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Abstract: This paper develops a new time difference of arrival (TDOA) emitter localization algorithm
in the 3D space, employing conic approximations of hyperboloids associated with TDOA measure-
ments. TDOA measurements are first converted to 1D angle of arrival (1D-AOA) measurements that
define TDOA cones centred about axes connecting the corresponding TDOA sensor pairs. Then, the
emitter location is calculated from the triangulation of 1D-AOAs, which is formulated as a system of
nonlinear equations and solved by a low-complexity two-stage estimation algorithm composed of an
iterative weighted least squares (IWLS) estimator and a Taylor series estimator aimed at refining the
IWLS estimate. Important conclusions are reached about the optimality of sensor–emitter and sensor
array geometries. The approximate efficiency of the IWLS estimator is also established under mild
conditions. The new two-stage estimator is shown to be capable of outperforming the maximum like-
lihood estimator while performing very close to the Cramer Rao lower bound in poor sensor–emitter
geometries and large noise by way of numerical simulations.

Keywords: time difference of arrival localization; maximum likelihood estimator; iterative weighted
least squares

1. Introduction

Time difference of arrival (TDOA) localization is a passive emitter localization method
that is capable of locating non-cooperative emitters when no time-of-transmission infor-
mation is available. In the 3D space, TDOA measurements taken at pairs of sensors define
hyperboloids as possible emitter locations with two foci placed at the corresponding sen-
sors. The emitter location is determined from the intersection of multiple (at least three)
hyperboloids, which implies that at least four sensors are necessary. However, because of
measurement noise, TDOA hyperboloids do not intersect uniquely and the intersection
point must be estimated from noisy TDOA measurements. Broadly speaking, the existing
estimators for TDOA localization can be grouped into (i) maximum likelihood estimator
(MLE), which takes the form of a nonlinear least squares estimator for Gaussian noise
and is considered to provide the benchmark performance (see e.g., [1]), (ii) constrained
“linearized” solutions based on two-stage estimators [2] and generalized trust region solu-
tion (GTRS) [3], (iii) semidefinite relaxation methods [4], and (iv) angle-of-arrival (AOA)
solutions based on asymptotic approximation of TDOA hyperbolae in the 2D plane [5,6].
In this paper, we extend the 2D-AOA solutions to the 3D space using conic approximation
of TDOA hyperboloids, which culminates in a new 3D TDOA localization method.

While the MLE is known to be asymptotically unbiased and efficient, it does not
have a closed-form solution and requires a computationally expensive numerical search
algorithm. Furthermore, the MLE cost function for TDOA localization is nonconvex [5],
implying that, unless an appropriate initial guess close to the final estimate is chosen,
the numerical search can diverge. Being a nonlinear estimator, the MLE also exhibits
the threshold effect [7], which causes the MLE performance to degrade suddenly as the
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noise is increased, thereby producing unreliable estimates at large noise levels. These
observations have motivated the development of several alternative algorithms for TDOA
localization over the last four decades, starting with the seminal work on hyperbolic
location in [2]. More recently, GTRS was exploited to solve the TDOA localization problem
using a quadratic cost function with quadratic constraints [3]. While the GTRS solution
achieves a localization performance on par with the MLE, it has a large computational
complexity [8]. In [9], a least squares estimator was presented for TDOA localization in
the 3D space, accounting for the constant bias in TDOA measurements. The work in [10]
presents a weighted least squares (WLS) estimator with the cone tangent plane constraint
for 2D TDOA localization. The Lagrange programming neural network was applied to the
TDOA localization problem in [11] using an analogue neural network model. A hybrid
firefly algorithm was proposed in [12], which combines the WLS estimator with the firefly
algorithm to restrict the search region, achieving reduced computational complexity and
improved accuracy. In [13] closed-form 2D and 3D TDOA localization algorithms were
developed in modified polar representation by minimizing a quadratic cost function with a
quadratic constraint. Successive unconstrained minimization and GTRS were employed
to solve the constrained optimization problem. An algorithm that solves the 3D TDOA
problem uniquely in a sensor network with four sensors rather than a minimum of five
sensors was proposed in [14], exploiting confidence regions. Semidefinite programming
based TDOA localization algorithms were developed to solve the maximum likelihood
estimation problem for emitter location, as well as joint emitter location and propagation
speed estimation in the presence of sensor position errors (see, e.g., [4,15]). In [16], source
localization from a set of squared noisy range difference measurements was considered.
The localization problem was solved in the least squares sense by expressing the source
location in polar/spherical coordinates, which leads to a quotient of two quadratic forms,
whose constrained maximization yields an easy solution.

In this paper, we propose a novel 3D TDOA localization algorithm based on an
approximation of TDOA hyperboloids by cones. This is similar to the approximation
of TDOA hyperbolae in the 2D plane by asymptotes, which results in a bearings-only
localization problem [6]. However, the localization problem in the 3D space is significantly
more challenging than in the 2D plane, as unique azimuth and elevation angles for the
emitter are not available from TDOA cones. To overcome this, TDOA measurements are
first converted to 1D-AOA measurements [17] that define TDOA cones centred about axes
connecting the corresponding TDOA sensor pairs. Then, the emitter location is calculated
from the triangulation of 1D-AOAs, which is formulated as a nonlinear matrix equation
and solved using a low-complexity two-stage algorithm composed of an iterative weighted
least squares (IWLS) estimator that improves emitter range estimates, and a Taylor series
estimator aimed at refining the final IWLS estimate. The optimality of sensor–emitter
and sensor array geometries is considered, and important conclusions are reached as to
what determines good geometry in terms of range differences of arrival, orientation of
intersensor vectors and emitter ranges from the sensors. The approximate efficiency of the
IWLS estimator is also established under mild conditions. The performance improvement
of the proposed 3D TDOA localization algorithm over the MLE, which provides the
benchmark performance, is demonstrated by way of numerical simulations.

The paper is organized as follows. Section 2 describes the 3D TDOA localization
problem and presents the MLE and the Cramer Rao lower bound. In Section 3, conic
approximations for TDOA hyperboloids are obtained in terms of 1D-AOAs and the covari-
ance matrix of the 1D-AOA noise is derived. Section 4 converts the 3D TDOA localization
problem into the triangulation of 1D-AOAs and formulates a nonlinear matrix equation in
the unknown emitter location. Section 5 presents the new two-stage 3D TDOA localization
algorithm to solve the system of nonlinear equations for the emitter location and analyzes
the efficiency of the IWLS estimator in its first stage. Comparative simulation examples are
presented to demonstrate the superior performance of the new algorithm against the MLE
in Section 6. The concluding remarks are presented in Section 7.
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2. TDOA Localization in 3D Space

In 3D TDOA localization, the objective is to estimate the location of an emitter at
s = [x, y, z]T (where T denotes the matrix transpose) using TDOA measurements obtained
from N sensors (N ≥ 4) positioned at ri = [xi, yi, zi]

T , i = 1, . . . , N (see Figure 1). The
TDOA measurements at sensors i and j are given by

τij = τj − τi, i, j ∈ {1, . . . , N}, i 6= j (1)

where τi is the time it takes for the signal transmitted from the emitter to arrive at sensor i:

τi =
‖di‖

c
. (2)

Here, ‖ · ‖ denotes the Euclidean norm, di is the emitter range vector from the sensor
at ri:

di = s− ri (3)

and c is the speed of propagation (speed of light in free space).

Figure 1. TDOA localization for N = 4 sensors. The emitter location s is determined from the
intersection of TDOA hyperboloids.

Using (1) and (2), the range difference of arrival (RDOA), gij, becomes

gij = ‖dj‖ − ‖di‖ (4)

= cτij. (5)

Noting that TDOA and RDOA only differ by a scaling factor c, we will use TDOA and
RDOA interchangeably.

Each RDOA defines a hyperboloid of possible emitter locations, as depicted in Figure 1.
It is common practice to nominate one of the sensors as the reference receiver and take all
TDOA measurements with respect to it [2]. We assume that the sensor at r1 is the reference



Sensors 2023, 23, 6254 4 of 15

sensor. Given the RDOAs with respect to the reference sensor, g1i, i = 2, . . . , N, the emitter
location s is obtained from the intersection of N − 1 hyperboloids:

‖s− r2‖ − ‖s− r1‖ = g12

‖s− r3‖ − ‖s− r1‖ = g13

...

‖s− rN‖ − ‖s− r1‖ = g1N .

(6)

To solve the above set of nonlinear equations for s, a minimum of three equations are
required (i.e., N ≥ 4) since there are three unknowns, viz., the x, y and z coordinates of
the emitter location s. However, in practice, more than four sensors may be necessary and
desirable to ensure a unique solution and to improve the accuracy of the solution.

True RDOAs are unknown and only their estimates obtained from noisy received
signals are available. RDOAs can be estimated using the method of generalized cross-
correlation [18]. Noisy RDOA measurements are modelled as

g̃1i = g1i + n1i (7)

where the RDOA noise n1i is assumed to be zero-mean Gaussian. For i.i.d. additive
Gaussian noise at each sensor, the covariance of RDOA noise n1i is

Σ = E




n12
n13

...
n1N

[n12 n13 · · · n1N
]
 (8)

=
σ2

n
2
(IN−1 + 1N−1) (9)

where σ2
n is the RDOA noise variance, IN is the N × N identity matrix and 1N is the N × N

matrix of ones. Note that Σ is not a diagonal matrix, which means that the n1i are correlated.
The maximum likelihood estimator (MLE) for the emitter location is constructed

by maximizing the joint probability density function of the noisy RDOA measurements
conditioned on the emitter location. The MLE takes the form of a nonlinear weighted least
squares estimator for Gaussian noise:

ŝMLE = arg min
s

eT(s)Σ−1e(s) (10)

where

e(s) =


g̃12
g̃13

...
g̃1N

−

‖s− r2‖ − ‖s− r1‖
‖s− r3‖ − ‖s− r1‖

...
‖s− rN‖ − ‖s− r1‖

. (11)

The MLE has the desirable properties of being asymptotically unbiased and efficient
(i.e., its covariance becomes identical to the Cramer–Rao lower bound as N tends to infinity).
However, for a finite number of sensors, it is only approximately unbiased and efficient.
Being a nonlinear estimator, it is subject to the threshold effect (sudden degradation in
estimation performance) as the measurement noise variance is increased.

As the MLE does not have a closed-form solution, it requires a numerical search algorithm.
For this purpose, several methods have been used, such as the Gauss–Newton (GN) algorithm,
the Levenberg–Marquardt algorithm and the Nelder–Mead simplex method (see, e.g., [19–22]).

For Gaussian measurement noise, the Cramer–Rao lower bound (CRLB) for TDOA
localization is given by

CRLB = (JT
o Σ−1 Jo)

−1 (12)
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where Jo is the Jacobian of e(s) computed at the true emitter location s:

Jo =


vT

1 (s)− vT
2 (s)

vT
1 (s)− vT

3 (s)
...

vT
1 (s)− vT

N(s)

, vT
i (s) =

s− ri
‖s− ri‖

. (13)

3. Conic Approximation of TDOA Hyperboloids

In many applications of TDOA localization, the TDOA measurements are processed to
obtain directional information about the signal source. However, in the 3D space, TDOAs
correspond to 1D-AOAs [17] that define cones centred about the axes connecting the TDOA
sensor pairs. Therefore, they do not contain precise three-dimensional direction information.
The cones approximate TDOA hyperboloids with increased accuracy in the far field (as the
emitter range increases). For a sufficiently large emitter range from the sensors (e.g., the
emitter range is an order of magnitude larger than the maximum separation between the
sensors), the TDOA hyperboloids can be substituted by TDOA cones with negligible error,
which are defined by

1. The mid-point between TDOA sensor pairs

m1i =
1
2
(r1 + ri), i = 2, 3, . . . , N (14)

2. The unit vector for the TDOA sensor pair direction

u1i =
r1i
‖r1i‖

, r1i = ri − r1 (15)

3. The 1D-AOA

θ1i = cos−1
(
− g1i
‖r1i‖

)
, 0 ≤ θ1i ≤ π. (16)

Geometrically, the 1D-AOA, θ1i, is the angle that the TDOA cone makes with its axis
passing through the sensor pair r1 and ri, as depicted in Figure 2.

Figure 2. Illustration of 1D-AOA and corresponding TDOA cone. TDOA hyperboloid and cone
become identical at large emitter range relative to sensor pair separation.

In 2D TDOA localization, the 1D-AOA corresponds to a bearing angle and has sign
ambiguity, as θ1i and −θ1i both give the same TDOA in the far field. This ambiguity needs
to be resolved, e.g., by resorting to the clustering of hyperbolic asymptotes as described
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in [6]. However, in 3D TDOA localization, no such ambiguity exists, as the localization
problem boils down to the intersection of cones rather than hyperbolic asymptotes, and the
cones are not influenced by the sign ambiguity in 1D-AOAs.

Substituting the noisy RDOA measurements for the true RDOAs in (16) and using a
truncated Taylor series expansion to retain the linear terms, we obtain

θ̃1i = θ1i + ε1i, i = 2, 3, . . . , N (17)

where θ̃1i denotes the noisy 1D-AOA measurement

θ̃1i = cos−1
(
− g̃1i
‖r1i‖

)
, 0 ≤ θ̃1i ≤ π (18)

and ε1i is the 1D-AOA noise approximated by

ε1i ≈
n1i√

‖r1i‖2 − g2
1i

(19)

≈ n1i√
‖r1i‖2 − ‖r1i‖2 cos2 θ1i

(20)

≈ n1i
‖r1i‖ sin θ1i

(21)

which is zero-mean Gaussian. We have used (16) in (20) to arrive at the final expression (21).
We remark that, based on (19), the 1D-AOA noise is minimized if g1i = 0 with

θ1i = π/2 rad; i.e., the emitter is equidistant from the sensor pair r1 and ri. This suggests
that a necessary condition for optimal sensor–emitter geometry would be to have all TDOA
sensors equidistant from the emitter, assuming of course that prior knowledge of the
emitter location is available. Referring to (21) we see that ε1i tends to infinity if θ1i = 0 or
θ1i = π, which happens if the emitter and TDOA sensor pair r1 and ri are collinear. This
represents the worst TDOA geometry and should be avoided. If |g̃1i|/‖r1i‖ > 1 due to
large measurement noise and/or the TDOA sensor pair being almost collinear with the
emitter, θ̃1i cannot be computed from (18) as the arccosine function will have an argument
with an absolute value exceeding one. In such cases, dropping those TDOA measurements
with |g̃1i|/‖r1i‖ > 1 from the estimation process (if N > 4) or using a different reference
sensor may resolve the problem. To sum up, an optimal sensor–emitter geometry would
have 0 ≤ |g̃1i|/‖r1i‖ � 1, i = 2, 3, . . . , N.

The covariance of the 1D-AOA noise ε1i is

K = E


 ε12

...
ε1N

[ε12 · · · ε1N
] (22)

= DΣD (23)

where Σ is the (N − 1)× (N − 1) covariance matrix of TDOA noise defined in (9) and D is
a diagonal matrix of size N − 1 given by

D = diag
(

1
‖r12‖ sin θ12

,
1

‖r13‖ sin θ13
, · · · ,

1
‖r1N‖ sin θ1N

)
. (24)

4. Triangulation of 1D-AOAs

The 3D TDOA localization problem is converted to an equivalent AOA localization
problem using the 1D-AOAs θ1i obtained from the conic approximation discussed in the
previous section, as depicted in Figure 3. The N− 1 TDOA sensor pair midpoints m1i act as
virtual sensors. The 1D-AOA based localization problem considered here is different from
the conventional 3D AOA localization problem. While in 3D localization, azimuth and
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elevation angles define directional vectors emanating from the AOA sensors, the equivalent
AOA localization problem in Figure 3 essentially employs cones defined by the 1D-AOAs.
This difference rules out a straightforward application of 3D AOA localization algorithms to
the 3D TDOA problem. In 2D localization, however, the 1D-AOAs reduce to bearing angles
in the 2D plane, which allows the application of existing 2D AOA localization algorithms
after simple modification (see, e.g., [6]).

Figure 3. Equivalent AOA localization problem using 1D-AOAs, θ1i, and TDOA sensor pair mid-
points, m1i, i = 2, , . . . , N.

Referring to Figure 3, we note that the emitter location s is related to the 1D-AOAs via

uT
1is = d1i(s) cos θ1i + uT

1im1i, i = 2, 3, . . . , N (25)

where d1i(s) = ‖d1i(s)‖ is the emitter range from m1i with d1i(s) = s−m1i denoting the
emitter range vector originating from m1i, and u1i is the unit vector pointing from the
reference sensor r1 to ri along the TDOA cone axis:

u1i =
ri − r1

‖ri − r1‖
. (26)

Substituting θ1i = θ̃1i − ε1i into (25), we have

uT
1is = d1i(s)

(
cos θ̃1i cos ε1i + sin θ̃1i sin ε1i

)
+ uT

1im1i (27)

≈ d1i(s)
(

cos θ̃1i + ε1i sin θ̃1i

)
+ uT

1im1i (28)

where we assume ε1i ≈ 0 so that cos ε1i ≈ 1 and sin ε1i ≈ ε1i. Thus, using the noisy
1D-AOAs, (25) is replaced by

uT
1is = d1i(s) cos θ̃1i + uT

1im1i + η1i(s) (29)
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where the noise term η1i(s) is given by

η1i(s) ≈ ε1i d1i(s) sin θ1i. (30)

Substituting (21) into the above equation yields

η1i(s) ≈
d1i(s)
‖r1i‖

n1i. (31)

Stacking (29) for i = 2, 3, . . . , N, we obtain the following matrix equation which is
nonlinear in s: 

uT
12

uT
13
...

uT
1N


︸ ︷︷ ︸

A

s =


d12(s) cos θ̃12
d13(s) cos θ̃13

...
d1N(s) cos θ̃1N


︸ ︷︷ ︸

f (s)

+


uT

12m12
uT

13m13
...

uT
1Nm1N


︸ ︷︷ ︸

b

+


η12(s)
η13(s)

...
η1N(s)


︸ ︷︷ ︸

η(s)

. (32)

Finding a closed-form estimate for s in As ≈ f (s) + b, akin to least squares estimation,
is not possible because of the nonlinear dependence of the vector f (s) on the unknown s.
A nonlinear least squares solution may be attempted using an iterative numerical search
algorithm. However, this would not be attractive from the computational complexity point
of view, especially when compared with the MLE.

The covariance of the noise vector η(s) is

C = E
{

η(s)ηT(s)
}

(33)

= LΣL (34)

where L is the diagonal matrix:

L = diag
(

d12(s)
‖r12‖

,
d13(s)
‖r13‖

, · · · ,
d1N(s)
‖r1N‖

)
. (35)

Note that in (34), Σ can be replaced by (I + 1) by dropping the proportionality factor
σ2

n/2 with no performance penalty. In other words, prior knowledge of RDOA noise
variance σ2

n is not necessary.

5. New Algorithm for 3D TDOA Localization Using 1D-AOAs
5.1. Algorithm Derivation

We propose a two-stage algorithm to solve (32) for s. In the first stage, (32) is ap-
proximated as a linear matrix equation with two unknowns s and d by assuming that
d = d12(s) = d13(s) = · · · = d1N(s) (i.e., equal emitter range from all sensor pair mid-
points m1i), which yields

As = d


cos θ̃12
cos θ̃13

...
cos θ̃1N


︸ ︷︷ ︸

c

+b + η(s) (36)

[
A −c

][s
d

]
≈ b. (37)

Since the unknown vector now includes a nuisance parameter d, (37) becomes overde-
termined with a unique solution if there are five or more sensors; therefore, we assume
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N ≥ 5. In addition, the unit vectors u1i that form the matrix A must be linearly independent
to avoid rank deficiency in A. This necessarily rules out all sensors forming a linear array
or those that are on the same 2D horizontal plane. The estimation accuracy will improve
if the condition number of A (i.e., the ratio of its largest singular value to the smallest) is
small and as close to one as possible. This is also achieved by selecting sensor locations that
produce linearly independent u1i. In summary, an optimal sensor array geometry would
minimize the condition number of A.

Equation (37) is easily solved in the weighted least squares sense using[
ŝ0
d̂

]
=
([

A −c
]TW0

[
A −c

])−1[
A −c

]TW0b (38)

where the weighting matrix is

W0 = C−1
0 , C0 = L0ΣL0 (39)

L0 = diag
(

1
‖r12‖

,
1
‖r13‖

, · · · ,
1
‖r1N‖

)
(40)

which is obtained from the covariance matrix C in (34) by dropping the constant propor-
tionality factor d. The assumption of d12(s) = d13(s) = · · · = d1N(s) is a particularly good
approximation for large emitter range to sensor baseline ratio situations characterized by a
tight clustering of the sensors away from the emitter.

Next, we refine the weighted least squares estimate of the emitter location in (38) by
re-estimating its weighting matrix. Using the initial estimate ŝ0 in (38), the new weighting
matrix becomes

W1 = C−1
1 , C1 = L1ΣL1 (41)

where

L1 = diag
(

d12(ŝ0)

‖r12‖
,

d13(ŝ0)

‖r13‖
, · · · ,

d1N(ŝ0)

‖r1N‖

)
(42)

with
d1i(ŝ0) = ‖ŝ0 −m1i‖. (43)

Replacing (37) with
As ≈ f (ŝ0) + b (44)

in accordance with (32), the new weighted least squares estimate for the emitter location is

ŝ1 =
(

ATW1 A
)−1

ATW1( f (ŝ0) + b). (45)

Starting with ŝ0 in (38), (45) is computed iteratively using the following equations in
each iteration for k= 1, 2, . . .

W k = C−1
k , Ck = LkΣLk (46)

Lk = diag
(

d12(ŝk−1)

‖r12‖
,

d13(ŝk−1)

‖r13‖
, · · · ,

d1N(ŝk−1)

‖r1N‖

)
(47)

ŝk =
(

ATW k A
)−1

ATW k( f (ŝk−1) + b) (48)

which produces an iterative weighted least squares (IWLS) estimator. The iterations
are stopped when the difference between successive estimates is sufficiently small; i.e.,
‖ŝk − ŝk−1‖ < γ where γ is a threshold, or the maximum number of iterations is reached.

The second stage uses the final IWLS estimate, denoted ŝIWLS, calculated from the
iterations (46)–(48) as an initial estimate for the Taylor series estimator [1] based on
the MLE:

ŝ = ŝIWLS −
(

JTΣ−1 J
)−1

JTΣ−1e (49)
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where J is the Jacobian matrix, defined as

J =


vT

1 (ŝIWLS)− vT
2 (ŝIWLS)

vT
1 (ŝIWLS)− vT

3 (ŝIWLS)
...

vT
1 (ŝIWLS)− vT

N(ŝIWLS)

, vT
i (ŝIWLS) =

ŝIWLS − ri
‖ŝIWLS − ri‖

(50)

and

e =


g̃12
g̃13

...
g̃1N

−

‖ŝIWLS − r2‖ − ‖ŝIWLS − r1‖
‖ŝIWLS − r3‖ − ‖ŝIWLS − r1‖

...
‖ŝIWLS − rN‖ − ‖ŝIWLS − r1‖

. (51)

5.2. Performance Analysis of the IWLS Estimator

In this subsection, we establish that the IWLS estimator is approximately efficient
under the following assumptions:

Assumption 1. The TDOA noise is sufficiently small.

Assumption 2. All sensors are at approximately the same distance from the emitter.

Assumption 3. Intersensor distances are small compared with the emitter range.

To begin with, consider the final IWLS estimate

ŝIWLS =
(

ATW IWLS A
)−1

ATW IWLS( f (ŝIWLS) + b) (52)

where, under Assumption 1, the weighting matrix is

W IWLS = diag
(
‖r12‖

d12(ŝIWLS)
,
‖r13‖

d13(ŝIWLS)
, · · · ,

‖r1N‖
d1N(ŝIWLS)

)
Σ−1

× diag
(
‖r12‖

d12(ŝIWLS)
,
‖r13‖

d13(ŝIWLS)
, · · · ,

‖r1N‖
d1N(ŝIWLS)

)
(53)

≈ diag
(
‖r12‖
d12(s)

,
‖r13‖
d13(s)

, · · · ,
‖r1N‖
d1N(s)

)
Σ−1 diag

(
‖r12‖
d12(s)

,
‖r13‖
d13(s)

, · · · ,
‖r1N‖
d1N(s)

)
(54)

≈ C−1. (55)

The error covariance of the IWLS estimator is given by

CIWLS = E
{(

ŝIWLS − s
)(

ŝIWLS − s
)T} (56)

where, using W IWLS ≈ C−1 in (55), we have

ŝIWLS − s =
(

ATW IWLS A
)−1

ATW IWLS( f (ŝIWLS) + b)−
(

ATC−1 A
)−1

ATC−1

× ( f (s) + b + η(s)) (57)

≈
(

ATC−1 A
)−1

ATC−1( f (s) + b)−
(

ATC−1 A
)−1

ATC−1

× ( f (s) + b + η(s)) (58)

≈ −
(

ATC−1 A
)−1

ATC−1η(s). (59)
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Substituting (59) into (56), we obtain

CIWLS ≈ E
{(

ATC−1 A
)−1

ATC−1η(s)ηT(s)C−1 AT
(

ATC−1 A
)−1}

(60)

≈
(

ATC−1 A
)−1

ATC−1CC−1 AT
(

ATC−1 A
)−1

(61)

≈
(

ATC−1 A
)−1

. (62)

Using (34), the above equation can be rewritten as

CIWLS ≈
(
(L−1 A)TΣ−1L−1 A

)−1
(63)

where

L−1 A = diag
(
‖r12‖
d12(s)

,
‖r13‖
d13(s)

, · · · ,
‖r1N‖
d1N(s)

)
uT

12
uT

13
...

uT
1N

 (64)

=
[

r2−r1
d12(s)

, r3−r1
d13(s)

, · · · rN−r1
d1N(s)

]T
(65)

=
[

r2−s
d12(s)

− r1−s
d12(s)

, r3−s
d13(s)

− r1−s
d13(s)

, · · · rN−s
d1N(s) −

r1−s
d1N(s)

]T
. (66)

Under Assumptions 2 and 3, i.e.,

d12(s) ≈ d13(s) ≈ · · · ≈ d1N(s) ≈ ‖s− r1‖ ≈ ‖s− r2‖ ≈ ‖s− r3‖ ≈ · · · ≈ ‖s− rN‖ (67)

Equation (66) can be approximately written as

L−1 A ≈ −
[

r1−s
‖s−r1‖

− r2−s
‖s−r2‖

, r1−s
‖s−r1‖

− r3−s
‖s−r3‖

, · · · r1−s
‖s−r1‖

− rN−s
‖s−rN‖

]T
(68)

≈ −Jo (69)

where Jo is the Jacobian matrix in (13). Plugging (69) into (63) finally gives

CIWLS ≈ (JT
o Σ−1 Jo)

−1 (70)

which is identical to the CRLB in (12). Thus, we conclude that the IWLS estimator is
approximately efficient under the assumptions of small TDOA noise and tightly clustered
sensors with roughly the same distance from the emitter (see (67)).

6. Simulation Studies

Monte Carlo (MC) simulations have been carried out to evaluate the performance of
the new estimator developed in Section 5 in comparison with the MLE computed using
the GN algorithm. For performance comparison, the bias and RMSE of the estimators
are considered:

Bias norm =

∥∥∥∥∥ 1
M

M

∑
k=1

(ŝk − s)

∥∥∥∥∥ (71)

RMSE =

√√√√tr
1
M

M

∑
k=1

(ŝk − s)(ŝk − s)T (72)
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where M is the number of MC simulation runs, ŝk is the emitter location estimate at the kth
run and tr denotes the matrix trace (sum of diagonal entries). A total of 10,000 MC runs
were used in each simulation.

Figure 4 shows the simulated TDOA localization geometry, which resembles a low
earth orbit (LEO) satellite localization scenario. The emitter (LEO satellite) is positioned
at s = [400, 500, 300]T km. A collective of seven sensors (N = 7) are used for localizing
the emitter and are placed at the locations r1 = [−100, 100, 10]T km, r2 = [−80, 80, 20] km,
r3 = [−60, 60, 0]T km, r4 = [−40, 40, 10]T km, r5 = [−20, 20, 20]T km, r6 = [0, 30, 0]T km
and r7 = [20, 40, 10]T km. This is a relatively poor localization geometry as a result of a large
emitter range to baseline ratio. However, it is somewhat improved by small |g1i|/‖r1i‖, as
alluded to in Section 3. For the simulated sensor array geometry, the condition number of
A is 9.6, which indicates that the unit vectors u1i are linearly independent to a satisfactory
extent. The ratios |g1i|/‖r1i‖ and the emitter ranges from the sensors are listed in Table 1.
We observe that |g1i|/‖r1i‖ are mostly close to zero, which is desirable. As the sensors
are closely spaced, the emitter ranges ‖s − ri‖ do not vary greatly, thereby satisfying
Assumptions 2 and 3, in Section 5.2

Figure 4. Simulated 3D TDOA localization geometry for the emitter at s = [400, 500, 300]T km.

Table 1. TDOA localization geometry parameters for emitter location s = [400, 500, 300]T .

Sensor Index i |g1i|/‖r1i‖ ‖s− ri‖ (km)

1 – 702.9225
2 0.2120 696.5630
3 0.0136 703.7045
4 0.0403 699.4998
5 0.0560 696.5630
6 0.1364 686.2215
7 0.2946 663.4003

We have simulated the bias and RMSE of the new two-stage algorithm and IWLS,
developed in Section 5, and the MLE computed using the GN algorithm for three different
emitter heights: s = [400, 500, 300]T km, s = [400, 500, 500]T km and s = [400, 500, 700]T km.
The simulation results and CRLB, calculated by taking the square root of the trace of the
CRLB matrix, are shown in Figures 5–7 for RDOA noise standard deviation in the range
0.1 ≤ σn ≤ 1.1 km. Considering an emitter at s = [400, 500, 500]T km with carrier frequency
2 GHz (L band), bandwidth 1 MHz and time interval of 1 ms for TDOA measurements, the
simulated RDOA noise range approximately corresponds to an effective transmit power of
500 mW at σn = 0.1 km and 43.5 mW at σn = 1.1 km, which is practical for LEO satellite
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localization. To arrive at these emitter transmit powers, we have used a link budget analysis
based on the TDOA variance bound derived in [23]. In the simulations, the IWLS is iterated
four times. The GN algorithm uses 10 iterations and is initialized to the true target location.

(a) (b)

Figure 5. (a) Plot of bias norm versus RDOA noise for MLE, new algorithm and IWLS
(s = [400, 500, 300]T km). (b) Plot of RMSE versus RDOA noise for MLE, new algorithm and
IWLS along with CRLB (s = [400, 500, 300]T km).

(a) (b)

Figure 6. (a) Plot of bias norm versus RDOA noise for MLE, new algorithm and IWLS
(s = [400, 500, 500]T km). (b) Plot of RMSE versus RDOA noise for MLE, new algorithm and
IWLS along with CRLB (s = [400, 500, 500]T km).

(a) (b)

Figure 7. (a) Plot of bias norm versus RDOA noise for MLE, new algorithm and IWLS
(s = [400, 500, 700]T km). (b) Plot of RMSE versus RDOA noise for MLE, new algorithm and
IWLS along with CRLB (s = [400, 500, 700]T km).
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Referring to Figures 5–7, it is clear that the new algorithm enjoys a stable performance
and relatively small bias which is much lower than the MLE at large noise. Being a nonlinear
estimator and therefore subject to the threshold effect, the MLE suddenly loses its stability
as the RDOA noise is increased. The IWLS estimator exhibits a large bias. In terms of the
RMSE performance, the new algorithm performs similarly to the MLE at small RDOA noise
and stays close to the CRLB at large noise. The IWLS estimator and the new algorithm have
a similar RMSE performance.

7. Conclusions

A new two-stage TDOA localization algorithm was proposed based on finding the
intersection of RDOA cones in the far field, defined by 1D-AOAs readily available from
TDOA measurements. The proposed algorithm has low complexity and exhibits good
performance compared to the MLE, which is considered to be the benchmark given its
asymptotic unbiasedness and efficiency. It is composed of an IWLS estimator incorporating
approximate linearization and a Taylor series estimator aimed at refining the IWLS estimate.
The IWLS estimator was shown to be approximately efficient, achieving the CRLB, under
the condition of small noise and closely spaced sensors with the emitter in the far field.
In general, the effectiveness of TDOA localization algorithms strongly depends on the
localization geometry, and more specifically the relative sensor–emitter geometry. The new
algorithm was shown to perform well, outperforming the MLE, in a large emitter range to
baseline ratio scenario, which is known to represent a poor geometry. In general, a TDOA
sensor array geometry with relatively small RDOAs compared with intersensor distances
and linearly independent intersensor vectors will ensure a good localization performance.
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