
Citation: Hepp, J.; Shiraishi, M.; Tran,

M.; Henson, E.; Ananthanarayanan,

M.; Soangra, R. Exploring Teslasuit’s

Potential in Detecting Sequential

Slip-Induced Kinematic Changes

among Healthy Young Adults.

Sensors 2023, 23, 6258. https://

doi.org/10.3390/s23146258

Academic Editor: Giovanni Saggio

Received: 28 May 2023

Revised: 22 June 2023

Accepted: 7 July 2023

Published: 9 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Exploring Teslasuit’s Potential in Detecting Sequential
Slip-Induced Kinematic Changes among Healthy Young Adults
Jacob Hepp 1, Michael Shiraishi 1, Michelle Tran 1, Emmy Henson 1, Mira Ananthanarayanan 1

and Rahul Soangra 1,2,*

1 Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA;
jhepp@chapman.edu (J.H.); shiraishi@chapman.edu (M.S.); micheltran@chapman.edu (M.T.);
ehenson@chapman.edu (E.H.); ananthanarayanan@chapman.edu (M.A.)

2 Fowler School of Engineering, Chapman University, Orange, CA 92866, USA
* Correspondence: soangra@chapman.edu; Tel.: +1-714-516-6160

Abstract: This study aimed to assess whether the Teslasuit, a wearable motion-sensing technology,
could detect subtle changes in gait following slip perturbations comparable to an infrared motion
capture system. A total of 12 participants wore Teslasuits equipped with inertial measurement units
(IMUs) and reflective markers. The experiments were conducted using the Motek GRAIL system,
which allowed for accurate timing of slip perturbations during heel strikes. The data from Teslasuit
and camera systems were analyzed using statistical parameter mapping (SPM) to compare gait
patterns from the two systems and before and after slip. We found significant changes in ankle
angles and moments before and after slip perturbations. We also found that step width significantly
increased after slip perturbations (p = 0.03) and total double support time significantly decreased
after slip (p = 0.01). However, we found that initial double support time significantly increased
after slip (p = 0.01). However, there were no significant differences observed between the Teslasuit
and motion capture systems in terms of kinematic curves for ankle, knee, and hip movements. The
Teslasuit showed promise as an alternative to camera-based motion capture systems for assessing
ankle, knee, and hip kinematics during slips. However, some limitations were noted, including
kinematics magnitude differences between the two systems. The findings of this study contribute to
the understanding of gait adaptations due to sequential slips and potential use of Teslasuit for fall
prevention strategies, such as perturbation training.

Keywords: perturbation training; fall risk; gait kinematics; wearable technologies

1. Introduction

Falls are the primary cause of injury among individuals aged 65 and above in the
United States; approximately 27.5% of older adults reported falling in the previous year,
and 10.2% reported an injury related to a fall [1]. Older adults who reported fall-related
injuries experienced difficulty with various activities, including vision, cognition, walking
or climbing stairs, performing errands alone, and dressing or bathing. Unfortunately, the
incidence of falls among older ones increases with age, as 33.8% of individuals over the age
of 85 reported falling in the past year, with 13.9% reporting an injury related to a fall [2]. As
we age, several changes in gait may occur that can affect the risk of falling. Kerrigan et al. [3]
identified several factors, such as decreased step length, increased cadence, and reduced
terminal stance time (resulting in decreased peak hip extension and peak plantar flexion
range of motion/power) [3]. Several gait parameters differ between fallers and non-fallers,
including step length and cadence [4]. Fallers exhibit a significantly increased double
limb stance time and variability that may contribute to increased fall risk [4]. Kwon et al.
reported that fallers exhibit significantly reduced gait velocity, shorter step lengths, and
longer stance times and that they require more time to reach peak vertical ground reaction
force and mid-stance than non-fallers [5].
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Even though weight-shifting errors and trips account for 62% of falls in long-term
care facilities, slip recovery failures also commonly lead to falls [6]. A slip occurs when an
individual’s center of mass (COM) is located outside their base of support, which can be
compensated for by a corrective movement to avoid falling. Various gait abnormalities,
including gait speed, stride time, step width/length, single and double limb stance times,
and gait symmetry, may contribute to increased slip risk and fall incidents in individuals
of all ages [7]. Mainly older adults with a stroke, gait asymmetry, increased stride time,
reduced gait speed, and increased medial-lateral amplitude have an increased risk of
falls [8,9]. For an intervention for slip-related falls, Pai et al. proposed enhancing dynamic
stability and altering weight support can significantly increase the chances of a successful
slip recovery through a compensatory backward step [10]. The same group discovered a
strong correlation between increased gait speed and improved stability during a slip [11].

Numerous studies have developed predictive models using sensor data to accurately
forecast falls and potentially identify optimal gait parameters to reduce the risk of falls [12].
Gait parameters such as step length, segment angles, the center of mass state, and ground
reaction forces have been employed to construct a predictive model for slip-induced falls
and reported a classification accuracy of 75.9% [13]. The investigators found that the right
thigh angle at touchdown of the slipping foot, the maximum ground reaction force of the
slipping limb after touchdown, and the momentum change from touchdown to recovery
foot liftoff showed the most significant predictive power. Teslasuit is a full-body suit
with embedded inertial sensors, haptics, and biometry technology. It features a motion
capture system with 14 inertial measurement unit sensors for body tracking, allowing for
comprehensive biomechanical analysis. Multiple studies have demonstrated the accuracy
and efficacy of the Teslasuit in capturing spinal biomechanics and kinetics as well as in
identifying and correcting movement errors. For example, Weber et al. reported that the
Teslasuit accurately captured the spinal range of motion and speed in individuals with
axial spondyloarthritis [14], while Caserman et al. demonstrated that it could detect and
correct errors in real-time to improve functional movement during specific exercises [15].
In contrast, whether the Teslasuit is sensitive enough to capture slip-related subtle gait
changes is still unclear. The current study aims to demonstrate that the Teslasuit can provide
a more convenient and improved method for capturing slip-induced gait characteristics.
The study will use perturbations to elicit slip-induced responses and capture and analyze
gait characteristics using the Teslasuit.

2. Materials and Methods

This study aimed to evaluate whether the motion sensing abilities of the Teslasuit
could detect slight variations in gait following slip perturbations similar to those seen
by an infrared motion capture system. The Chapman University Institutional Review
Board approved the study, and all participants signed written informed consent before
participation. The inclusion criteria were subjects aged 18–35 years who could walk
independently and did not have any prior injury at lower extremity.

Design of Repeated Slip Perturbations: The perturbations were delivered when sub-
jects walked on computer-assisted rehabilitation environment (CAREN) systems, such as
the Gait Real-time Analysis Laboratory (GRAIL). The virtual reality setup comprises a
six-degrees-of-freedom motion platform (Moog Inc., East Aurora, NY, USA) and a 1.7 m
long dual-belt-instrumented treadmill (Forcelink, B.V., Culemborg, The Netherlands) positi
oned side-by-side, which is capable of high accelerations of up to 5 m/s2. The visual inputs
were synchronized with the subject’s treadmill walking speed, creating the impression of
walking on an endless pastoral path. To ensure uniformity, the preferred walking speed for
each participant was obtained by incrementing the treadmill speed until the participant
found it similar to their typical walking speed [16]. A total of 12 healthy adults (6 fe-
males and 6 males) participated in this study (refer to Table 1 for anthropometrics). Two
Teslasuits—male and female, both of medium size—were used in this study. A Teslasuit
consisting of 14 IMUs and a 34-reflective-marker set located on bony landmarks was worn
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by each participant. To avoid interference with normal walking and minimize the risk of
injury in the event of a fall, the participants were fitted with a full-bodyweight-supported
overhead harness during all walking and slip trials. The experiments were carried out
using the Motek GRAIL, which allowed for the real-time detection of accurate timing of
heel strikes during walking.

Table 1. Anthropometric data for participants (mean± standard deviation).

Sex Age (Years) Height (cm) Weight (kg) BMI (kg/m2)

Female (n = 6) 26.2 ± 0.9 153.4 ± 4.6 56.2 ± 8.8 23.7 ± 2.7
Male (n = 6) 26.6 ± 1.3 171.6 ± 4.9 72.6 ± 10.7 24.5 ± 2.8

All participants were given a visual target on a virtual reality screen and were asked
to look at the target while walking. Each participant was instructed to perform a 5 min
normal walking trial. All normal gait characteristics were evaluated from these trials,
and they served as acclimatization before the perturbation walking trial. Subsequently,
a 12 min walking trial was conducted, during which five intermittent slip perturbations
were introduced, with approximately two-minute intervals between each perturbation.
Figure 1 provides an overview of experimental protocol. The first perturbation was initiated
at approximately 2 min, or 12,000 frames, after the start of the trial, followed by subsequent
perturbations scheduled for 2 min, or 12,000 frames, after each perturbation (refer to
Figure 2). This perturbation timing varied slightly on right heel contact timing. A protocol
similar to that used by Sessoms et al. was adopted [17] (Figure 3). When a frame that
was designated as a perturbation elapsed, the system would await a force on the right
force plate that exceeded the preset threshold based on the participant’s weight. Once such
a force was detected, the right treadmill belt would rapidly accelerate (15 m/s2) in the
direction of motion, inducing a slip (refer to Figures 3 and 4).
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Figure 2. A 12 min walking protocol with five repeated perturbations occurring 2 min apart. The
slips were induced during the heel strike event.
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Figure 4. Participant walking during 12-min and experiencing slip perturbation trial condition.

Data Processing: The motion capture data were analyzed using Vicon Nexus, while
the Teslasuit Studio recorded and analyzed the data from Teslasuit. Gait analysis was
conducted using the Gait Offline Analysis Tool (GOAT), and the gait pattern values were
compared between the Teslasuit and motion capture systems. To differentiate kinematics
before and after slip, statistical parameter mapping was used.
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Statistical Parameter mapping (SPM): Statistical parameter mapping (SPM) is a widely
used technique in neuroscience and medical imaging for analyzing brain activity and
structure. It is a method for mapping statistical results from neuroimaging data onto a
standardized anatomical template of the brain. SPM has several advantages for movement
scientists and biomechanists. One of the primary advantages is that SPM does not require
any abstraction of the original time series to perform statistical analysis. Instead, the entire
1D field can be examined using a non-directed hypothesis test without ad hoc assumptions
regarding the spatiotemporal foci of interest. This is in contrast to other methods that
require the visualization of the 1D time series and the extraction of a summary scalar
for statistical analysis. SPM employs random field theory (RFT) to perform topological
inference instead of separate inferential tests at each time point, which would result in
an inflation of Type I error. RFT uses the local correlation between adjacent time points
to mitigate the multiple testing problem and offers accurate sampling-rate independent
control of Type I errors when testing correlated field data.

Rather than calculating a p-value at each time sample, SPM calculates a p-value
for clusters of statistics that cross a critical threshold. SPM p-values are defined as the
probability that smooth, random continua would produce a supra-threshold cluster as
broad as the observed cluster. Critical thresholds are typically calculated with a Type
I error of α = 0.05, and when the observed t-statistic time series crosses the threshold,
this cluster has a p < 0.05, allowing the researcher to reject the null hypothesis H0 of no
difference between the two time series. We used the open-source MATLAB package spm1d
for this study.

3. Results

We used paired t-test SPM analysis and found significant changes in ankle angle
(t = 6.08, p < 0.001, fwhm = 7.58) and moment (t = 6.35, p < 0.001, fwhm = 6.31) before
and after slip, where fwhm stands for full width at half maximum of the Gaussian kernel
(Figures 5–8).
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Figure 5. Before and after slip ankle angle; (i) mean (dotted) during a gait cycle, (ii) standard
deviation (shaded).
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Figure 6. SPM analysis of ankle angle curves before and after slip. The shaded region shows
significant differences from 45% of gait cycle to 65% of gait cycle.
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Considering gait parameter initial values at 100% before the first slip, the percent
change in step width, double support time, initial double support time (a component
of double support time), and stance-to-swing ratio times were evaluated and shown in
Figure 9 below.
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Figure 9. Percent change in gait parameters from initial (before slip 1 perturbation) values were
evaluated for (a) step width, (b) total DST, (c) initial DST, (d) stance to swing ratio. The dotted lines
show trend followed after sequential perturbations.

Our study employed statistical parameter mapping to compare the kinematic curves
of ankle, knee, and hip movements obtained from the Teslasuit and a camera-based motion
capture system. Surprisingly, our analysis did not reveal statistically significant differences
between the two systems.
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We performed a matched paired t-test to compare the measures of initial double
support, step width, total double support, and stance-to-swing ratio for before and after
slip events. Our analysis revealed significant differences in these variables. First, we
observed a significant difference in initial double support (t(12) = 2.96, p < 0.01), indicating
a change in the duration of the initial double support phase following slip events. Second,
we found a significant difference in step width (t(12) = −2.03, p = 0.03), suggesting a
change in the width of steps taken after slip events. Lastly, we identified a significant
difference in total double support (t(12) = 2.31, p = 0.03), indicating a change in the total
duration of the double support phase before and after slip events (Table 2). We did not find
significant differences in stance-to-swing ratio. These findings demonstrate that slip events
significantly impact gait parameters related to initial double support, step width, and total
double support. The results suggest that individuals modify their gait pattern following
slips to enhance stability and reduce the risk of subsequent falls. It is important to note that
the reported p-values are based on a two-tailed test, and the degrees of freedom (df) are
indicated in parentheses. The significance level (α) was set at 0.05.

Table 2. Gait parameter changes before and after perturbation (slip). Where * represents signifi-
cant differences.

Gait Parameters Before-Slip After-Slip p-Value

Cadence 103.8 ± 9.45 110.2 ± 17.11 0.20
Initial Double Support % * 17.05 ± 0.88 15.57 ± 0.98 0.01 *

Single Support Time % 33.16 ± 1.456 34.61 ± 1.837 0.06
Stance to Swing % Ratio 67.28 ± 1.067 66.34 ± 0.969 0.05

Stance Time (s) 0.791 ± 0.075 0.749 ± 0.067 0.14
Step Length (m) 0.510 ± 0.216 0.491 ± 0.211 0.43

Step Time (s) 0.586 ± 0.053 0.562 ± 0.063 0.23
Step Width (m) * 0.141 ± 0.018 0.161 ± 0.019 0.03 *
Stride Length (m) 1.013 ± 0.446 0.990 ± 0.439 0.46

Stride Time (s) 1.175 ± 0.099 1.128 ± 0.100 0.19
Swing Time (s) 0.384 ± 0.026 0.379 ± 0.035 0.38

Terminal Double Support % 17.07 ± 1.533 16.17 ± 1.172 0.11
Total Double Support % * 34.12 ± 2.115 31.74 ± 1.715 0.01 *

We conducted SPM analysis for knee (Figures 10–12) and hip angles before and after
each slip condition, but no significant differences were found. In comparing the knee angles
of the Teslasuit and camera system, we found that the Teslasuit reported slightly higher
knee (Figure 11) and hip flexion angles (Figure 12) than the camera system, but they were
not found to be significantly different for both systems using SPM.
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4. Discussion

The emergence of wearable technologies has opened up new possibilities for enhanc-
ing training curricula and developing more personalized treatment and rehabilitation
programs. With new advancements in wearable technologies, quick measurement and
analysis of biomechanical data are feasible. One of the most promising technologies is the
Teslasuit, which incorporates haptic feedback, electro muscle stimulation, and transcuta-
neous electrical nerve stimulation; can capture and analyze body movements; and can
probably intervene in real time during a perturbation event. The suit is used in high-risk
work training, physical training, and stroke rehabilitation [15,18–20]. Several recent studies
have investigated the efficacy of perturbation training in reducing fall risk in older adults.
In particular, Bhatt et al. found that consecutive trip perturbation training led to higher
toe clearance with improved trip adaptation [11] and reduced fall risk. The Teslasuit’s
real-time motion analysis capabilities make it a promising tool for measuring fall risk and
training for fall recovery. Gait analysis can be performed without needing location-locked
motion capture cameras, allowing for a more practical and efficient method of identifying
gait problems and areas for improvement. This is especially useful when considering
repeated perturbation training, which improves resistance to future falls through improved
stability and limb support control and retention of these skills through motor memory.
Fall resistance is expected to improve after a single exposure to perturbation, reducing
fall incidence to 0% and improving gait stability in older adults without altering gait
speed [21,22]. Identifying issues in the recovery process can help improve overall fall
susceptibility, particularly with task-specific training [23]. The Teslasuit’s ability to gather
kinematics data could prove valuable when evaluating fall risk and preventing falls in
older adults. If the Teslasuit’s movement assessment capabilities prove to be consistent
with established analysis methods, such as infrared motion capture systems, the suit could
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become a valuable resource in diagnosing and treating various illnesses and injuries [19]. It
may also have potential applications in hazardous locations associated with military and
space efforts due to its sensor capabilities and ability to detect slips and falls. While it is
unclear whether the Teslasuit is sensitive enough to capture slip characteristics, previous
research by Weber et al. and Caserman provides evidence of the reliability and validity of
its measurement capabilities [14,15].

This study utilized statistical parameter mapping to evaluate and compare the kine-
matic profiles of ankle, knee, and hip movements captured by the Teslasuit and a camera-
based motion capture system. Interestingly, our analysis did not uncover any noteworthy
statistical differences between the kinematics of the two systems. This suggests that the
Teslasuit may offer a viable alternative to the camera-based motion capture system in
out-of-laboratory environments for assessing ankle, knee, and hip kinematics during slips
and could intervene timely. However, it is essential to consider some limitations. Firstly,
the absence of significant differences does not necessarily indicate that the two systems are
equivalent in all aspects. The systems may differ in other factors, such as accuracy, preci-
sion, or specific movement conditions. Secondly, the absence of significance could also be
influenced by sample size, variability within the data, or other methodological factors. We
found that the Teslasuit reported slightly higher knee flexion angles compared to camera-
based systems (Figure 10), but these values were not found to be significantly higher. We
also compared kinematics before and after slip perturbations, and SPM analysis revealed
ankle angles and moments significantly changed after slip perturbation (Figures 4–7).

We found that step width increases immediately after the slip and represents reactive
compensatory adaptations the participants made to regain their balance by increasing
their base of support. There was a sustained increase in step width when the participant
continued to walk (as shown in Figure 9a). Still, this increase slowly began to decrease,
eventually beyond the initial step widths recorded before the first slip occurred. This may
be due to adaptations and learning effects of the slip. Since the slip itself does not change
throughout the trial, each participant was able to become accustomed to it, learn, and
recover faster, decreasing their need to keep their base of support larger and a greater
reliance on visual or vestibular information to remain balanced.

We also found that total double support times decreased immediately following per-
turbation and throughout the trial (Figure 9b). In recovery from the perturbation, the initial
double support time increased (Figure 9c) as participants stumble (during perturbation)
and have to keep pace with the treadmill’s set speed. This double support time remains
lowered, as participants rely on visual information rather than somatosensory information
to recover from slips. A similar trend to that of total double support time was seen in the
stance-to-swing ratio (Table 2).

Our results imply that the Teslasuit may be a reliable alternative to the camera-based
system for capturing and analyzing kinematic data related to perturbation-related kinematic
changes at ankle, knee, and hip joints. The Teslasuit can be used for slip detection. It can
quickly detect a change in gait parameters representing a fall risk and promptly intervene
in these scenarios. The suit’s ability to detect these changes enables it to be of value in
various rehabilitation settings, such as stroke rehabilitation programs and fall intervention
programs involving repeated perturbation training.

5. Conclusions

Wearable technologies like the Teslasuit offer new opportunities for personalized
treatment and rehabilitation. The Teslasuit’s real-time motion analysis capabilities make
it valuable for measuring fall risk and training for fall recovery. Our study compared
Teslasuit and camera-based motion capture system kinematic data and found no significant
differences, suggesting the Teslasuit’s viability in out-of-laboratory environments. How-
ever, limitations and potential differences in accuracy and precision should be considered.
Perturbation-induced kinematic changes were accurately captured by the Teslasuit, includ-
ing adaptations in step width and double support times. The Teslasuit offers a reliable
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and practical solution for capturing and analyzing kinematic data related to perturbation-
induced changes in ankle, knee, and hip joints in and outside lab environments. Further
research is needed to explore its full potential and address the remaining limitations.
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