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Abstract: This study examines the Land Surface Temperature (LST) trends in eight key Moroccan
cities from 1990 to 2020, emphasizing the influential factors and disparities between coastal and
inland areas. Geographically weighted regression (GWR), machine learning (ML) algorithms, namely
XGBoost and LightGBM, and SHapley Additive exPlanations (SHAP) methods are utilized. The
study observes that urban areas are often cooler due to the presence of urban heat sinks (UHSs), more
noticeably in coastal cities. However, LST is seen to increase across all cities due to urbanization
and the degradation of vegetation cover. The increase in LST is more pronounced in inland cities
surrounded by barren landscapes. Interestingly, XGBoost frequently outperforms LightGBM in the
analyses. ML models and SHAP demonstrate efficacy in deciphering urban heat dynamics despite
data quality and model tuning challenges. The study’s results highlight the crucial role of ongoing
urbanization, topography, and the existence of water bodies and vegetation in driving LST dynamics.
These findings underscore the importance of sustainable urban planning and vegetation cover in
mitigating urban heat, thus having significant policy implications. Despite its contributions, this
study acknowledges certain limitations, primarily the use of data from only four discrete years,
thereby overlooking inter-annual, seasonal, and diurnal variations in LST dynamics.

Keywords: Land Surface Temperature (LST); Moroccan urban landscapes; machine learning

1. Introduction

Land Surface Temperature (LST) is a critical parameter in the fields of climatology,
hydrology, and environmental science, playing a significant role in the energy balance of
the Earth’s surface [1]. It is influenced by a variety of factors, including vegetation cover,
surface water, and terrain characteristics, and can have significant impacts on local and
regional climate patterns [2].

Globally, the study of LST has received significant attention, with a proliferation of
studies investigating the factors influencing LST across various geographical settings and
utilizing various analytical techniques. A global review of such studies reveals diverse
factors affecting LST, which include but are not limited to land use/land cover (LULC), alti-
tude, population density, vegetation index, albedo, and surface moisture [3]. Many studies
have also highlighted the growing impact of anthropogenic activities, particularly urbaniza-
tion and deforestation, on LST [4,5]. This is evident in the increasing incidence of the urban
heat island (UHI) effect, a phenomenon where urban regions exhibit higher temperatures
than surrounding rural areas, as documented in studies across various continents [6].

Satellite remote sensing, particularly MODIS (Moderate Resolution Imaging Spectro-
radiometer) and Landsat platforms, has been instrumental in investigating LST at varying
spatial and temporal resolutions. These tools provide opportunities to monitor LST dynam-
ics over large areas, supplementing in situ observations that often suffer from limitations
related to coverage and continuity. While both MODIS and Landsat have contributed
immensely to LST studies, there has been a more substantial volume of research conducted
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using MODIS due to its higher temporal resolution, facilitating more frequent LST measure-
ments [3,6]. Notably, MODIS provides near-daily global coverage, which is particularly
advantageous in capturing short-term thermal variations. Landsat, on the other hand, is
known for its finer spatial resolution, contributing to detailed investigations at local scales.

Research methodologies have evolved over the years, with a noticeable shift from
traditional statistical methods to more advanced analytical techniques like machine learn-
ing (ML). The use of ML in LST research has proved beneficial in understanding complex
patterns and relationships that traditional statistical methods may overlook [3]. The inte-
gration of satellite-based remote sensing data with ML models has provided a powerful
tool for investigating LST on a global scale, allowing researchers to conduct more accurate
and efficient studies [6]. ML algorithms such as eXtreme Gradient Boosting (XGBoost) and
LightGBM, which are used in this study, provide ways to handle complex and non-linear
relationships between variables, capture spatial autocorrelation, and address issues of
heteroscedasticity and multicollinearity commonly encountered in LST research. Despite
their benefits, few studies have leveraged these methods in understanding LST, especially
in the context of Moroccan cities.

To address these gaps, our study incorporates advanced ML models, including XG-
Boost and LightGBM, and applies a rigorous cross-validation and performance evaluation
framework. The XGBoost and LightGBM models, known for their high performance
and computational efficiency, offer a robust approach to handling the complex, multi-
dimensional nature of LST datasets. These models allow for the handling of non-linear
relationships, accommodate interactions between variables, and have inbuilt mechanisms
for avoiding overfitting. We complement these models with SHAP (SHapley Additive
exPlanations) values, providing an interpretable measure of feature importance and thus
offering insights into the key drivers of LST. By addressing these limitations in previous
studies, we aim to develop a more accurate, robust, and interpretable understanding of
LST dynamics in Moroccan urban environments.

In the context of Moroccan cities, understanding LST is particularly important due to
the country’s diverse geographical features, ranging from coastal areas to inland regions
with varying topography. Morocco’s unique geographical position, straddling both the
Mediterranean and Atlantic coasts and being home to parts of the Sahara desert, makes
it a compelling case study for LST analysis. Moreover, rapid urbanization and land use
changes in Moroccan cities over the past few decades [7] have likely had significant impacts
on LST, making this a timely and relevant area of study.

Several studies have been conducted to investigate LST and the UHI phenomenon in
Moroccan cities (Table 1), focusing on factors such as vegetation, built-up areas, and land
cover. Rhinane et al.’s 2012 study used Landsat 5 TM images to investigate Casablanca’s
ground temperature. They found that vegetation significantly correlated with cooler
areas, emphasizing its role in reducing UHIs [8]. Lachir et al. (2016) combined Landsat
and MODIS data to evaluate the urbanization effects on Marrakech’s surface climate.
They found significant variations in the growing season surface temperature differences
between urban and other cover types, highlighting the influence of urbanization on surface
climate [9]. Bahi et al. (2016) utilized a sequence of Landsat TM/ETM+/OLI-TIRS images
to track the spatial dispersal of Surface UHI (SUHI) in Casablanca. Their findings indicated
a unique seasonal cycle of daytime SUHI in Casablanca, differing from other mid-latitude
cities, which highlights the necessity for localized research [10]. In a comprehensive study
on UHIs in Morocco, Fathi et al. (2019) discovered a pronounced UHI effect in urban
regions established within green lands. Conversely, they identified an urban heat sink
(UHS) phenomenon in cities built in arid zones [11]. El Ghazouani et al. (2021) used Landsat-
8 surface temperature and the European Space Agency land cover data to assess the impact
of land cover on the UHI and UHS in five Moroccan cities. They found multiple causes
defining the different forms and amplitudes of the UHI [12]. Lastly, Gourfi et al. (2022)
used air temperature measurements and spatial analysis to investigate the interplay among
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green spaces, constructed regions, and SUHI in Marrakesh. Their investigation revealed a
mean LST variance of 3.98 ◦C across diverse city neighborhoods [13].

Table 1. A descriptive list of studies that dealt with the thermal environment in Morocco.

Study Study Area(s) Study Period Goal Highlights

[8] Casablanca 2011
Estimate the ground temperature and
evaluate the impact of vegetation on
cooling the ground temperature

Found a strong correlation between vegetation
cover and cold areas

[9] Marrakech 2010/2011 Assess the impact of urbanization on
surface climate

Found that the growing season surface
temperature differences between urban and
other cover types varied significantly

[10] Casablanca 1984–2016 Highlight and monitor the spatial
distribution of SUHI

Found that the seasonal cycle of daytime SUHI
in the Casablanca region is different from other
mid-latitude cities

[11] Several Moroccan
urban areas 2013 Carry out a large-scale assessment of

UHI and reflect on its mitigation

Found a pronounced UHI in urban areas built
within green lands and a UHS in cities built
within arid zones

[12] Five Moroccan cities 2016 Assess the impact of land cover on the
UHI and UHS

Found multiple causes defining the different
forms and amplitudes of the UHI

[13] Marrakesh 1985–2020
Investigate, in the daytime, the
relationship between green surfaces,
built-up areas, and the SUHI

Found a maximum mean LST difference of
3.98 ◦C across the different city neighborhoods

While these studies offer valuable insights into the UHI phenomenon in Moroccan
cities, several gaps remain unaddressed. Notably, earlier studies did not consider relevant
factors such as terrain characteristics and did not utilize advanced analytical methods such
as ML. Furthermore, most of the studies focused on individual cities and did not provide
a comprehensive analysis of multiple cities over an extended period. These gaps present
opportunities for further research, such as the current study, which aims to analyze the
contributing factors of LST in eight Moroccan cities over a 30-year period using spectral
indices, terrain characteristics, and ML methods.

Responding to these limitations, our research seeks to bridge these knowledge gaps
and contributes a novel approach to understanding the dynamics of LST in Moroccan
urban environments. The primary objectives of our study are as follows:

• To perform a comprehensive analysis of LST trends across eight Moroccan cities over
the past three decades, thereby extending the temporal scope of existing research.

• To identify and analyze the impact of spectral indices and terrain characteristics on LST
in the selected cities between 1990 and 2020, thus broadening the range of contributing
factors considered in such studies.

• To compare the thermal environments of coastal and inland cities to uncover any
distinctive patterns or differences.

By addressing these questions, this study aims to contribute to the understanding of
LST dynamics in Moroccan cities and provide a foundation for future research in this area,
which is currently limited in terms of studies addressing such research topics [3].

The remainder of this paper is organized as follows: Section 2 provides a compre-
hensive description of the target cities, the data collection and processing procedures, the
spectral indices and terrain characteristics used, and the employed methods including Geo-
graphically Weighted Regression (GWR) and ML models (XGBoost and LightGBM) along
with the use of SHAP values. Section 3 presents the findings from the visual analysis of
spatiotemporal LST trends, the ML models’ performance assessment, and the interpretation
of their output using the SHAP values. Section 4 interprets the results in the context of the
research objectives, compares the results with previous studies, discusses the implications,
clarifies the limitations, and suggests future directions. Finally, Section 5 provides the
concluding remarks.
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2. Materials and Methods
2.1. Target Cities

The focus of this study encompasses eight cities within Morocco (Figure 1 and Table 2),
each chosen to encapsulate a broad spectrum of geographical attributes and climatic zones.
These cities, a mix of coastal and inland regions, exhibit diverse topography, land use
patterns, and population densities, thereby providing a comprehensive representation of
the different environments present in Morocco.
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Figure 1. Map of Morocco Köppen-Geiger climate classification [14] highlighting target cities and 
their geographical settings: Casablanca, Tangier, Agadir, Fes, Marrakech, Oujda, Laayoune, 

Figure 1. Map of Morocco Köppen-Geiger climate classification [14] highlighting target cities and their
geographical settings: Casablanca, Tangier, Agadir, Fes, Marrakech, Oujda, Laayoune, Errachidia.
Landsat 8 and 9 images produced by the U.S. Geological Survey. Industrial zones and transportation
networks data © OpenStreetMap contributors [15].



Sensors 2023, 23, 6229 5 of 32

Table 2. Descriptive list of the characteristics of target Moroccan cities.

City Population
2014 1 Climate Zone 2 Elevation

(m)
Built-up Change (%)

2000–2015 3

Coastal
Casablanca 3,359,818 Hot-summer Mediterranean (Csa) 0 38.32

Tangier 1,065,601 Hot-summer Mediterranean (Csa) 21 43.71
Agadir 600,599 Hot semi-arid (BSh) 74 NA

Inland

Fes 1,150,131 Hot-summer Mediterranean (Csa) 409 24.32
Marrakech 1,330,468 Hot semi-arid (BSh) 466 62.33

Oujda 506,274 Hot semi-arid (BSk)/Cold desert (BWk) 540 36
Laayoune 238,096 Hot desert (BWh) 64 NA
Errachidia 418,451 Hot desert (BWh)/Cold desert (BWk) 972 NA

1 The population data for all cities, excluding Laayoune and Errachidia which are provincial, are based on the
prefectural data of the 2014 population Census [16]. 2 Climate zones are determined based on (Beck et al., 2018)’s
classification for the present-day (1980–2016) conditions [14]. 3 Built-up changes (2000–2015) extracted from the
World Cities Report 2020 [7].

Casablanca is situated along the Atlantic coast within the Mediterranean climate
zone [14]. As of 2014, it hosts a population of 3.4 million [16], making it the third-most major
populous agglomeration in North Africa, following Cairo and Alexandria in Egypt [17]. As
the economic epicenter of Morocco, it serves as the domicile for numerous multinational
corporations, establishing its significance on a global economic scale. The built-up area
of Casablanca expanded by 38.32% from 2000 to 2015 and saw further growth of 63.54%
between 1984 and 2018, with urban development especially notable towards the south in
the direction of Bouskoura Forest, a prominent green area adjacent to the city [7,18].

Tangier, boasting a population of around 1 million as of 2014 [16], ranks as Morocco’s
second-largest economic hub [19]. Located strategically on the Strait of Gibraltar, this
coastal city stands at an elevation of 21 m. The city’s vast and dynamic expansion, notably
influenced by the development of Tangier-Med—a significant cruise and cargo port [19]—is
marked by a 43.71% increase in its built-up area from 2000 to 2015 [7]. The city, part of
the larger Tangier-Tetouan-Al Hoceima region, lies within the hot-summer Mediterranean
climate zone [14]. This region experiences diverse climatic conditions due to its geomorpho-
logical configuration, which combines the high Rif mountains and coastal plains, leading
to varied microclimates [20].

Agadir, a coastal city situated in the Souss-Massa region of Morocco, is nestled within
the hot semi-arid climate zone [14]. As of 2014, it is home to a population of 600,599,
making it one of the major urban centers in the country [16]. The city’s economy, primarily
driven by tourism, agriculture, and fishing, contributes significantly to the national GDP.
Agadir’s built-up area expanded by 66.86% between 1986 and 2019 [21], reflecting its rapid
urban development. Agadir’s unique geographical location, with the Atlantic Ocean to
its west and the Anti-Atlas mountains to its east, creates a distinctive blend of coastal
and mountainous landscapes leading to notable climate variations, adding to the city’s
environmental diversity and complexity.

Fes, situated at an elevation of 409 m, is an inland city with a population of approxi-
mately 1.2 million [16]. The city is exposed to a hot-summer Mediterranean climate [14].
From 2000 to 2015, the city expanded by 24.32%, reflecting significant urban develop-
ment [7]. Fes el Bali, the city’s historic medina and a UNESCO World Heritage site, is
distinguished by its pedestrian-centric urban layout and traditional mud and adobe ar-
chitecture, which serve dual roles of aligning with Moroccan architectural aesthetics and
cultural traditions while also regulating indoor temperatures due to their high thermal
mass [22,23].

Marrakech, known as the “Red City” for its distinctive red sandstone buildings, is an
inland city with a population of 1.4 million [16]. The city, located at an elevation of 466 m,
experiences a hot semi-arid climate [14]. It saw a significant urban expansion of 62.33%
from 2000 to 2015 [7]—marking one of the highest percentages of urban growth among
Moroccan cities during this period. Its historic medina, a UNESCO World Heritage site,
sits alongside modern urban spaces and well-known gardens like the Agdal and Menara.
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Oujda, an inland city situated in northeastern Morocco, is home to a population
of approximately 506,274 people [16]. The city experiences a unique blend of climates,
characterized by a mix of semi-arid and desert climates [14]. Geographically, Oujda is
located at an elevation of 540 m above sea level. From 2000 to 2015, the city underwent a
significant transformation in terms of its built-up areas, with a notable increase of 36% in
built-up change [7].

Laayoune, a near-coastal city in the desert climate zone [14], has a population of
238,096 [16]. Located at an elevation of 64 m, Laayoune is the largest city in southern
Morocco and serves as a hub for phosphate mining, one of the region’s primary industries.

Errachidia, an oasis city with a population of 418,451 [16], is recognized for its com-
bined hot and cold desert climate [14]. The city resides at a 972 m elevation and is known
for its abundant sunshine, averaging 330 days a year [24]. Its ecological significance was
highlighted when its oases were declared a UNESCO biosphere reserve in 2000. The city
experienced a high urbanization rate of more than 40% between 2004 and 2014 [24].

The selection of these cities, each with its unique geographical and climatic characteris-
tics, allows for a robust analysis of the factors contributing to LST across different Moroccan
cities. This study aims to leverage the diversity of these cities to gain a comprehensive
understanding of the factors influencing LST in Morocco. Table 2 provides a summary of
the key characteristics of each city.

2.2. Methods

Figure 2 illustrates the methodological process of our research. The flowchart com-
mences with data collection and processing (Section 2.2.1), followed by a series of analyses
to derive the results. Initially, we gathered Landsat and Shuttle Radar Topography Mission
(SRTM) data [25], processed them to calculate LST and spectral indices, and assigned these
values to 3000 random points within the extent of selected Moroccan cities (Section 2.2.2).
Next, a qualitative analysis of spatiotemporal LST trends was conducted, followed by a
GWR analysis to ascertain relationships between LST, spectral indices, and terrain charac-
teristics (Section 2.2.3). Finally, we used ML algorithms, namely XGBoost and LightGBM to
delve deeper into the relationship between LST and the predictors (Section 2.2.4). A grid
search procedure helped identify the best hyperparameters, and the top-performing model
was chosen for further examination. These models were interpreted using SHAP values to
understand the influence of various factors on predicted LST.

2.2.1. Data Collection and Processing

The data collection and processing for this study were conducted using Google Earth
Engine (GEE), a cloud-based platform for planetary-scale geospatial analysis [26]. The data
were sourced from Landsats 5 and 8 (Level 2, Collection 2, Tier 1), which have already
undergone geometric and atmospheric correction. These satellite images were specifically
chosen from the summer months, a period when the UHI effect is more pronounced.

For each city and year, the images were first cleaned of cloud pixels. Following this,
the images were stacked, and a mean image was extracted. This mean image was then
masked based on the study area extent, which was carefully selected to encompass the
latest extent of urban areas for each city. It is important to note that data for Agadir in 1990
were not available, and as such, data from 1995 were used as a suitable alternative.

In addition to the Landsat data, Digital Elevation Model (DEM) data were obtained
from the SRTM data. The DEM data provided valuable information about the topography
of the study areas, which was crucial in understanding the natural characteristics influenc-
ing the LST. Subsequent processing of the DEM data using Geographic Information System
(GIS) software allowed for the extraction of additional characteristics such as slope, hill-
shade, and aspect. Terrain characteristics significantly influence LST. For instance, a study
conducted in Hangzhou, China, found that elevation and slope are negatively correlated
with LST, with higher altitudes and steeper slopes having lower LST [27]. Shaded relief
(hillshade) also impacts LST, with more shadows leading to lower LST [27]. Aspect has a
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less significant relationship with LST, with higher values on southern-facing slopes [27].
Further, a study on Kilimanjaro revealed that differences between LST and air temperature
tend to increase with elevation [28]. In the semi-arid region of Abha-Khamis-Mushyet,
LST was found to be significantly influenced by altitude and corresponding LULC types,
with the highest LST in exposed rocky areas and built-up land and the lowest in dense
vegetation [29]. Moreover, a study in Cameron Highlands demonstrated that deforestation
and urban development on slopes above 35◦ lead to soil structure instability and an increase
in LST [30]. These findings highlight the importance of terrain characteristics in LST studies,
particularly in comparative studies of cities with diverse topographic characteristics.

This comprehensive data collection and processing approach ensured a robust dataset,
facilitating detailed analysis of the contributing factors to LST in the selected Moroccan
cities. The use of GEE and GIS software allowed for the efficient and accurate processing of
large volumes of satellite and topographic data, ensuring the reliability and validity of the
study’s findings.
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2.2.2. Extraction of Land Surface Temperature (LST) and Spectral Indices

LST is a critical parameter in the physics of land surface processes on a global scale,
directly linked to the energy balance at the Earth’s surface. It is a measure of the heat
radiated by the land surface and can be influenced by various factors such as vegetation
cover, soil moisture, and urban materials. In this study, LST was directly derived from
the surface temperature bands of the Landsat 5 (ST_B6) and Landsat 8 (ST_B10) using the
Python package arcpy. Next, we applied the corresponding scale factors and constants for
each Landsat version to convert the output to Kelvin, followed by a subtraction of 273.15 to
convert Kelvin to degrees Celsius.

In terms of estimated errors in the LST product, factors such as sensor calibration,
radiometric noise, and atmospheric interference could cause slight deviations. However,
these errors are expected to be low because the Collection 2, Tier 1 data from Landsat
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have undergone stringent radiometric calibration and atmospheric correction processes.
Despite this, it is generally accepted that the LST derived from Landsat data can have
an uncertainty of approximately ±1–2 ◦C under optimal conditions. This uncertainty
has likely been reduced in our analysis due to the use of mean values from multiple
cloud-free images.

In addition to LST, spectral indices were also extracted from the Landsat datasets.
These indices, namely the Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI), are
key proxies for analyzing land cover types of the study areas. The selection of these specific
indices is grounded in their proven effectiveness and widespread use in LST studies [3,6].

NDVI is a widely used index for assessing vegetation cover and health [31]. It is
calculated using the near-infrared (NIR) and Red bands of the Landsat data (Equation (1)).
Higher NDVI values are indicative of denser and healthier vegetation.

NDVI = (NIR − Red)/(NIR + Red) (1)

NDWI is used to monitor changes in water content in vegetation and can also be used
to detect open water surfaces [32,33]. It is calculated using the Green and NIR bands of the
Landsat data (Equation (2)), with higher values indicating higher water content.

NDWI = (Green − NIR)/(Green + NIR) (2)

NDBI is used to identify built-up areas [34]. It is calculated using the short-wave
infrared (SWIR) and NIR bands of the Landsat data (Equation (3)), with higher values
indicating denser built-up areas.

NDBI = (SWIR − NIR)/(SWIR + NIR) (3)

2.2.3. Geographically Weighted Regression (GWR) Analysis

GWR is a local version of spatial regression that generates parameters disaggregated
by the spatial units of analysis. This technique allows for the identification of relationships
and patterns that can vary spatially, providing a more nuanced understanding of the
studied phenomena. GWR is particularly useful in the context of urban studies, where
relationships between variables can be expected to change across the urban landscape due
to the spatial heterogeneity inherent in urban areas [35].

GWR is particularly useful in LST analysis, as it can account for the spatial hetero-
geneity inherent in environmental data and provide localized parameter estimates that
can reveal complex spatial patterns and relationships. Previous studies have successfully
applied GWR to analyze the spatial patterns of LST and its impact factors. For instance,
Zhao et al. (2018) used GWR to explore the spatial non-stationarity and scale effects
of the relationships between LST and related impact factors at multiple resolutions in
Zhengzhou City, China [36]. Similarly, Zhi et al. (2020) employed GWR to analyze the driv-
ing factors and spatial heterogeneity of LST in the Xigang District of Dalian City, China [37].
Lu et al. (2021) utilized GWR to assess the impact of LST on urban net primary productivity
increments [38].

These studies demonstrate the utility of GWR in understanding the spatially varying
relationships between LST and various factors. In this study, GWR was employed to inves-
tigate the relationship between LST and the selected factors, namely the spectral indices
(NDVI, NDWI, NDBI) and natural characteristics (DEM, SLOPE, ASPECT, HILLSHADE).
This approach allowed for a nuanced understanding of how these factors contribute to LST
in different geographical contexts within the selected Moroccan cities.

2.2.4. Machine Learning (ML) Analysis of LST and Contributing Factors

ML has surfaced as a potent tool for parsing complex environmental data, revealing
intricate interdependencies between variables. This study employed ML algorithms, specif-
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ically XGBoost and LightGBM, to delineate the relationship between LST and selected
factors including spectral indices (NDVI, NDWI, NDBI) and natural characteristics (DEM,
SLOPE, ASPECT, HILLSHADE).

XGBoost algorithm, an efficient realization of the gradient-boosting framework de-
veloped by Chen and Guestrin (2016) [39], is revered for its speed and performance. As
an ensemble learning technique, XGBoost harnesses decision tree models to iteratively
construct new models that predict residuals or errors of preceding models, culminating in a
final prediction. This mechanism, dubbed “gradient boosting”, leverages a gradient descent
algorithm to curtail the loss when adding new models [40]. Essential to this method is the
strategic handling of missing data, accommodating categorical variables, and introducing
mechanisms to manage model complexity via hyperparameters. This study explored hy-
perparameters like learning rate, max depth, min child weight, and others, instrumental in
curbing model complexity and avoiding overfitting. We optimized these hyperparameters
using a grid search strategy, ensuring a balance in the bias–variance trade-off.

Parallelly, LightGBM, another gradient-boosting framework developed by Microsoft,
using tree-based learning algorithms, is architected to be both distributive and efficient [41].
It demonstrates superior training speed and efficiency, outperforming many competing
algorithms when handling large datasets, attributable to novel techniques such as Gradient-
based One-Side Sampling and Exclusive Feature Bundling. The LightGBM employs a leaf-
wise growth strategy for tree growth, and like XGBoost, its hyperparameters—learning rate,
number of leaves, regularization parameters, and others—control the model’s complexity
and prevent overfitting. These were also fine-tuned using a grid search strategy.

The efficacy of these ML algorithms significantly depends on the setting of hyperpa-
rameters. To decipher the most potent combination, both models underwent a grid search
strategy. The spectrum of hyperparameters considered in the grid search for both models is
summarized in Appendix A, Table A1. The primary objective during the optimization of
these hyperparameters was to identify the combination delivering the most accurate pre-
diction on unseen data, achieved by minimizing the error between the model’s predictions
and actual values.

The ML models were interpreted, and the contributions of each factor to the predicted
LST were ascertained using SHAP values. SHAP values serve as a consolidated measure of
feature importance and a potent tool for interpreting ML models [42]. These values provide
insights into each feature’s contribution to the prediction for each observation, thus offering
a nuanced understanding of the model’s behavior.

Alternative ML techniques, such as Support Vector Machines (SVMs), Random Forest
(RF), and Artificial Neural Networks (ANNs), were evaluated during the conception of
this study. Despite the potential of these algorithms, XGBoost and LightGBM were favored
due to their unique capabilities in dealing with extensive datasets [40]. For instance, SVM,
while potent, might not provide the same efficiency as our selected models when handling
large datasets [43]. Similarly, while RF is a robust ensemble learning method, it does not
offer the same depth of fine-tuning capabilities inherent in gradient-boosting techniques
utilized by XGBoost and LightGBM [40,44]. The ANN, a complex and powerful tool, was
also considered. However, despite its potential to capture non-linear relationships, ANN
sometimes suffers from overfitting and interpretability issues [45], issues well-managed
by XGBoost, LightGBM, and SHAP. Moreover, our choice of XGBoost and LightGBM was
further justified by the compatibility of these algorithms with TreeExplainer. TreeExplainer
is an implementation of Tree SHAP, a rapid and precise method used to compute SHAP
values specifically for tree-based models and ensembles of trees. This unique alignment
currently exclusively extends to XGBoost and LightGBM, enhancing our ability to interpret
the models’ results accurately and efficiently. Thus, these algorithms not only allow us
to model complex relationships within the data but also enable us to offer clear, detailed
insights into how different factors influence these relationships.

The choice of these specific algorithms significantly impacts the study’s results. The
gradient boosting mechanism inherent in XGBoost and LightGBM helps capture complex,
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non-linear relationships that might be overlooked by simpler algorithms. Their ability to
handle missing data and accommodate categorical variables provides a comprehensive
understanding of the dataset. The interpretability offered by the SHAP methodology
provides a nuanced understanding of the variable importance, providing clear insights into
each feature’s contribution to the predicted LST.

Despite its potential, only a handful of studies have adopted this methodology to investi-
gate the driving factors of LST. For instance, Zhou et al. (2022) leveraged the XGBoost model
and the SHAP method, among other techniques, to explore the relationship between urban
landscape structure and LST [46]. Similarly, Kim et al. (2021) applied XGBoost and SHAP
models to develop an LST prediction model for Seoul, South Korea [47]. Both studies under-
scored the significant influence of certain environmental factors on LST, thereby validating
the utility of these ML algorithms in deciphering complex environmental relationships.

3. Results

This section will present the findings of the study, including the results of the spa-
tiotemporal analysis of LST trends, 3D plots, GWR analysis, and ML analysis.

3.1. Visual Analysis of Spatiotemporal LST Trends

The analysis of LST evolution in the target Moroccan cities, shown in Figure 3 (coastal
cities) and Figure 4 (inland cities), reveals a general trend of increasing temperatures over
the three-decade period (1990–2020), with some variations and exceptions. The satellite
images used to extract the LST data were specifically gathered during the summer months
of June, July, and August. This timing aligns with the post-harvest season for the most
common crops in Morocco, wheat and barley [48]. During this period, fields are typically
left fallow after harvest, which could potentially contribute to the bareness of the lands and
consequently higher temperatures.
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from 15 to 60 ◦C, with blue indicating lower temperatures, yellow medium temperatures, and red
higher temperatures.
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Figure 4. Temporal evolution of LST during summer (June–August) for inland Moroccan cities (Fes,
Marrakech, Oujda, Laayoune, and Errachidia) from 1990 to 2020. The color gradient represents LST
intervals from 15 to 60 ◦C, with blue indicating lower temperatures, yellow medium temperatures,
and red higher temperatures.

In coastal cities like Casablanca, Tangier, and Agadir, the urban areas generally experi-
enced an increase in LST. Casablanca, the largest and most populous city with a large urban
cover and intense industrial and commercial activities, showed a significant increase in LST
in both urban and surrounding non-urban areas. The increasing trend of LST in the city
could be attributed to the combination of rapid urbanization, a decrease in green spaces,
and the replacement of natural landscapes with heat-absorbent concrete and asphalt. Addi-
tionally, the thermal properties of the built-up materials might also contribute to higher
LST. The Bouskoura forest, the only significant green space in the vicinity of the city, is
considered a vital element for the thermal regulation of the region. However, the observed
increase in the LST values of the forest from 25–30 and 30–35 in the earlier years to 35–40
in 2020 might indicate a degradation of the forest cover or other changes in its ecological
conditions. This could be attributed to factors such as deforestation, encroachment for
urban development, or changes in moisture levels due to variations in precipitation or
groundwater extraction.

Tangier, the northernmost coastal city with a Mediterranean climate and slightly hilly
topography, also showed a similar trend to Casablanca, albeit at a slower rate, possibly due
to a lower level of urbanization. However, the observed increase in LST in non-urban areas
could be related to agricultural practices, land degradation, and potential deforestation.
Notably, the decrease in LST over time in the Cap Spartel Natural Reserve and other parks
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suggests a reduction in their size or density, potentially driven by urban expansion or
environmental degradation.

The trend in Agadir differs, with the city experiencing a more fluctuating LST pattern,
which could be linked to its unique geographical setting. The city is close to the Anti-
Atlas mountains, which could impact local weather patterns, and the city’s climate is
influenced by both Atlantic marine effects and desert influences. The rise in LST in 2000
might have resulted from a prolonged dry period, leading to a decrease in vegetation cover
and increasing surface exposure to solar radiation. The drop in 2010 could be related to
a wet year, which may have caused increased vegetation density and soil moisture, both
contributing to lower LST [3]. Furthermore, the golf courses are significant green spaces in
the urban landscape and contribute to moderating the local thermal environment. Despite
variations in LST in the city and surrounding areas, these golf courses consistently maintain
lower LST values between 20–25 and 25–30, underlining their role as “cool islands”.

Inland cities like Fes, Marrakech, Oujda, Laayoune, and Errachidia also exhibited an
increasing trend in LST, with some exceptions. In Fes, there was a decrease in LST values
in 2000, which could be due to it being a wet year. Increased precipitation can lead to lower
LST by increasing soil moisture and evapotranspiration.

Marrakech experiences a hot semi-arid climate, and its relatively stable LST through
the years could be due to the city’s extensive green areas and irrigation practices. However,
the gradual reduction in cool spots, especially in the north, might be related to changes in
land use, urban expansion, and possibly changes in irrigation or agricultural practices and
drought impacts.

For Laayoune, the inconsistent trend of LST might be influenced by its unique geo-
graphical and climatic characteristics, as it is situated on the border between desert and
coastal climates. Periodic fluctuations in rainfall, possibly influenced by Atlantic and
Saharan climatic systems, could cause significant changes in soil moisture and vegetation
cover, leading to variable LST.

Finally, Errachidia showed the hottest LST values in 2010, with the coolest year being
2000, possibly a wet year. The observed variations in LST are likely tied to the city’s desert-
like climate, where vegetation cover is minimal, and the land surface is extensively exposed
to solar radiation. The differences in LST across years might reflect climate variability,
with wetter years (e.g., 2000) leading to lower LST, and drier years (e.g., 2010) resulting in
higher LST. The Al-Hassan Addakhil dam, acting as a local “cool island”, might affect the
surrounding LST due to the cooling effect of water bodies.

3.2. The 3D Plots of LST Trends

In this subsection, we present the LST trends via 3D plots. The spectral indices—NDVI,
NDBI, and NDWI—are scrutinized in relation to LST for two categories of Moroccan cities:
coastal and inland, based on 3000 randomly generated points for each city.

Commencing with the coastal cities (Figure 5), the spectral indices of Casablanca,
Tangier, and Agadir depict relatively consistent values across the observed years, while
portraying a marked evolution in LST. More specifically, most points in Casablanca’s
1990 plot present LST values predominantly between 16 ◦C (represented by a dark blue
color in the jet colormap) and 50 ◦C, with similar ranges of NDVI, NDBI, and NDWI.
However, by 2020, the points exhibited a perceptible shift towards warmer temperatures,
particularly where NDBI > 0 and NDVI < 0.1. Tangier and Agadir displayed comparable
trends, with LST increasing notably in 2020 in most data points and the number of cooler
points (blue-colored dots) with NDWI < 0 and NDBI < 0 decreasing.

Switching focus to the inland cities (Figure 6), Fes, Marrakech, Oujda, Laayoune,
and Errachidia, a similar trend in LST increase is observed over the years, although the
evolution of spectral indices is more diverse. For instance, in Fes, despite a slight decrease
in warmer points (orange and red-like colors) in 2000, by 2020, the number of such points
had increased, especially those with higher NDBI values between 0.3 and 0.4.
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Figure 5. Spectral indices (NDVI, NDBI, NDWI) plotted against LST over time (1990–2020) for the
coastal cities Casablanca, Tangier, and Agadir. The color of the dots represents LST using the jet
colormap, with darker blue indicating lower temperatures and reddish colors indicating higher
temperatures. Note: data for Agadir in 1990 is unavailable; hence, data from 1995 is used for
initial representation.

Similarly, Marrakech showed a remarkable increase in warmer points in 2000 but a
slight decrease in 2010. Nevertheless, by 2020, there was an alarming rise in the number
of extremely warm points (LST of >55 ◦C), correlating with a decrease in the number
of cooler points (LST of <20 ◦C). Oujda demonstrated a similar pattern, with an almost
complete transformation to warmer points by 2020 and a significant reduction in cooler and
medium-cooler dots. On the other hand, Laayoune exhibited a more erratic pattern across
the years, particularly in 2000 and 2010, where the spectral indices and LST demonstrated
quasi-random distributions. It is important to note that these fluctuations could have been
influenced by the methodological approach where the mean annual images were computed
using several cloud-masked images captured under different weather conditions, leading
to a varied range of values.

The observed trends suggest a noticeable rise in LST over time, more pronounced in
the inland cities. The trend aligns with previous studies indicating an increase in urban heat
island effects, particularly in built-up and less vegetated areas, underscored by high NDBI
and low NDVI values, respectively. Furthermore, the spectral indices and LST variations
over time, particularly the NDBI increases and NDVI decreases, are congruent with the
global increase in urbanized and built-up areas and the decrease in vegetated areas. NDWI
portrays less-clear trends, implying a complex relationship between urbanization and LST.
It is worth noting that the presence of water bodies, such as dams, can greatly influence the
NDWI, as observed in Errachidia’s 1990 data points. In such instances, a lower temperature
(LST < 25 ◦C) was observed, possibly due to the cooling effect of water bodies.
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Figure 6. Spectral indices (NDVI, NDBI, NDWI) plotted against LST over time (1990–2020) for the
inland cities Fes, Marrakech, Oujda, Laayoune, and Errachidia. The color of the dots represents LST
using the jet colormap, with darker blue indicating lower temperatures and reddish colors indicating
higher temperatures.

3.3. GWR Analysis

The results of the GWR analysis provide quantitative insights into the relationships
between LST and the selected factors. The results of the GWR analysis are shown in
Figure 7, focusing on the spectral indices of three Moroccan coastal and inland cities across
the years 1990, 2000, 2010, and 2020, which are presented in this section. The detailed
results are listed in Appendix A, Tables A2 and A3 for coastal and inland cities, respectively.
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Figure 7. Bar plots illustrating temporal trends of GWR coefficients for spectral indices and geograph-
ical features across the target Moroccan cities for the years 1990, 2000, 2010, and 2020. The table below
shows corresponding adjusted R-squared values, indicating model fit for each city and year. Note
that DEM, ASPECT, SLOPE, and HILLSHADE are included in the legend for completeness, even
though they may not be discernible in the figure due to their values.

For Casablanca, the constant value shows a gradual increase over the years, indicating
a potential rising trend in the LST. Among the three spectral indices, NDBI consistently
demonstrated high mean values with a slightly decreasing trend in standard deviation over
time. The NDVI values showed a shift from positive to negative during this period, with a
decline in absolute values in the later years, indicating possible vegetation reduction. Inter-
estingly, the NDWI values remained negative throughout, with relatively high standard
deviation values, suggesting significant variations in water content. Other factors such as
DEM, slope, aspect, and hillshade demonstrated minimal variation, with small standard
deviation values indicating stability over time. The adjusted R2 values for Casablanca
showed a slight increase over the years, indicating an improvement in model performance.

Similarly, in Tangier, the constant value revealed a marginal increase over the years,
suggesting a potential rising trend in LST. The NDVI values were negative throughout,
indicating a potential decrease in vegetation over time. The NDBI values showed a general
increase, while the NDWI values were consistently negative but displayed a reduction
in absolute values over time, implying potential changes in water bodies. Among the
other factors, hillshade demonstrated a slight negative trend, while DEM, slope, and aspect
showed minimal variations. The adjusted R2 values for Tangier were consistently high
and exhibited a marginal increase over the years, showing an excellent and improving
model performance.

In the case of Agadir, the constant value showed fluctuations but ended with a higher
value in 2020 compared to 1990, indicating a potential overall increase in LST. The NDVI
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values were consistently negative and displayed significant fluctuations, suggesting major
vegetation changes over time. Both the NDBI and NDWI values showed varying trends
and high standard deviation values, indicating significant variations in built-up areas and
water bodies. Among the other factors, only the hillshade showed a slight negative trend,
while DEM, slope, and aspect demonstrated small variations. The adjusted R2 values for
Agadir showed a decline in 2010 but an improvement in 2020, indicating some fluctuation
in model performance over time.

In Fes, the constant values reveal a relatively fluctuating trend in the LST. NDVI values
have shifted from negative to positive, suggesting significant changes in vegetation cover.
A consistent rise in NDBI values might indicate an increase in built-up areas. Notably,
NDWI values have also moved from negative to positive, signifying variations in water
content. Among other factors, aspect and hillshade show a consistent negative trend, while
DEM and slope values show minimal changes. The adjusted R2 shows an increase in 2020
after an initial decline, pointing to an improvement in the model’s predictive power.

Marrakech’s constant value shows a consistent rising trend, indicating an increase
in LST over time. NDVI values are consistently negative and notably high, implying a
major reduction in vegetation. The NDBI and NDWI values demonstrate fluctuating trends,
implying significant changes in built-up areas and water bodies. The adjusted R2 value
shows a decline, suggesting a decrease in the model’s performance over time.

In Oujda, the constant value shows a relatively stable trend. The NDVI values display
an upward shift, suggesting an increase in vegetation. The NDBI values show a general
increase, pointing to an expansion of built-up areas. Meanwhile, NDWI values, which are
all negative, show a decrease in absolute value, suggesting an increase in water content.
The adjusted R2 value shows fluctuations but ends with a relatively high value, indicating
good model performance.

Laayoune’s constant value displays a rising trend after an initial decline in 2000. The
NDVI values show major fluctuations, implying significant changes in vegetation. Similarly,
NDBI and NDWI values demonstrate considerable fluctuations, suggesting substantial
changes in built-up areas and water bodies. The adjusted R2 value shows an improvement
in 2010 and remains relatively high, indicating that the model’s performance has improved
over time.

In Errachidia, the constant value shows fluctuations but ends higher in 2020 compared
to 1990, indicating a general increase in LST. The NDVI values are consistently negative,
suggesting a decrease in vegetation over time. The NDBI and NDWI values demonstrate
slight fluctuations, suggesting changes in built-up areas and water bodies. The adjusted R2

value remains relatively high, demonstrating good model performance.

3.4. ML Modeling and SHAP-Based Explanation
3.4.1. ML Models’ Performance Assessment

Table 3 encapsulates the comparative performance of two machine learning models—
XGBoost and LightGBM—across the eight Moroccan cities for the years 1990, 2000, 2010,
and 2020. Each model’s predictive performance is evaluated using two standard metrics:
the coefficient of determination (R2) and the root mean square error (RMSE). A higher R2

and a lower RMSE indicate superior predictive performance. As is evident, the XGBoost
algorithm outperforms LightGBM in most cases, showcasing its robustness and efficacy
in predicting urban expansion. Based on the comprehensive evaluation, XGBoost was
subsequently chosen for further in-depth analysis.

3.4.2. LST Driving Factors’ Importance

We used SHAP summary plots to gain insights into the model’s inner workings
for each city for every year. The results for coastal and inland cities are illustrated in
Figures 8 and 9, respectively.
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Table 3. Comparative Performance Metrics of XGBoost and LightGBM Algorithms Across the Target
Moroccan Cities.

Algorithm City
R2 RMSE

1990 2000 2010 2020 1990 2000 2010 2020

XGBoost

Casablanca 0.785 0.802 0.742 0.789 1.580 1.621 1.878 1.737
Tangier 0.842 0.834 0.823 0.818 1.564 1.720 2.108 2.019
Agadir 0.707 0.729 0.655 0.701 1.969 1.935 2.055 2.254

Fes 0.714 0.660 0.673 0.783 1.709 1.731 1.635 1.588
Marrakech 0.728 0.672 0.710 0.599 1.769 2.530 2.095 2.483

Oujda 0.622 0.557 0.643 0.648 1.814 2.317 1.600 1.758
Laayoune 0.579 0.576 0.673 0.554 0.816 2.996 1.005 1.011
Errachidia 0.857 0.863 0.883 0.843 1.709 1.161 1.688 1.436

LightGBM

Casablanca 0.778 0.792 0.726 0.786 1.606 1.662 1.934 1.750
Tangier 0.841 0.829 0.821 0.827 1.569 1.749 2.120 1.968
Agadir 0.706 0.730 0.634 0.693 1.974 1.934 2.116 2.284

Fes 0.715 0.643 0.640 0.762 1.707 1.775 1.717 1.665
Marrakech 0.725 0.683 0.708 0.594 1.781 2.490 2.100 2.498

Oujda 0.636 0.576 0.658 0.627 1.782 2.265 1.566 1.810
Laayoune 0.590 0.567 0.673 0.544 0.805 3.028 1.006 1.022
Errachidia 0.858 0.861 0.883 0.841 1.700 1.170 1.688 1.442
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Figure 8. SHAP-value-based importance of LST driving factors in coastal Moroccan cities.

Each plot illustrates the distribution of the effects each feature has on the model’s
prediction. The position on the y-axis is determined by the feature and on the x-axis
by the Shapley value. The color represents the value of the feature from low to high.
Higher Shapley values, either in the positive or negative direction, indicate features that
significantly influence the model’s prediction. It is worth noting that the magnitude and
direction of these effects vary across different cities and years, reflecting the distinctive
local environmental and temporal dynamics.

The primary feature influencing the prediction of LST across the target cities and years,
according to the SHAP summary plots, is consistently the NDBI. However, this influence
and the importance of other features vary across cities and over time.
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Figure 9. SHAP-value-based importance of LST driving factors in inland Moroccan cities.

For coastal cities, NDBI is shown to exert a significant influence in all cities and years,
but the relationship and level of influence differ notably between the cities and across the
decades. In Casablanca, a higher value of NDBI is associated with increased SHAP values,
implying a positive correlation with LST. This pattern is consistent from 1990 to 2020,
suggesting the ongoing urbanization contributing to the city’s increasing heat island effect.
In contrast, Tangier and Agadir exhibit a more complex relationship between NDBI and LST.
While NDBI remains a top contributing feature, the SHAP value ranges between positive
and negative, suggesting localized differences in the built-up areas’ thermal properties.

The influence of the elevation (DEM) is more variable across the coastal cities. In
Casablanca, DEM consistently ranks as the second most important feature, with a positive
correlation with LST. This effect is less pronounced in Tangier, where DEM’s importance
fluctuates over time. Meanwhile, in Agadir, the prominence of DEM increases over time,
replacing NDWI as the second most important feature by 2020.

Moving on to the inland cities, NDBI’s importance as a feature remains consistent but
exhibits different patterns from coastal cities. Fes shows a positive correlation between
NDBI and LST similar to Casablanca. Marrakech and Oujda, however, reveal a fluctuating
importance and relationship between NDBI and LST, similar to what was observed in
Tangier and Agadir.
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Comparing the importance of features between the coastal and inland cities, it appears
that the NDBI and DEM generally have more influence in coastal cities, possibly due to the
higher degree of urbanization and variations in terrain height affecting the heat distribution.
In contrast, in inland cities, NDVI also emerges as a critical feature, potentially due to
vegetation’s role in regulating temperature in these areas.

The changes over time also suggest the ongoing urbanization and climate change’s
potential impact. The increasing importance of NDBI in most cities points to the increasing
role of built-up areas in shaping urban heat. The shifting influence of NDVI and NDWI
also implies potential changes in vegetation and water bodies’ roles in modulating the
urban temperature.

In summary, this comparative study reveals significant heterogeneity in LST’s influenc-
ing factors across different cities and over time, reflecting the complexity of urban thermal
dynamics. These findings underscore the importance of considering local context and
temporal changes when modeling and managing urban heat.

3.4.3. Factors’ Interactions and LST Prediction

In addition to the factors’ importance, we examined the interactions between the most
significant factors that affect LST prediction. In Figures 10 and 11, we show the interactions
of the factors in a series of heatmap plots for the target cities, ranging from the years 1990
to 2020. Herein, the discussion focuses on the notable interactions, which are defined as
colored in reddish colors.

In Casablanca, across the years, the interactions between DEM and NDBI have been
consistently prominent, highlighting the significant interplay between the city’s topography
and urbanization in affecting the LST. Notably, in 2000, a strong interaction between NDVI
and NDWI also emerged, suggesting the potential synergistic role of vegetation and water
bodies in modulating the city’s temperature.

The factors’ interactions in Tangier exhibit more variation over time. In all years,
interactions involving NDVI, NDWI, and NDBI are predominant. This implies a complex
interplay between vegetation, water, and built-up areas in shaping the city’s heat dynamics.
In addition, the interactions between SLOPE and DEM in 1990 and 2020 emphasize the
city’s topography role in its thermal patterns.
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Figure 10. Heatmap plots illustrating the interactions of different features influencing LST across
coastal Moroccan cities from 1990 to 2020. The intensity of color represents the interaction score, with
higher values indicating stronger interactions. Notable interactions are discussed in the text.
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Figure 11. Heatmap plots illustrating the interactions of different features influencing LST across
inland Moroccan cities from 1990 to 2020. The intensity of color represents the interaction score, with
higher values indicating stronger interactions. Notable interactions are discussed in the text.

The heatmaps for Agadir highlight the dominant interaction between NDBI and DEM,
especially in 1990 and 2020, with NDWI also showing strong interactions with DEM, NDVI,
and NDBI in different years. This reflects the interweaving effects of urbanization, elevation,
vegetation, and water bodies on Agadir’s urban heat.

In Fes, the key interactions change over time. The interaction between SLOPE and
DEM in 1990 reveals the topography’s importance. Yet, in the subsequent years, interactions
involving NDVI, NDWI, and NDBI become more prevalent, echoing the complex role of
urbanization, vegetation, and water bodies in inland cities’ heat dynamics.

Marrakech shows strong and consistent interactions between NDVI and NDWI across
all years, underscoring the combined role of vegetation and water bodies. Interactions
involving DEM also stand out, suggesting the city’s critical role in topography.

The heatmaps for Oujda exhibit several strong interactions, particularly between
NDWI and NDVI in 1990, and DEM’s interactions with other features in subsequent years.
These patterns reflect the city’s complex heat dynamics, intertwining vegetation, water
bodies, urbanization, and topography.

The heatmap for Laayoune highlights the significant interaction between NDBI and
NDWI in 2000. This suggests a critical interplay between urbanization and water bod-
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ies. Moreover, the interactions of DEM with NDBI, NDWI, and NDVI in different years
underline the significant role of the city’s terrain.

In Errachidia, NDBI’s interactions, particularly with DEM, are predominant in all
years. This emphasizes the intertwining effects of urbanization and the city’s topography.
Notably, in the year 2000 and onwards, interactions involving NDVI, NDWI, and DEM
also become prevalent, suggesting the role of vegetation and water bodies, alongside
urbanization and topography, in shaping the city’s thermal dynamics.

In summary, these heatmaps uncover the complexity of feature interactions influencing
LST across different Moroccan cities. The interactions vary across cities and over time,
echoing the cities’ evolving urban form, land use, and climate conditions.

3.4.4. Analysis of the Association between Potential Factors in LST Prediction

The present section delves deeper into the relationships between the most prominent
features influencing LST across the selected Moroccan cities. Specifically, we present
a series of scatter plots that visualize the most notable interactions identified from the
preceding heatmaps for each city from 1990 to 2020. These scatter plots illustrated in
Figures 12 and 13 provide a more detailed perspective on the pairwise interactions between
variables, highlighting the trends and correlations in a more focused manner. By studying
these plots, we can gain more profound insights into how these interactions have evolved
over time and their role in influencing LST in different geographical contexts—coastal
versus inland cities.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 13 
 

 

 
Figure 12. Dependence plots illustrating the most notable interactions between different factors 
influencing LST across coastal Moroccan cities from 1990 to 2020. 

  

Figure 12. Dependence plots illustrating the most notable interactions between different factors
influencing LST across coastal Moroccan cities from 1990 to 2020.

In the case of Casablanca, we can observe a clear temporal evolution in the interactions
between NDBI and its SHAP values. In 1990, a linear relationship was present with
histogram bars concentrated around an NDBI value of 0.1. Over the next three decades, this
relationship evolved to quasi-linear, while the concentration of histogram bars gradually
shifted towards higher NDBI values. There was a noticeable difference in the distribution
of reddish dots (DEM of 100–210) and blue dots (0–125), which might indicate changes in
the urban structures and infrastructures of the city.
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The interaction between NDBI and SHAP values in Tangier showed a shift from the
situation in 1990, where histogram bars of NDBI were concentrated between 0 and 0.1, to
2020, where the concentration was between −0.1 and 0.1. This trend, along with the change
in the distribution of red and blue dots, signifies potential environmental shifts, possibly
due to the city’s development or environmental policies over the three decades.

Agadir exhibited an intriguing progression, with a linear relationship between NDBI
and its SHAP values in 1990 evolving to a more concentrated distribution of NDVI by 2020.
The increasing density of blue dots over time might signify changes in water distribution,
possibly due to urbanization and climate change.

Fes presented a unique quasi-sinusoidal relationship between DEM and SLOPE in 1990,
which shifted to a quasi-linear relationship by 2020. The evolving interaction of these vari-
ables signifies significant changes in the city’s topography and infrastructural development.

Marrakech exhibited a quasi-linear relationship between NDVI and SHAP values
across the decades. However, the distribution of red and blue dots changed, indicating
potential shifts in vegetation and water indices. This could be an outcome of land use
changes or responses to climate variations.

Oujda’s scatter plots show evolving interactions between NDBI and SHAP values
over the years. The significant shift in the concentration of histogram bars and the distri-
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bution of red and blue dots across DEM values might indicate changes in the city’s urban
development and topographical features.

Laayoune demonstrated an intricate pattern over the years. From a concentration
of NDBI histogram bars between 0.05 and 0.1 in 1990, the city showed a more varied
pattern by 2020. The fluctuation in SHAP values might result from changes in land use and
environmental management over time.

Errachidia’s scatter plots reveal a shift in the interactions between NDBI and SHAP
values over the years. The concentration of histogram bars and the distribution of red and
blue dots across DEM values suggest significant changes in the city’s urban development
and topographical features.

4. Discussion
4.1. LST Trends and Contributing Factors

General observations in all assessed cities indicate that urban areas often manifested
as UHSs with cooler LST, especially in coastal cities (i.e., Casablanca, Tangier, and Agadir).
This is similar to global trends observed in various Mediterranean, arid, and desert cities
like Erbil [49], Cairo [4], Dubai [50], Abu Dhabi [50,51], and Tehran [52]. Over time, however,
these UHSs have been declining. Indeed, the results consistently revealed an increase in
LST across all cities regardless of their type, mainly due to urbanization and degradation
of vegetation cover. This trend is more pronounced in inland cities surrounded by barren
landscapes, notably Errachidia, Oujda, Fes, and Marrakech.

4.1.1. Coastal Cities

Coastal effects significantly influence LST. For instance, Al-Ruzouq et al. (2022) found
that daytime LST values in coastline districts were lower than those further inland in a
study conducted in the arid coastal cities of the United Arab Emirates [53]. This observation
aligns with the findings of Peng et al. (2021), who reported a significant cooling effect
of the sea during the daytime in the Japanese prefecture of Fukuoka [54]. Despite these
coastal cooling effects, a rise in LST values was observed in Casablanca, Tangier, and Agadir
between 1990 and 2020. GWR and ML analyses identified NDBI as a potent influencer of
LST across all coastal cities. The built-up index’s high SHAP values, suggesting a positive
correlation with LST, point towards the potent role of ongoing urbanization in driving
the rise in LST. The consistent interactions between NDBI and DEM across the decades
underline the significant interplay of topography and urbanization in affecting LST. This
interaction is particularly pronounced in 2020, hinting at the possible synergistic role of
vegetation and water bodies in mitigating city temperature.

This LST increase was particularly noticeable in Casablanca—the economic capital
and the most populous city of the country, where an extensive urban sprawl has taken
place. The city witnessed a 38.32% increase in the built-up area between 2000 and 2015 [7],
leading to the loss of green spaces and the emergence of scattered UHIs [10,55]. These
UHIs are observed mainly in new industrial zones scattered across the city. This expansion
occurred at the expense of green spaces. The Bouskoura forest, an example of green urban
space on the outskirts of the city, displayed an increase in LST values over time from LST
values ranging between 20 and 40 ◦C (1990) to values ranging between 35 and 50 ◦C (2020),
which may indicate potential degradation or changes in its ecological conditions as a result
of a mix between weather extremes [56] and anthropogenic interventions [10,18,19,55].

In Tangier—the country’s second industrial hub with several industrial parks sur-
rounding the city [57]—the LST trends bear resemblance to those observed in Casablanca,
albeit at a slower pace potentially due to a lesser degree of urbanization and the existence
of blue-green spaces (i.e., Atlantic Ocean, Cap Spartel Nature Reserve, golf courses, and
parks) to the north and northwest of the city that provide a cooling effect [12]. However,
the observed increase in LST over time in the Cap Spartel Nature Reserve and other parks
hints at a potential reduction in their size or density, which may be corroborated by the
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World Cities Report’s data showing a 43.71% increase in the city’s built-up area from 2000
to 2015 [7].

Agadir presented a more fluctuating LST pattern, potentially due to its geographical
setting being at the foot of the Atlas mountains with changing green cover [58], Souss
River at the south providing cooling effects, and variable climatic conditions, including
periods of drought and high rainfall that affect vegetation and soil moisture. Historically,
the years 2000 and 2001 were the years with the lowest rainfall amounts in Morocco for
the period 1984–2016 [56]. This could explain the high LST values recorded for Agadir in
2000. Surprisingly, despite 2010 being the warmest year in the period 1984–2018, yet with
a higher total precipitation anomaly [56], cool LST values were observed across the city
and its surrounding area. The year 2010 was a year of high precipitation and lower LST
values, and it is possible that the higher rainfall led to increased vegetation cover, which can
lower LST through evapotranspiration. Additionally, the increased cloud cover associated
with higher rainfall can reduce the amount of sunlight reaching the surface, thus reducing
surface temperatures.

4.1.2. Inland Cities

In inland cities, the increase in LST especially is more pronounced in urban and non-
urban areas alike. The city of Fes exemplified an escalating trend in LST, registering some
of the apex values in the year 2020. This trend was punctuated by a transient decline in the
year 2000 observed across the region, potentially attributed to an escalation in precipitation.
Urban areas manifested diminished LST values, reaping the cooling benefits of green
spaces interspersed within the cityscape, the Fes River that courses through the city, and the
utilization of specific construction materials such as mud and adobe in the ancient medina.
These materials are renowned for their thermal insulation properties [22,59]. Nonetheless,
the proliferation of urban zones and the expanse of green spaces, as indicated by GWR and
ML analyses, corroborated by data asserting that the city underwent a 24.32% expansion
from 2000 to 2015 [7], signal substantial urban advancement. Consequently, the city appears
to be on a trajectory toward a warming phase [56].

Marrakech maintained relatively stable LST over the years, potentially as a result of
extensive green areas and irrigation practices across the city and its surroundings including
the historic Agdal and Menara gardens to the south in addition to golf courses and resorts
with green spaces to the east. This aligns with the results presented in [9], which found
the mix and amount of vegetation to be an important modulator of surface temperature
and it can be used as a natural mitigation mechanism to reduce excess urban heating
in Marrakech. It is also observable that LST values are lower inside the city than in its
peripheral areas, creating UHSs in accordance with [12]. Despite the LST stability over the
years, however, a gradual reduction in cool spots indicated possible changes in land use,
such as urban expansion as noted in [9], modification in agricultural practices, and impacts
from periodic droughts.

Oujda, like Fes and Errachidia, had some of the highest LST values recorded in 2020.
The urban and surrounding areas showed an increasing trend in LST over time, potentially
due to urban expansion and transformation of land use. In fact, the author in [56] found
that Oujda is one of two cities that have a 5% statistically significant level of decreasing
total precipitation anomaly and a standard precipitation index with values inferior to −12
and −0.3, respectively. The city was built in a circumscribed space surrounded by desert
barren lands. Similar to Marrakech, UHSs are observed across urban areas, a phenomenon
more pronounced in 1990 and less pronounced in 2020.

Errachidia, characterized by a desert-like climate, exhibited the hottest LST values
among all cities in 2010. The coolest values were observed in 2000. Similar to Fes, Mar-
rakech, and Oujda, the city also exhibited UHSs with low LST observed in urban areas
benefiting possibly from the cooling effects of the M’daghra forest and the nearby Al-Hassan
Addakhil dam [24].
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In contrast to other cities, Laayoune exhibited an inconsistent LST trend especially
in the year 2000, influenced by a unique combination of factors. GWR and ML analyses
have indicated that the NDBI and DEM play a significant role in influencing LST. The
city’s unique location close to the Atlantic Ocean, the intermittent lake to the north, and
the sandy surroundings contribute to this complexity. The climatic and soil characteristics
further compound these factors, where shifts in rainfall create considerable variations in
soil moisture and vegetation cover, and subsequently in LST. These intricate dynamics,
involving natural and human-induced factors, contribute to an LST trend that may not
immediately seem intuitive.

4.2. Methodological Implications

The utilization of ML modeling, specifically the application of XGBoost and LightGBM,
and SHAP-based explanation in this study has proven effective in analyzing the LST trends
across various Moroccan cities. These methods facilitated a robust and nuanced under-
standing of the spatiotemporal dynamics of urban heat, highlighting the role of spectral
indices and terrain characteristics. Interestingly, in many cases, XGBoost outperformed
LightGBM. Our methodology parallels other studies that have successfully employed
similar techniques in analyzing urban heat dynamics [47]. Furthermore, the use of the
SHAP-based explanation for interpreting the ML models has lent additional transparency
and interpretability to the study, an aspect that aligns with recent calls for explainable AI [60].

Nonetheless, the use of ML models inherently comes with some challenges, such as
the need for large and high-quality datasets and the complexity of model tuning. These
challenges emphasize the importance of integrating ML with traditional statistical methods,
a blended approach that could form an interesting direction for future studies.

The study’s reliance on satellite data for LST analysis is another significant method-
ological aspect. Satellite data provides a large-scale and longitudinal perspective that
is invaluable for studying long-term trends in urban heat. However, there are notable
limitations, including the coarse spatial resolution and potential accuracy issues [61]. It is
also critical to account for the influence of atmospheric effects and sensor calibration on the
LST values derived from satellite data [62].

The methodological approach used in this study contributes to the field of urban
heat research by offering a scalable and comprehensive method for analyzing urban heat
dynamics over space and time. However, future studies should consider complementing
satellite data with ground-based measurements to improve data resolution and accuracy.
Additionally, the integration of different modeling techniques can be further explored to
provide more nuanced insights into urban heat dynamics.

4.3. Policy Implications

The findings of this study have significant implications for urban planning, particularly
regarding the mitigation of the UHI effect. Our results highlight the importance of green-
blue spaces in moderating LST, resonating with previous studies that underscore the cooling
effects of urban vegetation and water bodies [3]. Consequently, urban planning policies
should prioritize the preservation of existing green spaces and the creation of new ones
to attenuate the UHI effect. Moreover, the adoption of sustainable building materials and
designs that minimize heat absorption could further contribute to the reduction in urban
heat [22,59]. Promoting sustainable urban practices such as green roofing, using reflective
or permeable pavements, and urban forestry should also be considered vital components
of urban planning strategies.

The escalating LST trend also entails critical public health implications. Increased
urban temperatures have been associated with a surge in heat-related illnesses, particularly
during the summer months [63] among elderly people [64]. In this light, public health
strategies should be integrated with urban planning efforts to mitigate the health risks
associated with urban heat. Furthermore, elevated temperatures in urban areas increase
the demand for cooling, leading to higher energy consumption and, consequently, height-
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ened carbon emissions [65]. Hence, energy-efficient solutions should be part of policy
frameworks to alleviate the energy demand and curb carbon emissions.

Lastly, the study’s findings significantly contribute to climate change mitigation and
adaptation strategies, particularly amid the intensifying indications of our planet, and,
specifically, in regions like Morocco, trending towards a drying climate [14,56,66]. The
preservation and enhancement of vegetation and water bodies in urban landscapes, as
evidenced by the study, play a crucial role in moderating LST. Thus, strategies that promote
the integration of these natural elements in urban landscapes should be given priority in
climate adaptation planning. Urban planning should aim to balance built environments
with natural ecosystems, leading to cities that are not only resilient to climate change
impacts but also sustainable for future generations.

4.4. Limitations and Future Works

Despite its insightful findings, this study acknowledges certain limitations. Predom-
inantly, the analysis considered data only from four discrete years across three decades
(1990, 2000, 2010, and 2020), potentially neglecting important inter-annual, seasonal, and
diurnal variations in LST dynamics. Future research should therefore aim to incorporate
more comprehensive data, possibly using time series satellite images across varied seasons
and day–night cycles (e.g., using MODIS data), to better understand the complexity of LST
changes and inform urban planning and climate adaptation strategies.

Secondly, the findings of this study are influenced by specific weather events and
climatic conditions of the selected years, such as exceptionally dry or wet years. These
conditions could considerably impact the LST values, and their influence should be con-
trolled in future analyses. Therefore, future studies should consider conducting analyses
that incorporate the effects of weather events and climate anomalies.

The study also relied on satellite data for LST analysis. While satellite data offers a
large-scale, synoptic perspective, it has inherent limitations concerning spatial resolution
and potential accuracy issues. It also lacks the site-specific details that ground-based
measurements could provide [67]. Therefore, future research could consider integrating
ground-based measurements with satellite data to ensure higher data resolution and accuracy.

As for the avenues of future research, the study’s findings suggest intriguing pos-
sibilities. The relationships between spectral indices, terrain characteristics, and LST, as
highlighted in our findings, warrant further exploration. There is a need to understand
how these variables interact under different geographical and climatic contexts, not only in
Moroccan cities but in other regions as well. These investigations could involve more di-
verse and specific terrain characteristics as well as landscape metrics, potentially revealing
more nuanced aspects of their influence on LST.

Additionally, given the key role of urbanization in increasing LST, future research could
also focus on how different urban development patterns and strategies influence urban heat.
This could provide valuable insights for urban planning and climate adaptation strategies.

5. Concluding Remarks

This investigation conducted an in-depth temporal examination of summertime LST
trends across Moroccan coastal and inland cities over three decades (1990–2020). Results
revealed consistent increases in LST over time, with higher increases evident in inland
cities compared to coastal ones. UHS features, predominantly seen in coastal cities, have
been waning due to factors such as urbanization and the degradation of vegetation cover.
This study has underscored the significance of urban design and land use in affecting
LST, with built-up areas, particularly industrial zones, contributing significantly to rising
temperatures. Notably, areas with green-blue spaces demonstrated mitigating effects on
LST, emphasizing their importance in urban planning strategies.

The use of ML models, particularly XGBoost and LightGBM, in conjunction with
SHAP-based explanations, has proven valuable for the nuanced interpretation of the data.
However, ML models’ reliance on large, high-quality datasets and complex model tuning
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highlights the need for integrating traditional statistical methods such as GWR used in
this study.

The implications of the rising LST trend are multifaceted. From an urban planning
perspective, it underlines the critical need to prioritize green-blue spaces, utilize sustainable
building materials, and adopt urban practices that mitigate the UHI effect. From a public
health viewpoint, the rise in LST can lead to increased heat-related illnesses and demands
for cooling, necessitating the incorporation of energy-efficient solutions and the integration
of health strategies into urban planning. Lastly, in the broader context of climate change
mitigation and adaptation, the findings emphasize the importance of integrating natural
ecosystems into urban landscapes.

Despite its contributions, this study acknowledges certain limitations, primarily the
use of data from only four discrete years, thereby overlooking inter-annual, seasonal,
and diurnal variations in LST dynamics. It also acknowledges the impact of specific
weather events and climatic conditions on the findings. Future studies should consider
incorporating more comprehensive time series data and controlling for weather and climate
anomalies. The integration of ground-based measurements with satellite data and the
exploration of various modeling techniques would also enhance the understanding of
urban heat dynamics.
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Abbreviations

ANN Artificial Neural Network
B10 Band 10 (in remote sensing, it refers to a specific spectral band of the satellite sensor)
B6 Band 6 (similar to above, another specific spectral band)
DEM Digital Elevation Model
ETM Enhanced Thematic Mapper (a sensor onboard Landsat satellites)
GBM Gradient Boosting Machine (a machine learning algorithm)
GEE Google Earth Engine
GIS Geographic Information System
GWR Geographically Weighted Regression
LST Land Surface Temperature
LULC Land Use Land Cover
ML Machine Learning
MODIS Moderate Resolution Imaging Spectroradiometer
NDBI Normalized Difference Built-up Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near Infrared (a type of light invisible to the human eye, used in remote sensing)
OLI Operational Land Imager (a sensor onboard Landsat satellites)
R2 Coefficient of determination
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RF Random Forest
RMSE Root Mean Square Error
SHAP SHapley Additive exPlanations
SRTM Shuttle Radar Topography Mission
SUHI Surface Urban Heat Island
SVM Support Vector Machine
SWIR Shortwave Infrared (a specific region of the infrared spectrum used in remote sensing)
TIRS Thermal Infrared Sensor (a sensor onboard Landsat satellites)
TM Thematic Mapper (a sensor onboard Landsat satellites)
UHI Urban Heat Island
UHS Urban Heat Sink
UNESCO United Nations Educational, Scientific and Cultural Organization

Appendix A

Table A1. Hyperparameters explored in the grid search for the XGBoost and LightGBM models.

Algorithm Hyperparameters Description Values Explored

XGBoost

learning_rate Controls the learning process’s speed 0.01, 0.1
max_depth Maximum depth of the trees 3, 5, 7, 10

min_child_weight Minimum sum of instance weight needed in a child 1, 3, 5
subsample Subsample ratio of the training instances 0.5, 0.7

colsample_bytree Subsample ratio of columns when constructing each tree 0.5, 0.7
n_estimators Number of boosted trees to fit 100, 200, 500

objective Specifies the learning task and the corresponding learning objective reg:squarederror

LightGBM

learning_rate Controls the learning process’s speed 0.01, 0.1
num_leaves Maximum tree leaves for base learners 31, 127
reg_alpha L1 regularization term on weight 0.1, 0.5

min_data_in_leaf Minimum amount of data needed in a leaf 30, 50, 100, 300, 400
lambda_l1 L1 regularization term on weights 0, 1, 1.5
lambda_l2 L2 regularization term on weights 0, 1

Table A2. GWR results in the coastal cities.

City Factor
1990 2000 2010 2020

Mean Std. Mean Std. Mean Std. Mean Std.

Casablanca

Const. 35.692 5.018 39.605 4.386 40.404 4.948 40.944 4.811
NDVI 7.033 23.826 −6.349 26.545 −2.997 29.032 0.461 27.232
NDBI 42.543 11.784 36.56 10.979 39.572 11.006 39.998 7.857
NDWI −10.951 30.554 −18.647 34.765 −13.854 31.778 −19.335 32.538
DEM 0.011 0.019 0.01 0.013 0.012 0.013 0.014 0.018
Slope 0.000 0.001 0 0.001 0 0.001 0.001 0.001

Aspect 0.026 0.078 −0.023 0.129 0.017 0.092 0.015 0.08
Hillshade −0.009 0.016 −0.017 0.018 −0.019 0.017 −0.018 0.018

Adjusted R2 0.822 0.826 0.794 0.831

Tangier

Const. 39.026 5.863 38.813 4.948 39.808 6.513 42.169 5.387
NDVI −38.218 30.132 −34.014 36.432 −21.487 65.482 −12.723 51.227
NDBI 17.798 13.028 26.053 12.169 34.511 14.26 28.632 11.91
NDWI −45.8 42.133 −44.822 47.328 −36.657 70.21 −26.445 58.29
DEM −0.004 0.007 −0.007 0.008 −0.009 0.01 −0.01 0.009
Slope 0 0.002 0 0.002 0 0.002 0.001 0.002

Aspect −0.025 0.055 −0.029 0.051 −0.025 0.062 −0.034 0.048
Hillshade −0.025 0.011 −0.024 0.011 −0.021 0.016 −0.022 0.013

Adjusted R2 0.924 0.925 0.922 0.925

Agadir *

Const. 31.38 4.597 35.987 5.182 26.795 4.528 32.715 5.51
NDVI −48.684 43.373 −9.77 60.739 −86.277 38.917 −21.971 66.192
NDBI 36.725 17.395 38.461 25.28 29.707 15.674 52.079 20.057
NDWI −70.985 47.422 −42.9 57.859 −113.698 45.057 −53.55 65.415
DEM 0.005 0.029 0.012 0.037 −0.002 0.027 0.004 0.026
Slope −0.002 0.003 −0.002 0.003 −0.002 0.002 −0.002 0.002

Aspect −0.022 0.067 −0.022 0.096 −0.005 0.106 −0.029 0.092
Hillshade −0.006 0.016 −0.009 0.018 0.002 0.019 −0.003 0.02

Adjusted R2 0.873 0.855 0.784 0.837

* Data from 1995 were used for Agadir due to the availability.
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Table A3. GWR results in the inland cities.

City Factor
1990 2000 2010 2020

Mean Std. Mean Std. Mean Std. Mean Std.

Fes

Const. 45.224 7.333 39.407 6.42 43.135 6.795 42.079 7.313
NDVI −29.072 24.802 19.537 44.358 −14.177 40 24.348 33.829
NDBI 41.249 21.373 54.638 27.622 49.953 16.672 63.204 17.191
NDWI −26.637 19.311 6.267 34.691 −26.88 37.873 1.032 30.39
DEM 0.001 0.011 0 0.011 −0.003 0.007 0.001 0.009
Slope −0.001 0.002 −0.002 0.002 −0.001 0.002 −0.002 0.002

Aspect −0.053 0.064 −0.06 0.062 −0.047 0.055 −0.043 0.069
Hillshade −0.021 0.014 −0.009 0.013 −0.011 0.014 −0.004 0.018

Adjusted R2 0.781 0.764 0.748 0.831

Marrakech

Const. 41.763 12.895 52.154 21.946 50.456 19.991 55.711 20.765
NDVI −81.418 28.828 −116.335 65.369 −102.411 34.938 −66.571 48.243
NDBI 12.991 17.18 19.924 19.999 14.043 16.079 25.195 21.608
NDWI −55.42 35.825 −103.617 84.045 −90.986 34.512 −63.165 51.512
DEM 0.004 0.025 −0.026 0.044 −0.01 0.04 −0.015 0.043
Slope 0 0.001 0 0.001 0 0.001 0.001 0.001

Aspect −0.034 0.145 0.02 0.113 0.06 0.178 0.09 0.149
Hillshade −0.009 0.026 −0.001 0.031 −0.039 0.041 −0.045 0.034

Adjusted R2 0.795 0.777 0.754 0.693

Oujda

Const. 51.743 19.628 56.879 19.082 52.265 15.081 52.934 16.561
NDVI −36.461 45.437 −32.7 49.317 −19.344 34.913 −1.871 44.051
NDBI 16.87 24.862 13.893 31.968 24.819 25.435 36.202 28.596
NDWI −25.32 59.577 −21.167 52.454 −24.925 34.623 −16.485 34.465
DEM −0.006 0.023 −0.01 0.025 −0.003 0.02 −0.005 0.025
Slope −0.001 0.002 0 0.001 0 0.001 0 0.001

Aspect −0.016 0.144 −0.055 0.134 0.028 0.12 0.007 0.135
Hillshade −0.024 0.018 −0.024 0.018 −0.027 0.021 −0.027 0.019

Adjusted R2 0.806 0.846 0.757 0.796

Laayoune

Const. 33.7 5.481 10.836 29.89 38.069 4.853 36.995 6.818
NDVI 7.031 28.339 7.615 31.683 −10.605 48.324 25.375 73.329
NDBI 33.725 18.762 37.698 117.035 24.889 41.982 61.751 59.144
NDWI −12.734 41.704 −226.244 218.499 −26.16 58.689 12.622 72.074
DEM −0.017 0.024 −0.05 0.115 −0.032 0.037 −0.005 0.035
Slope 0 0.001 −0.001 0.003 0 0.001 0 0.001

Aspect −0.007 0.042 0.078 0.124 −0.012 0.042 0.005 0.032
Hillshade −0.004 0.009 −0.001 0.029 −0.001 0.01 −0.001 0.007

Adjusted R2 0.748 0.726 0.821 0.778

Errachidia

Const. 57.621 22.597 57.528 12.717 73.039 22.098 61.9 14.32
NDVI −74.214 80.893 −66.098 54.502 −64.967 72.532 −34.785 36.929
NDBI 21.335 42.014 12.332 28.008 26.221 37.405 24.489 24.373
NDWI −63.112 43.89 −45.168 39.23 −58.741 45.277 −37.562 31.262
DEM −0.014 0.02 −0.013 0.011 −0.025 0.018 −0.015 0.012
Slope −0.001 0.002 −0.001 0.002 −0.001 0.002 0 0.002

Aspect −0.039 0.088 −0.045 0.095 −0.068 0.099 −0.07 0.097
Hillshade −0.013 0.02 −0.015 0.013 −0.011 0.017 −0.012 0.019

Adjusted R2 0.910 0.897 0.922 0.903
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