40 mg/L, since the
differential value of absorbance tended to be constant at this concentration.
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Figure 5. Effects of (a) pH, (b) catalyst concentration, (c) OPD concentration, and (d) reaction time on
the peroxidase-like activity of NO2-MIL-53(Cu).

In addition, we studied the effect of pH on the laccase-like activity of NO2-MIL-53(Cu).
As shown in Figure S4d, NO2-MIL-53(Cu) exhibited the highest catalytic activity at pH 6.8,
which was similar to natural laccase.

Nanomaterials with oxidase-like activity have been widely used for biosensors (such
as the detection of metal ions and reducing substances), antibacterial and environmen-
tal protection [29–31]. As a green catalyst, nanomaterials with laccase-like activity have
broad application prospects in environmental pollutant removal and environmental re-
mediation [32,33]. In addition, laccase can also be used in biosensors (especially the
detection of epinephrine), the food industry, and the paper industry [34–36]. Benefit
from the synergistic effect of nanomaterials with multi-enzyme activity; they are also
widely used in disease treatments. For example, Fe3O4/Ag/Bi2MoO6 nanoparticles with
multiple-enzyme mimic activities are designed for multimodal imaging-guided chem-
ical/photodynamic/photothermal therapy of tumors [37]. All of these examples have
promised the great potential of NO2-MIL-53(Cu) in various fields.

3.5. Colorimetric Detection of H2O2 and Glucose

Based on the peroxidase-like activity of the NO2-MIL-53(Cu), we established a NO2-
MIL-53(Cu)/OPD sensing system for colorimetric detection of H2O2. As shown in Figure 6,
the color of the reaction solution gradually turned yellow upon the addition of H2O2 to
MIL-53(Cu)/OPD. It was shown that the absorption intensity at 420 nm of the oxidized
OPD increased sharply with increasing concentration of H2O2. A good linear relationship
was found between the absorbance and H2O2 concentrations ranging from 1 to 800 µM
(R2 = 0.9964). The limit of detection(LOD) for H2O2 was calculated as 0.69 µM (S/N = 3).
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Figure 6. (a) UV-visible spectra of OPD/NO2-MIL-53(Cu) solution with different concentrations of
H2O2 (inset is the corresponding colorimetric image, which was taken under daylight); (b) resulting
calibration plots of the absorbance at 420 nm as a function of H2O2 concentration.

As well known, glucose can be hydrolyzed by glucose oxidase(GOx) to produce
H2O2 [38]. Therefore, a colorimetric platform can be achieved for glucose detection via
the cascading reactions of NO2-MIL-53(Cu) and GOx. As shown in Figure S5, even in the
incubation system of OPD/NO2-MIL-53(Cu), there was a weak absorption around 420 nm
due to the inherent oxidase-like activity of NO2-MIL-53(Cu). This result is consistent with
Figure 4a. When GOx or glucose was added separately, little change in this peak was
observed. For the system containing GOx and glucose together, a significant increase in
this peak can be observed. These results confirm that H2O2 is only produced when GOx is
co-incubated with glucose, which in turn causes a peroxidase-like catalytic reaction.

Based on this, the absorbance at 420 nm increased with increasing glucose concentra-
tion (as shown in Figure 7a). Additionally, the inset image showed that the yellow color
of the reaction system became darker with increasing glucose concentration. Figure 7b
showed a good linear relationship between the glucose concentrations and the absorbance
in the range of 0.5 µM to 300 µM (R2 = 0.9928), with a LOD of 2.6 µM (S/N = 3). This result
is sufficient for the routine health screening of glucose in body fluids. Compared with
previous reports, the performance of NO2-MIL-53(Cu) is also considerable (Table S1).
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Figure 7. Dose-response curves and the corresponding linear calibration plots for glucose detection
(a,b) (inset is the corresponding colorimetric image, which was taken under daylight).

In order to evaluate the feasibility of the established platform for glucose detection,
the effects of other sugars (sucrose, maltose, lactose, etc.) and common biochemical species
in body fluids (amino acids, metal ions, ascorbic acid, etc.) were studied on the detection
system. As shown in Figure S6, only the addition of the glucose triggered a significant
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chromogenic reaction, while the effect of other targets was negligible. These results demon-
strated that the method has good selectivity for the detection of glucose.

4. Conclusions

In conclusion, we synthesized a nitro-functionalized MOF using hydrothermal meth-
ods. The synthesized NO2-MIL-53(Cu) demonstrated peroxidase-like, oxidase-like, and
laccase-like catalytic activity. The effects of reaction conditions were discussed, and it
was found that NO2-MIL-53(Cu) exhibited excellent peroxidase-like activity under neutral
conditions. Based on this, a colorimetric sensing platform for hydrogen peroxide and
glucose was constructed. Wide linear ranges could be achieved for H2O2 (1–800 µM) and
glucose (0.5–300 µM), accompanied by low LODs of 0.69 µM for H2O2 and 2.6 µM for
glucose, respectively. The platform exhibited good selectivity and promising potential
feasibility for glucose detection in physiological environments. This work not only offered
a more applicable colorimetric platform for glucose detection, but also provided guide-
lines for the rational design of nanozymes, especially for the materials with multi-enzyme
mimetic activities.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s23146277/s1, Figure S1: UV-vis spectra and corresponding images of incu-
bation systems with MIL-53(Cu) and NO2-MIL-53(Cu); Figure S2: UV-vis spectra and corresponding
images of incubation systems in the presence of H2O2 with different enzyme-linked chromogenic
substrates (a) TMB, (b) ABTS, (c) OPD; Figure S3: Peroxidase-like activity of NO2-MIL-53(Cu) dur-
ing seven-day storing; Figure S4: Effects of (a) pH, (b) reaction time, (c) catalyst concentration on
the oxidase-like activity of NO2-MIL-53(Cu). And (d) Effects of pH to the laccase-like activity of
NO2-MIL-53(Cu); Figure S5: UV-vis spectra of different incubation systems in glucose detection;
Figure S6: Effects of various common species towards glucose detection; Table S1: Comparison of
various MOFs-based colorimetric detection platform for glucose detection. From refs. [39–45].
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