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Abstract: In some geographically challenging areas (such as deserts, seas, and forests) where direct
connectivity to a terrestrial network is difficult, space communication is the only option. In these
remote locations, Internet of Space Things (IoST) applications can also be used successfully. In this
paper, the proposed payload for IoST applications demonstrates how an Automatic Identification
System (AIS) and a fire detection system can be used effectively. A space mission based on efficient
and low-cost communication can use a constellation of nanosatellites to better meet this need. These
two applications, which use a constellation of nanosatellites, can provide relevant university-level
data in several countries as an effective policy for the transfer of space technology in an educational
initiative project. To enhance educational participation and interest in space technology, this pa-
per shares the lessons learned from the project feasibility study based on an in-depth design of a
nanosatellite with several analyses (data budget, link budget, power budget, and lifetime estimation).
Lastly, this paper highlights by experiments the development and application of a cost-effective
sensor node for fire detection and the use of GPS to enable AIS capabilities in the IoST framework.
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1. Introduction

Wildfires are more likely to occur more frequently, spread farther, and burn with more
intensity when conditions are hotter and dryer. While wildfires are common in certain forest
ecosystems, their frequency and severity during fire seasons are increasingly widespread.
The density of wildfire activity is the greatest between 30◦ S and 20◦ N, with considerable
wildfire activity occurring on more than 30% of the world’s land surface. Wildfires have a
distinct diurnal cycle, even if seasonal patterns in their spread have been seen to varying
degrees: The afternoon (from 1–4 pm) is typically when fire activity increases because
the weather is ideal for burning (high temperatures and low humidity). Depending on
the kind of combustion, the temperature of wildfires ranges from 500 to 1200 K. Many
smaller, independent fire components, each with a distinct temperature, can make up a
single wildfire [1]. Heavy fuel loads in forests cause fires to burn more intensely and for a
longer period after the firefront has disappeared [2].

During sudden disasters, satellite imaging is crucial. Both the locations of the fires
and the extent of the damage they caused are revealed. There are currently satellites that
can detect fires, including traditional satellites, such as Terra and Aqua and the Landsat
series, as well as smaller satellites that are presently operational or being developed [3].
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The benefits of Global Navigation Satellite Systems (GNSS) are rising in sectors such
as mapping, surveying, disaster warning, emergency response, transportation (air, sea, and
land), and telecommunications networks [4,5]. Furthermore, satellite telecommunications
have the potential as a source of information that can contribute to sustainable development
for rural and remote areas in developing countries. They may help these countries to
“leapfrog” stages in development by providing people access to information and helping
to participate in decision-making, or more generally by improving education and health
services and promoting favorable conditions for environmental protection.

Satellite communications can also be used for efficient transport management, espe-
cially maritime vessels equipped with an Automatic Identification System (AIS). AIS is
an effective tool for achieving navigational safety areas, and by performing thusly, can
offer serious pre-emptive maritime safety benefits, but also affords a data opportunity to
understand and help to mitigate the impacts of maritime traffic on the marine environment.
The existing AISs land-based receivers provide real-time data but are limited by their
coverage and dependence on the network of base stations on land and vessels. Conversely,
AIS satellite-based receivers can offer effective near-global coverage, but data are frequently
time-delayed [6]. Satellite AIS coverage has quickly increased but is still challenged by a
moderately small constellation of satellites, a limited number of ground stations to receive
data, their capability to pick up a comparatively weak signal designed for earth surface
use, and data integrity assuming a satellite’s footprint and overlapping transmissions [7].

Since 2008, Low Earth Orbit (LEO) satellites have been added to the combination
of reception platforms and increasingly provide global data. This can comprise new
types of picosatellites (0.1–1 kg), nanosatellites (1–10 kg), and micro-satellites (10–100 kg).
Nanosatellites can successfully be used to track AIS radio signals in maritime areas. Ad-
ditionally, the use of an AIS framework based on satellites to transmit data to assist the
Internet of Things (IoT) at sea or to control ship traffic has been proposed and tested [8].
The same communication system can also be used for the IoT for inland wildfire detec-
tion and other useful applications that could be applied to develop an effective disaster
safety plan. Encouraging developments in nanosatellites and advanced training on tech-
nical communications capability could allow many developing and emerging countries
to place an adequate number of nanosatellites in the constellation in space for low-cost
communications. To achieve real-time communication, a nanosatellite constellation is
necessary to meet the requirements of this application. A good compromise is a con-
stellation of low-cost CubeSats standards flying in different orbital planes; each CubeSat
acquires a ground footprint of a chosen area in different positions and times [9]. Such
constellations may not support video relay or in bulk, but can certainly support the AIS mes-
sages and instant pertinent data obtained by other IoT applications, contributing limited
“telecommunication independence”.

This paper reviews the feasibility of CubeSats in the field of low-cost communications
used for IoST applications, such as AIS and fire detection. The proposed CubeSat project
has the following objectives:
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Another objective of this studied project, as the educational purpose, is to provide
a hands-on experience of real nanosatellite missions to students, young professionals,
research centers, and institutes dedicated to space technology.

The educational methodology and strategy are the main core of the technology transfer
that will consist on:
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Providing data that can be interpreted by researchers and students to enrich their
educational programs;
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This paper reviews the feasibility of CubeSats in the field of low-cost communications 
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Increasing the interest and motivation of students in the development of space tech-
nology area;
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Sharing field experiments between universities in different countries.

A developed technique is proposed to lead the project so that it can be implemented
in educational institutions in different countries (developing and emerging countries). It is
made clear that the intended educational goal, instructional technique, and experimental
procedures are crucial to technology transfer because technology cannot benefit humans on
its own if it is not effectively conveyed. The figure below provides a summary of this goal.

As depicted in Figure 1, the four educational objectives for technology transfer are:
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In-Orbit Demonstration: The objective of this project is to conduct in-orbit demon-
strations of new nanosatellite technologies.

Facilitation of Access Space: The objective of this project is to facilitate sustained and
affordable access to space by publishing new design methods and improving existing ones.

Education and Scientific Research: The educational objective is to enable university
teams to develop and design nanosatellites, providing students with hands-on experience
in satellite manufacturing and space engineering [10].

The remaining part of this paper is organized as follows: Section 2 is dedicated to the
overview of IoST applications based on AIS and fire detection missions. In Section 3, an
overview based on statistics about the orbits used by nanosatellites is presented. Then, the
mission parameters, mission scenarios, and ground station details are also defined. The
payload and subsystems of the nanosatellite with the suggested electrical architecture are
discussed in depth in Section 4. The data budget, link budget, power budget, and mass
budget calculations are presented in Section 5. The lifetime estimation is presented in
Section 6. Lastly, Section 7 discusses the conclusion and outcomes of the planned work
presented in the paper.

2. Overview of IoST Applications Used for AIS and Fire Detection

Satellites have emerged as an appealing alternative approach, delivering omnipresent
coverage as well as critical information. Examples of their efficiency include GPS for precise
locating, Earth observation satellites for monitoring environmental changes, communica-
tion satellites for worldwide connection, and their roles in emergency management and
scientific research. These examples demonstrate the wide range of applications where
satellite networks provide dependable coverage and critical information, cementing their
place as a useful option [11]. Since the capacity and extensiveness of terrestrial networks
are constrained, in isolated and disaster-affected areas, satellites are also becoming an
alternative solution offering omnipresent coverage with crucial information. Furthermore,
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the capabilities of terrestrial IoST networks can be strategically enhanced via satellite net-
works. Satellites facilitate firmware updates for IoST sensor networks by broadcasting the
updates over a wide coverage area. This enables remote and inaccessible IoST devices to
receive timely updates, improving performance, security, and introducing new features.
Using satellites reduces costs, offers scalability, real-time updates, and flexibility for diverse
IoST ecosystems, enhancing the capabilities of terrestrial IoST networks [12]. The authors
of [13] demonstrated the effectiveness of deploying several LEO satellite constellations for
IoST applications and scenarios.

Locally and internationally, several countries want the ability to monitor ship activity
using satellite technologies. International voyaging ships with a Gross Tonnage (GT),
of 300 tons or more, as well as all passenger ships regardless of size, are required to be
equipped with an Automatic Identification System (AIS) as of December 2004 per the
International Maritime Organization’s (IMO) International Convention for the Safety of
Life at Sea (SOLAS) [14]. Ships over the horizon are typically not covered by shore-based
AIS receiving stations (about 50 km range). Receiving AIS signals from satellites allows for
ship monitoring data to be provided as a service, offering benefits to various stakeholders
in the maritime industry. Maritime authorities can improve situational awareness, enforce
regulations, and enhance search and rescue operations. Cargo ships gain enhanced safety,
optimized operations, and better route planning. Navies benefit from increased domain
awareness, intelligence gathering, and improved coordination of task forces. Overall,
satellite-based AIS services provide valuable insights and operational advantages in the
maritime domain [15]. AIS is offering an opportunity to identify and be identified by others
(radar affords detection, but not identity and intentions); for this reason, it was designed as
a mandatory collision avoidance system for sea-going vessels. Chapter V of the SOLAS
Convention mandated that vessels over 300 gross tonnages be equipped with AIS by July
2007. This requirement has been widely implemented globally, enhancing maritime safety
by improving collision avoidance, search and rescue operations, vessel traffic management,
and enforcement efforts. While AIS has proven effective in enhancing situational awareness
and vessel tracking, its overall effectiveness may be influenced by factors such as signal
range, system errors, and non-compliant vessels. Current statistics and information on the
global implementation and effectiveness can be found through organizations such as the
IMO and national maritime administrations [6].

AIS is essentially an automated radio broadcast comprising data such as ship ID,
location, speed, and direction of travel. The AIS, as shown in Figure 2, is composed of
a transmitter, two receivers (TDMA VHF), a computer, a Digital Selective Calling (DSC)
system, a satellite positioning system (GPS, GLONASS, and BEIDU), and a Display Control
Unit (DCU) (control screen), and is interfaced with the vessel’s instruments (gyroscopic or
satellite compass, heading change speed indicator (optional), and log).
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AIS uses the two VHF frequency ranges from 161,975 MHz to 162,025 MHz, which
have been reserved worldwide for this application. AIS employs the Gaussian Minimum
Shift Keying (GMSK) modulation type with the rate of 9600 bauds. GMSK is a type of
digital modulation that effectively encodes data by altering the carrier frequency in a
way that reduces interference and spectrum spreading. It shapes the modulated signal
using a Gaussian-shaped filter, which improves bandwidth efficiency and lessens fading
and noise sensitivity. This modulation method enables AIS to broadcast data over a
given frequency range while preserving precise and dependable connection between
ships and shore stations. The packets containing 168 or 440 bits are preceded by a 24-bit
preamble, making it possible to synchronize the receiver [16]. To structure and transmit
data between ships and shore stations in the AIS, High-Level Data Link Control (HDLC)
frames are utilized. These frames offer flow control, error detection, and synchronization
for dependable communication. In order to maximize data transmission efficiency and
signal integrity, AIS also uses Non-Return to Zero Inverted (NRZI) encoding, in which
transitions or their lack indicate binary data. The accurate and effective interchange of
information throughout the AIS network is made possible by HDLC frames and NRZI
encoding working together. These HDLC-based frames also include a Cyclic Redundancy
Check (CRC) code. AIS sound footprint is close to background noise, and the frames
are only 30 ms long. The idea of satellite reception of AIS signals is at present being
studied by a variety of projects financed by the European Space Agency and the European
Commission as well as private initiative projects. The European Space Agency’s SAT-AIS
initiative, for example, sought to develop and demonstrate the capacity of receiving AIS
signals from spaceborne receivers [17]. NASA’s Traffic Awareness for General Aviation-
Data Information Service (TAMDAR-DIS) project also included AIS reception to improve
general aviation situational awareness [18]. Furthermore, collaborative activities in Canada,
such as the Space-based AIS Experiment, which involved the Canadian Space Agency
and industry partners, focused on showing the feasibility and usefulness of receiving
AIS signals from space [19]. The RUBIN 7 and 8-AIS missions from LuxSpace/OHB, the
COMDEV NTS nanosatellite mission, and the US military satellite TacSat-2 have all been
conducted testing the capability of AIS from space [20]. These programs, together with
research and development accomplishments by academic institutions and government
agencies, jointly contribute to the advancement of AIS signal reception technology and
vessel monitoring capabilities around the world. The operational nanosatellites-based AIS
missions have been used as presented in Table 1.

Table 1. Operational AIS embedded on nanosatellites.

CAT-3 ZACube-2 AAUSAT-4 AISSat 2 AISAT AAUSAT-3 AISSat 1 CanX-6
(NTS)

Operator

Universidad
Politécnica

de
Cataluña

[21]

Cape
Peninsula
University

[22]

Aalborg
University

[23]
UTIAS [24] DLR [25]

Aalborg
University

[26]
UTIAS [27] UTIAS [28]

NanosatMass
(kg) 9 4 0.88 6 14 0.8 6 6.5

Size 6 U 3 U 1 U - 1 U 1 U - 2 U

Power
Consump-

tion
- - 1.15 W 0.97 W 15 W 1.15 W 0.97 W 5.6 W
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Table 1. Cont.

CAT-3 ZACube-2 AAUSAT-4 AISSat 2 AISAT AAUSAT-3 AISSat 1 CanX-6
(NTS)

Operator

Universidad
Politécnica

de
Cataluña

[21]

Cape
Peninsula
University

[22]

Aalborg
University

[23]
UTIAS [24] DLR [25]

Aalborg
University

[26]
UTIAS [27] UTIAS [28]

Launch
date - 2017 2016 2014 2014 2013 2010 2008

Payload

AIS + High
resolution
VIS and
VNIR

camera

AIS + Low
resolution

NIR imager
AIS AIS AIS AIS AIS AIS

Generally, grasslands and agricultural areas are prone to faster and less intense burn-
ing. However, it is crucial to acknowledge that wildfire behavior is influenced by multiple
factors, including fuel types, weather patterns, and topography. Fuel types determine the
availability and behavior of combustible materials, while environmental variables, such as
wind speed, temperature, and humidity, impact fire behavior and spread. Additionally,
topographical features, such as slopes and valleys, can alter the behavior and distribution
patterns of a fire. Understanding the intricate dynamics of wildfires and their interactions
with diverse topography requires considering these complex factors [29]. Users of satellite-
based active fire detection data would desire observations to be conducted as frequently
as possible, preferably hourly, with a concentration of observation times. This is because
wildfires are transient but devastating in impact.

Table 2 presents a brief overview of nanosatellites performing fire detection missions.

Table 2. Operational fire detection payload embedded on nanosatellites.

TUBIN Spire Nanosat Lume-1 FIREBIRD CSIROSat-1

Operator or
contractor

Technische
Universität
Berlin [30]

OroraTech [31] l’Université de
Vigo [32] DLR [33]

Commonwealth
Scientific and

Industrial Research
Organisation
(CSIRO) [34]

Nanosatellite
Mass (kg) 17 9 2.1 15 4

Size - 6 U 2 U two 1.5 U CubeSats 3 U

Power
Consumption - - - - -

Launch date 2017 2021 2018 2012 Not launched, but
expected in 2022

Payload Infrared
microbolometer

Thermal-infrared
camera

Software-defined
radio (SDR) and

HUMPL

Imaging
multi-spectral
radiometers

(vis/IR)

Detector of
invisible infrared

light

Another fairly common use of IoST is in emergencies, such as bushfires, where
first responders with environmental sensors need to communicate with the emergency
management control centers. Satellites can be used to supplement network accessibility in
these situations [35]. This study suggested the usage of a Sensor Network (SN) connected
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to an autonomous ground station for nanosatellite-based IoST applications utilized for fire
detection. The SN is made up of sensor nodes, each of which has sensors for measuring the
environment’s temperature, relative humidity, wind speed, wind direction, and CO2 level
(smoke and gas sensors). When a fire is present, the ground computer (microcontroller
unit) compares the measured data to certain thresholds, performs the release of an alarm,
and collects some pertinent data. The sensor node’s coordinates (GPS position) are then
linked to these data so that the autonomous ground station can communicate them to the
space segment.

Sending pertinent data, such as an estimate of the fire’s position, the speed, and
direction of the wind, the temperature, and the CO2 level, is then required for agents and
forest authorities to intervene and conduct the emergency plan. The effective design of
the contingency plan requires the preparation of a flight plan for additional dedicated and
suitable satellites (Earth observation) at the target position. Figure 3 shows the functional
organization and architecture of the SN connected to the autonomous ground station.
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The amount of data that can be transferred will certainly be limited by the power
available at the sensor nodes, which are likely to be deployed and located in remote areas.
Considering the use of low-power wireless communication protocols (WiFi, Zigbee, and
LoRa) with omnidirectional antennas, the deployment of the sensor network should be
optimally designed.

The computer on the autonomous ground station uses an orbitography-based software
algorithm to identify the precise times the nanosatellite passes. The three elements required
for this identification to be aware of and perform its calculations by this specialized soft-
ware are the geographic location of this autonomous ground station, the UTC, and the
NORAD–Keplerian elements. The built-in GPS receiver provides the first two components.
The third component, which can be regularly updated and adjusted, is an assessment of
the NORAD–Keplerian Elements of the nanosatellite.

3. Mission Analysis

To conduct some tasks for IoST applications (AIS and fire detection) in certain re-
gions of developing and emerging countries—South Asia, the Middle East, and North
Africa—waiting times must be reduced to obtain the required temporal coverage. For the
AIS mission, the straits between these countries have the densest traffic in the entire world
(Malacca, Hurmuz, Bab Mandab, Suez Canal, Bosphorus, and Gibraltar). Then, for fire
detection, some important forests may be targeted in Southeast Asia (in China’s mainland
and Borneo rainforest), the Middle East (in Turkey, and Lebanon), and North Africa (in
Algeria and Tunisia). The processes of the two proposed applications and their targeted
area are illustrated in Figures 4 and 5.
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In these studied applications, as shown in Figures 4 and 5, the nanosatellite missions
are operated by the primary ground station at Beihang University. The developing countries
support ground stations and the radio amateur community can receive transmitted data
from the space segment. Data from support ground stations and radio amateurs can be
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supplied to the Beihang ground station data center via the internet. Payload users will
supply payload operation requests to developing and emerging countries and will have
access to their payload data stored in the Beihang data center to manage or perform the
required missions.

According to [36], the revisit times for AIS decoding and fire detections are 2 h and
3 h, respectively. The revisit time for early forest fire detection should ideally be 60 min
or less [37]. Table 3 presents the remaining detailed usage requirements for threshold
performance of the proposed IoST missions, which will be utilized to set the operating
orbit parameters.

Table 3. Threshold performance requirements for IoST based on AIS and fire detection.

Acceptable Desired

Access duration for AIS 7.5 min More than 8 min

Access duration for Fire
Detection 7.5 min More than 8 min

Revisit time for AIS 2 h Less than 1 h

Revisit time for Fire
Detection 3 h Less than 1 h

Response time for AIS 2 h Less than 1 h

Response time for Fire
Detection 3 h Less than 1 h

3.1. Orbital Parameters LEO Design and Selection

The choice of orbit parameters depends on the application used in the nanosatellite
in LEO. The second criterion of the orbit is the launching opportunity because most of
the nanosatellite performs a technological demonstration. An additional criterion is the
constellation design that should be considered for the choice. The number of nanosatellites
according to their approximate orbits after launch is presented in Figure 6.
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According to Figure 6, it is obvious that a significant number of nanosatellites are
launched into a 450 km circular orbit. A circular orbit with a 400–500 km interval is
considered in the study presented in this paper.

The main missions’ requirements are the minimum revisit time, response time for
100% of coverage, sufficient access duration to uplink data, and low cost for every mission.
The most appropriate orbit for the proposed missions is the LEO, which can be around
400 km of altitude. Based on these requirements, the continuous monitoring of AIS and fire
detection over some regions of developing and emerging countries should be guaranteed
as the main objectives of the proposed missions. For example, the two main areas of focus
are the coverage provided by the AIS mission in the South China Sea, which can be helpful
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for many emerging and developing countries (maritime silk route), and the fire detection
mission scheduled to cover forest areas in mainland China.

Several designs of nanosatellite constellations dedicated to Earth coverage are con-
ceivable; nevertheless, they are unlike in coverage duration and revisit time. Each of the
cases of studies was obtained by calculations from the developed model based on the
literature [39] and verified by using Analytical Graphics Inc.’s Satellite Toolkit (STK), Inc.
The analysis focused on three parameters: revisit time, access duration, and response time
for 100% of coverage.

The constraints that must be taken into consideration while choosing the orbital
elements for a successful mission analysis include the type of space mission, the various
types of the constellation, and the potential for the launch to cross various orbits. Deploying
nanosatellites to suitable orbits can be challenging due to their restricted launch capabilities,
which force them to be transported into orbit as an afterthought aboard bigger spacecraft.
An extensive orbital study based on the actual launch opportunity is necessary to decide
whether a launch is appropriate for the constellation. Therefore, the circular orbit of 400
km of altitude is taken into consideration based on the available launch opportunity after
numerous iterations using the trial and error method to select the ideal orbit parameters.
Then, it is necessary to incline the orbit to 49 degrees to approach the southeast of the
Chinese mainland, located between 110–129◦ east longitude and 29–48◦ north latitude,
where forests are present [40], and the South China Sea, located between 107–114◦ east
longitude and 4–17◦ north latitude, where ship navigation is extremely congested. This
covers the majority of the forest areas and navigation areas in eastern and southern China.
The orbital elements of the LEO circular orbit chosen for this study are listed in Table 4.

Table 4. Chosen initial orbital elements.

Orbit Type CO

Semi-major axis A = 6771 km

Inclination I = 49◦

Eccentricity E = 0.0017

RAAN 0◦

Argument of periapsis 0◦

True anomaly 0◦

According to [41], for covering a specific area of low-latitude ground, a higher number
of nanosatellites in a circular LEO orbit provides better coverage with good performances.
Figure 7 shows the plot of the revisit time as a function of the number of satellites in
the constellation.
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Using the findings from Figure 7, it is common practice to use between 8 and
12 satellites to produce a revisit time for a nanosatellite constellation of between 15 and
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20 min. There are several possible designs for nanosatellite constellations that are intended
to cover the earth and maritime zones; however, they differ in terms of revisit time and
response time for 100% of coverage. Figure 8 illustrates the performance outcomes (revisit
time, response time, and access time) for various constellation configurations for South
China Sea regions. The constellation distribution characteristics are depicted in this figure
as C (number of nanosatellites in each orbit and number of orbit plans).
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Figure 8 illustrates that, for all constellation’s configurations with various numbers of
nanosatellites, the average access time for constellations in the South China Sea is around
8 min. According to the threshold performance requirements provided in Table 3, these data
are acceptable and are probably the best technique to estimate transmission duty cycles;
however, no final judgment has been taken on that matter to date. Defining access periods
further and selecting a duty cycle and transmission time that maximizes the opportunity
to obtain data are possible future tasks. The data shown in this figure indicate that the
constellation of 12 nanosatellites distributed over 12 orbital plans performs exceptionally
well in terms of revisit time and response time (according to Table 3). For this constel-
lation, the maximum revisit duration and response time is 44.1 min. Nevertheless, the
performances attained with a constellation based on eight orbital plans are still appropriate
with only eight nanosatellites. For any clear-cut viewpoint, a compromise between several
nanosatellites’ costs and performances—specifically, their tolerable revisit and response
times—is the best option.

A constellation of 12 nanosatellites placed in the 12 orbital planes can be the most
appropriate solution to be used to achieve 100% coverage, as shown in Figure 9, while
considering the threshold performance requirements listed in Table 3. For this constellation,
the maximum revisit duration and response time is 55.7 min. It might be possible to
also revisit time according to the threshold performance requirements shown in Table 3
by forming a constellation of eight nanosatellites in eight orbital planes. To arrive at the
appropriate mission analysis decision, as a compromise method, depending on the required
and shorter revisit time (on the order of at least less than one hour), combinations of a
reduced number of nanosatellites with constellation configuration were considered.

Figure 9 displays the findings of each constellation’s performances for the forest on
the Chinese mainland, similar to Figure 8, where C (number of nanosatellites in each orbit
and number of orbit plans) represents the constellation distribution parameters.
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3.2. Mission Scenarios

The diagram overview of the five modes was selected as the operation modes for these
proposed missions of nanosatellites and is presented in Figure 10.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 31 
 

 

accomplishes its missions by exploiting its payload with the full activation of OBC and 
the function of ADCS. 

Communication mode: The data obtained from the mission are communicated to the 
ground station. Telemetries data are also sent to the ground station and remote commands 
are received from the ground station. 

 
Figure 10. Proposed missions’ modes for the nanosatellite. 

3.3. Ground Station 
The ground station is scheduled to be situated at Beihang University (39.9824° N, 

116.3488° E) for the nanosatellite visibility analysis. On the one hand, backup ground sta-
tions can be employed to maintain radio contact if the primary ground station (Beihang 
University) faces a problem and will be unable to function. Commands may also be al-
lowed from these redundant ground stations for the continuity of the operations plan. On 
the other hand, additional amateur radio stations may be permitted to access, download, 
and decode data from some nanosatellites. As a result, the frequencies and operational 
modes of this nanosatellite may be made public for this purpose. 

The designed ground station is composed of a UHF/UHF ground station and can be 
located in the satellite center of Beihang University (BUAA). Figure 11 shows this ground 
station block diagram and Figure 12 shows its actual implementation with the Yagi an-
tenna. 
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Initialization mode: once the nanosatellite is ejected from the deployer, the status of
the nanosatellite is checked in the early stage of nanosatellite operation; the antenna is
deployed; the communication and power systems are initialized.

Common mode: The nanosatellite orbits with no mission or communication. There-
fore, in this mode, only the OBC and EPS are activated.

Safe mode: once the power supply is insufficient, the nanosatellite is operated with
minimum functions and minimum power, where only the EPS is activated.

Mission mode: The nanosatellite performs its missions, such as receiving data of the
specified areas using a mounted payload based on AIS. In this mode, the nanosatellite
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accomplishes its missions by exploiting its payload with the full activation of OBC and the
function of ADCS.

Communication mode: The data obtained from the mission are communicated to the
ground station. Telemetries data are also sent to the ground station and remote commands
are received from the ground station.

3.3. Ground Station

The ground station is scheduled to be situated at Beihang University (39.9824◦ N,
116.3488◦ E) for the nanosatellite visibility analysis. On the one hand, backup ground
stations can be employed to maintain radio contact if the primary ground station (Beihang
University) faces a problem and will be unable to function. Commands may also be allowed
from these redundant ground stations for the continuity of the operations plan. On the
other hand, additional amateur radio stations may be permitted to access, download, and
decode data from some nanosatellites. As a result, the frequencies and operational modes
of this nanosatellite may be made public for this purpose.

The designed ground station is composed of a UHF/UHF ground station and can be
located in the satellite center of Beihang University (BUAA). Figure 11 shows this ground
station block diagram and Figure 12 shows its actual implementation with the Yagi antenna.
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Figure 11. Ground station block diagram.

As shown in Figure 12, the ground station at BUAA is a modular system that is
installed specifically for nanosatellites employing UHF radio frequencies in LEO. Using a
steerable antenna system, the ground station can autonomously track certain nanosatellites.
All hardware (polarization switch, moto driver, antenna controller, radio station, and TNC),
as well as specialized software, were included in the complete installation in the mission
computer and control computer.
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Figure 12. BUAA Beihang Ground Station Implementation: (1) radio station, (2) TNC, (3) polarization
switch, (4) mission computer, (5) power supply, (6) VHF/UHF antenna, and (7) antenna pedestal.

4. Payload and Subsystem Architectures and Design

In this section, the working function of the proposed payload and subsystems of the
nanosatellites’ platform are presented and explained. The main payload for the proposed
missions (AIS and fire detection) consists of a communication transceiver. This proposed
payload consists of a VHF receiver (161.975 and 162.025 MHz, respectively) to collect data on
AIS and fire detection. The remaining components of the platform are made up of different
subsystems. Another independent UHF transceiver-based communication subsystem is
in charge of sending data to the ground station and receiving commands. Furthermore,
an On-Board Computer (OBC) that manages data and executes commands for the mission
plan is used. To guarantee a constant supply of energy to the nanosatellite, according to
the electrical specification of the nanosatellite platform, an appropriate Electrical Power
Subsystem (EPS) is used. Finally, an Attitude Determination and Control Subsystem
(ADCS) is also proposed to stabilize the nanosatellite so that it can conduct the mission
effectively. The electrical architecture of the proposed nanosatellite platform is shown
in Figure 13.
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Details of the payload and subsystems for the proposed nanosatellite platform are
presented in the following subsections.
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4.1. Payload Based on VHF Receiver

The receiver payload for this mission is essentially a dual-channel VHF receiver that
can be tuned to any of the VHF channels in the maritime VHF band between 156.025 and
162.025 MHz and for an autonomous ground station that will use the VHF band between
144 and 146 MHz to send data gathered from a sensor network. The specifications of this
type of receiver are presented in the following Table 5.

Table 5. Specifications of the AIS receiver.

Parameter Value

Power Supply 5 V DC

Power Consumption <1 W (receiver only during full load)

Mass 55 g

Dimensions 90 × 96 × 15 mm

First Receiver Frequency Range 156.025–162.025 MHz

Second Receiver Frequency Range 144–146 MHz

First and Second Receiver Modulation
Scheme Gaussian Minimum Shift Keying (GMSK)

First and Second Downlink Data Rate 9600 bps

Channel Bandwidth RSSI of 100 kHz

Operating Temperature Range −30 to +70 ◦C

The block diagram of the proposed VHF receiver can be seen in Figure 14.
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This proposed communication payload, which is intended to collect measurements
from AIS transmitters and the autonomous ground station attached to the sensor network
used for fire detection, can be in-house customized and manufactured or provided by space
companies such as ISIS or SatLab [42,43]. For example, the SatLab can provide a space- and
flight-tested commercial solution for this AIS application [44]. The CubeSat Space Protocol
(CSP) is supported by the receiver provided by SatLab, which can greatly shorten the
buy-to-fly time and facilitate integration. Three CSP servers, which are needed to configure
the receiver, read back status, download messages, and raw samples, are present in this
flight-proven receiver. The Blob Transfer Mechanism (BTP), a remote shell and compact file
transfer protocol, is based on CSP. BTP supports file uploading, download, and standard
file operations, including list, delete, copy, and move.

4.2. Platform Transceiver

The selected UHF uplink/UHF downlink transceiver is a full-duplex communication
system for nanosatellite TT&C applications. This transceiver can operate in commercial
bands of the UHF frequency spectrum. It is low-power, low-mass, and highly configurable,
offering the flexibility of changing data rates and frequencies in flight. This space-qualified
transceiver was designed and tailored for nanosatellite missions and cross-compatible with
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other subsystems, such as onboard computers and antenna systems. The specifications of
this type of transceiver are presented in Table 6.

Table 6. Specifications of the selected UHF Uplink/UHF downlink transceiver.

Parameter Value

Power Supply 6.5–20 V DC

Power Consumption 4 W (transmitter on), 0.48 W (receiver only)

Mass 75 g

Dimensions 90 × 96 × 15 mm

Transmitter Frequency Range 267–273 MHz

Transmitter Power 27 dBm

Transmitter Modulation Scheme Binary Phase Shift Keying (BPSK) with G3RUH
scrambling

Transmitter Data Rate 1200, 2400, 4800, and 9600 bps

Receiver Frequency Range 312–322 MHz

Receiver Sensitivity −104 dBm Sensitivity for BER 1E-5

Receiver Modulation Scheme Frequency Shift Keying (FSK) with G3RUH
scrambling

Downlink Data Rate 9600 bps

Protocol AX.25 or HDLC

Operating Temperature Range −20 to +60 ◦C

From the above table, the technical configuration based on the block diagram of the
selected transceiver is shown in Figure 15.
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The downlink of mission data and detailed telemetry data are handled by the UHF
band transmitter at a maximum of 500 kbps. The transceiver selected for the nanosatellite
can be provided by the ISIS manufacturer and will be its communication system bus [45].
These functions are enabled by an omnidirectional whip antenna and dipoles antenna
mounted on the bottom of the nanosatellite, such as the antenna provided by ISIS [46].
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4.3. Electrical Power Subsystem

In the proposed nanosatellites’ EPS, shown in Figure 16a, the solar panels are body
-mounted and their opposing faces are coupled to the same power converter (MPPT1 for
the −X array and +X array, MPPT2 for the −Y and +Y array, and MPPT3 for the −Z and
+Z array). The power converters can be connected in parallel, and each converter has
a Maximum Power Point Tracker-implemented method (MPPT) and a Battery Charge
Regulator (BCR). The module of the power distribution and protection circuits based on
LCL is presented in Figure 16b.
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no requirement to regulate the main bus, as the subsystems themselves will separately
regulate their specific supply [47]. A similar topology is used in commercial and developed
CubeSat EPS, as presented in [48–53].

4.4. On Board Computer

OBC uses a high-performance and robust design, 400 MHz, power-efficient ARM9
processor-based MCU. This compatible OBC with standard CubeSat components is avail-
able from ISIS [54]. The computer was developed for nanosatellite data handling and
ADCS processing. In this OBC, the FreeRTOS operating system for simple and lightweight
cooperative multitasking is used.

The chosen OBC features the following performances as standard:
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External onboard watchdog and power controller.

The schematic of this OBC configuration is shown in Figure 17.
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The controlling unit of some ADCS tasks can be embedded in this low-power OBC,
where it runs estimator and control algorithms, logs TLM, and manages communication to
the ADCS modules.

4.5. Attitude Determination and Control Subsystem

The architecture of the ADCS proposed in the nanosatellite to accomplish the proposed
mission is presented in the block diagram of Figure 18.

In this ADCS configuration, the MagneTorquers (MTs) used are integrated into solar
panels. This type of Embedded MTs was chosen because of its low power consumption.
As mentioned previously, the MCU is integrated into high-performance and low-power
32-bit ARM9.
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5. System Engineering Analyses

This section elaborates on budget calculations for data, link, power, and mass to
confirm the viability of the suggested nanosatellite platform for conducting the intended
missions (AIS and fire detection).

5.1. Data Budget

A significant and noteworthy amount of data are produced by the VHF receiver-based
payload that is utilized to receive information from the AIS and the autonomous ground
station connected to the fire detection sensor network. For the AIS application, a message of
256 bits is transferred at a rate of 9600 bits per second utilizing a binary Gaussian minimum
shift keying (GSMK) modulation during each of the brief 26.67 millisecond slots that the
AIS uses to broadcast information. The ships can transmit their message bursts in any of
the 2250 slots that make up each frame.

For fire detection application, the data budget is dominated by the measurement of
Global Positioning System (GPS) coordinate (24 bits, which are enough for good accuracy)
to locate where the fire is propagating with some measurements of smoke, temperature,
wind speed, and direction (10 bits of resolution for each measurement). Given these data
specifications and numbers, the maximum data rate requirements are close to 64 bits for
one autonomous ground station.

According to the analysis and platform specifications, it is feasible to access the ground
after five or six orbital rotations, and OBC sends requests for telemetry data every 5 s. These
parameters should be considered when planning the estimation of the data budget as shown
in Table 7.

Table 7. Data budget of the proposed nanosatellite mission.

AIS Data Budget

Maximum payload frame size 72 Kbyte

Data rate download of communication radio 9600 bps

Time to download 1 payload frame 60 s

Fire Detection data budget

Maximum payload frame size (from
100 nodes) 800 byte

Data rate download of communication radio 9600 bps

Time tso download 1 payload frame 666.67 ms
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Table 7. Cont.

AIS Data Budget

Telemetry data budget

EPS (10 bits of resolution for each
measurement) 120 bits

ADCS (10 bits of resolution for each
measurement) 120 bits

GPS 24 bits

Thermal (10 bits of resolution for each
measurement) 120 bits

Orbital Period 5063.45 s

Communication time interval 5 s

Total telemetry budget 48.6 Kbyte

Data rate download of communication radio 9600 bps

Time to download 1 frame of telemetry 40.5 s

Total time to download AIS data frame +
telemetry frame 100.5 s

Total time to download fire detection data
frame + telemetry frame 41.17 s

As mentioned in Section 5.2, the size of the OBC and transceivers technology was
chosen to support data sizes and data rates up to 64 MByte and 9600 bps, respectively,
which allows the mission to have a large safety margin in the data budget. This data budget
estimate is adaptable to the mission strategy and open to various revisions.

5.2. Link Budget

A link budget is an analysis tool that is used to establish whether or not a commu-
nication link meets such mission requirements by considering data and factors such as
transmitted signal power, frequency, data rate, and link bandwidth. During this calculation
procedure, the gain and loss of the Radio Frequency (RF) signal from the modulation at the
transmitter to the demodulation at the receiver are considered. The nanosatellite link can
be affected by different factors, such as ionospheric and atmospheric attenuation, which
generates influence on the polarization of the wave, losses that result from the misalignment
of the antennas and losses of the free space depending on the tilt range since it is crucial for
the geometric analysis of tracking. In the same way, the noise of the system that is directly
related to the temperature and the noise of the different elements in a decisive way in the
calculations are taken into consideration.

5.2.1. Downlink Budget

Table 8 displays the calculated parameters required for conducting a downlink
budget analysis.

Table 8. Downlink budget to BUAA ground station.

Parameter Value

EIRP (dBW) −3.1

Rcvd. Frequency (GHz) 0.27

Rcvd. Iso. Power (dBW) −149.81

Flux Density (dBW/m2) −139.73
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Table 8. Cont.

Parameter Value

g/T (dB/K) −7.1

C/No (dB*Hz) 72.07

Bandwidth (kHz) 19.2

C/N (dB) 29.24

Eb/No (dB) 9.6

G.S. Rcvr (dB) 20.1

S/N required (dB) 9.6

BER 1.0 × 10−3

System Link Margin (dB) 10.5

5.2.2. Uplink Budget

The calculated parameters necessary for conducting uplink budget analysis are shown
in Tables 9–11.

Table 9. Uplink budget of BUAA ground station.

Parameter Value

EIRP (dBW) 34.9

Rcvd. Frequency (GHz) 0.32

Rcvd. Iso. Power (dBW) −117.56

Flux Density (dBW/m2) −106.09

g/T (dB/K) −25.92

C/No (dB*Hz) 84.97

Bandwidth (kHz) 3.00

C/N (dB) 50.20

Eb/No (dB) 19

BER 1.0 × 10−3

System link Margin (dB) 30.4

Table 10. Uplink budget of autonomous ground station connected with the sensor network.

Parameter Value

EIRP (dBW) 32.51

Rcvd. Frequency (GHz) 0.14

Rcvd. Iso. Power (dBW) −117.29

Flux Density (dBW/m2) −112.61

g/T (dB/K) −25.9

C/No (dB*Hz) 85.27

Bandwidth (kHz) 3.00

C/N (dB) 50.5

Eb/No (dB) 45.45

BER 1.0 × 10−3
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Table 11. Uplink budget of AIS.

Parameter Value

EIRP (dBW) 21.76

Rcvd. Frequency (GHz) 0.16

Rcvd. Iso. Power (dBW) −128.88

Flux Density (dBW/m2) −123.23

g/T (dB/K) −25.88

C/No (dB*Hz) 73.7

Bandwidth (kHz) 3.0

C/N (dB) 38.93

Eb/No (dB) 33.88

BER 1.0 × 10−3

5.3. Power Budget

This study recommends an EPS configuration that satisfies mission criteria and main-
tains nanosatellite functionality throughout the mission. It will be more than enough for
the mission, if the EPS nanosatellite can adequately power the aforementioned subsystems,
such as:
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Payload (AIS and VHF receiver for SN).

The power consumption of these above-defined subsystems is shown in Table 12.

Table 12. Power consumption of the subsystems.

Subsystems Minimum Power Maximum Power

EPS 120 mW 160 mW

OBC - 400 mW

TT and C 480 mW 4000 mW

ADCS 1005 mW 1125 mW

Payload - 480 mW

Table 13 presents the power consumption of the different mission modes (see
Section 4). In this table, the power magnitudes of each subsystem are categorized as
minimum or maximum.

Table 13. Consumed power according to the different operation modes.

Modes Minimum Power Maximum Power Duration

Common mode 520 mW 560 mW 68.4 min

Mission mode 2025 mW 2065 mW 8 min

Communication
mode 2025 mW 4520 mW 8 min

After many iterations, the worst-case power consumption will be considered for the
rest of the analysis for mission feasibility. According to ECSS standards and SMAD, a
margin from 5% to 20% or 25% has to be applied to meet the mission power budget used for
sizing, depending on the level of the design maturity [39,55]. Based on the different power



Sensors 2023, 23, 6232 23 of 30

consumption modes of the nanosatellite, Figure 19 shows, during one orbit, the simulated
baseline scenario of the power consumption with 20% of the margin, power generation, and
capacity profiles. In this simulation, the mission mode and the two different communication
modes (Tx and Rx) are considered, which means a worst-case orbit scenario.
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To ascertain whether EPS can withstand the mission, it is necessary to consider a 
rough assumption made when estimating the power budget in a preliminary mission 
study. However, there may be many adjustments to whatever subsystem is activated, how 
it will operate (maximum or minimal), and for how long it will be activated, depending 
on the concept of operations and mission plan. 
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Figure 19. Profiles of power consumption, power generation, and battery capacity.

To ascertain whether EPS can withstand the mission, it is necessary to consider a
rough assumption made when estimating the power budget in a preliminary mission study.
However, there may be many adjustments to whatever subsystem is activated, how it will
operate (maximum or minimal), and for how long it will be activated, depending on the
concept of operations and mission plan.

5.4. Mass Budget

The mass budget shown in Table 14 lists estimates for the contribution of various
components to the mass of the nanosatellite.

Table 14. Mass budget for the proposed nanosatellite.

Components Mass (g)

Chassis 155

Solar panels 50 × 5

ADCS 351

EPS (with accumulators) 163

Communication System 75

Payload 55

OBC 56

Antenna 85

Harnessing 15

Margin ±10%

Total 1325.5

A mass margin of approximately 120.5 g is obtained, according to Table 14. The
predicted mass budget respects the total mass constraint, which was set at less than 1.33 kg.

6. Lifetime Estimation

The orbital decay’s primary influencing characteristics (orbit altitude and mass) for the
proposed nanosatellite were taken into consideration as precisely as possible to eventually
obtain a reliable prediction of lifetime (orbit decay), which is displayed in Figure 20.
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Figure 20 compares the lifetime predictions for six different atmospheric models, in-
cluding the widely used Jacchia–Roberts, the most evolved NRLMSISE 2000, and the over-
simplified Standard 1976. When the findings of two atmospheric density models are com-
pared, the disparities are obvious. As illustrated below, the standard 1976 model is sys-
tematically overly pessimistic and should be avoided. With the NRLMSISE 2000 model, 
the nanosatellite’s lifetime is predicted to be roughly two and a half years for the 400 km 
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Figure 20 compares the lifetime predictions for six different atmospheric models,
including the widely used Jacchia–Roberts, the most evolved NRLMSISE 2000, and the
oversimplified Standard 1976. When the findings of two atmospheric density models are
compared, the disparities are obvious. As illustrated below, the standard 1976 model is
systematically overly pessimistic and should be avoided. With the NRLMSISE 2000 model,
the nanosatellite’s lifetime is predicted to be roughly two and a half years for the 400 km
CO. The practical instance is obtained by employing the Jacchia–Roberts algorithm, which
provides a lifetime of around two years.

A crucial step in determining the viability of the nanosatellite mission and its lifetime
is the reliable assessment of the battery lifetime to orbital cycles and discharge capacity. If
the battery is discharged faster, its lifetime will be reduced, as the results of the following
analysis, shown in Figure 21, demonstrate the feasibility of the proposed mission.
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According to the results presented in Figure 21, it can be noticed that the battery can
resist up to 1.5 years, with 1C of battery discharge, due to limitations imposed by DoD-rated
value, which is 30%.
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7. Experimental Results of the Proposed Low-Cost Sensor Node Architecture and AIS

This section presents the experimental results of the proposed low-cost sensor node
architecture and AIS for use in a nanosatellite, which is designed for IoST applications as
previously discussed. The architecture, shown in Figure 22, is based on low-cost sensors
and includes Arduino Atmega 2560 as the data acquisition system and Xbee pro as the
communication system within the sensor network.
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Figure 22. Low-cost sensor node architecture.

The proposed sensor node architecture includes the KY-026 sensor, specifically de-
signed as a flame sensor to detect flames within a wavelength ranging from 760 nm to
1100 nm. In addition, forest fires release gases, such as CO2, CO, CH4, and VOCs, includ-
ing benzene, toluene, and formaldehyde. To detect the released gases by forest fires, CO
and CH4 are commonly monitored using the MQ-7 sensor, although it should be used in
conjunction with other sensors and monitoring techniques. The MQ-2 sensor can detect
various flammable gases, smoke, and VOCs, making it another useful tool for forest fire
detection. Temperature and humidity sensors can also help to predict and prevent fires
by detecting increases in temperature and low humidity levels, respectively. The DHT11
sensor is an example of a digital temperature and humidity sensor that can be used for
forest fire detection. Combining these sensors with other detection technologies can create
a more comprehensive forest fire detection system. The experimental data are shown in
Figures 23–26. During this four-minute experiment, significant variations in the experi-
mental data were observed in these figures both before and after the occurrence of a fire
at 50 s.

The fire decision can be reached after the analysis of the above results, such as tem-
perature, humidity, gas, and flame presence as criteria. The alarm threshold is based on
a simple decision procedure according to the measurement data and determines a fire.
In this experiment, the recorded temperature surpassed 50 ◦C, indicating the presence of
a fire and the flame observed was at a lower level compared to previous measurements,
further confirming the occurrence of a fire. The other sensor node measurements data are
important to detect fire presence and deduce the causes. The wind speed measurements do
not show the presence of fires but can aid in emergency response and firefighting planning.
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In the application of AIS, the GPS dedicated to maritime application was used to show
the coordinates, as presented in Figure 27.
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8. Conclusions

Building efficient services based on nanosatellites is a praiseworthy objective, espe-
cially in light of the inefficiency and lack of infrastructure in terrestrial communication
networks. Therefore, the authors presented a project proposal, in this paper, for carrying the
nanosatellite challenge and its technology transfer to developing and emerging countries.
Furthermore, the communication system embedded in these nanosatellites in a constellation
can have the ability to provide technical information based on the Internet of Space Things
(IoST) to generate solutions for different applications, such as Automatic Identification
Systems (AIS) and fire detection. The proposed technology within this space project was
initially developed as a collision prevention tool by AIS, intending to track data (global
vessel locations, informing the movement of vessels over time) collected by nanosatellites
from maritime transportation systems. The second application has the crucial capability
of monitoring wildfire processes and their consequences on ecosystems, the environment,
and global warming. Therefore, the mission objective of the nanosatellite project is to
develop an effective and functional constellation of Low Earth Orbit (LEO) nanosatellites
specifically designed to address the aforementioned purposes. The proposed constellation
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aims to overcome the limitations of a single nanosatellite by leveraging multiple satellites
working in concert, enabling improved revisit times and enhancing the overall efficiency
and functionality of the system.

Meeting pre-established criteria, such as accomplishing the required revisit time, access
duration, and response time to assure 100% of coverage of the areas of interest through the
nanosatellite constellation, proved the viability of the planned mission. Additionally, the
findings of the budget analysis (data, link, power, and mass) and estimations of lifetime offer
convincing proof that the suggested nanosatellite platform is well-suited to successfully
conduct the necessary missions (AIS tracking and fire detection).

Based on the experimental findings, it is clear that the suggested low-cost sensor
node architecture and AIS technology effectively proved the feasibility of fire monitoring
and marine safety. The system’s integration of numerous sensors, such as temperature,
humidity, gas and fume sensors, flame, wind speed, and direction sensors, allows for the
reliable identification of fire occurrences and offers important information for effective
emergency preparedness. Furthermore, the successful testing of GPS technology shows
AIS localization’s significant contribution to maritime safety measures and the protection of
marine ecosystems. These experimental findings provide persuasive proof of the proposed
technology’s enormous potential in increasing fire monitoring, disaster preparedness, and
maritime navigational procedures, ultimately leading to a more secure and sustainable
future within the IoST.

Furthermore, establishing a strong strategy among countries to a forge long-lasting
cooperation between the academic community and the rising industries in this sector could
lead to high competence in space technology projects. Consequently, this space project is
open to students and engineers from different countries. In this context, problem-based
learning (PBL), which has been effectively applied at Beihang University, can be thought
of as the use of educational and technical methodologies. PBL can undoubtedly assist to
create a network of scientists interested in space technology. Three main levels of operation
are possible for this project: production and field deployment of applications, education,
and research. These levels are connected to foster cooperation within the educational
space program.

Future studies may include designing a larger nanosatellite platform, such as a 3 U
or 6 U, for pollution monitoring (using an atmospheric spectrometer) and the study of
atmospheric and environmental factors.
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