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Abstract: A novel hybrid Harris Hawk-Arithmetic Optimization Algorithm (HHAOA) for optimizing
the Industrial Wireless Mesh Networks (WMNs) and real-time pressure process control was proposed
in this research article. The proposed algorithm uses inspiration from Harris Hawk Optimization
and the Arithmetic Optimization Algorithm to improve position relocation problems, premature
convergence, and the poor accuracy the existing techniques face. The HHAOA algorithm was
evaluated on various benchmark functions and compared with other optimization algorithms, namely
Arithmetic Optimization Algorithm, Moth Flame Optimization, Sine Cosine Algorithm, Grey Wolf
Optimization, and Harris Hawk Optimization. The proposed algorithm was also applied to a real-
world industrial wireless mesh network simulation and experimentation on the real-time pressure
process control system. All the results demonstrate that the HHAOA algorithm outperforms different
algorithms regarding mean, standard deviation, convergence speed, accuracy, and robustness and
improves client router connectivity and network congestion with a 31.7% reduction in Wireless
Mesh Network routers. In the real-time pressure process, the HHAOA optimized Fractional-order
Predictive PI (FOPPI) Controller produced a robust and smoother control signal leading to minimal
peak overshoot and an average of a 53.244% faster settling. Based on the results, the algorithm
enhanced the efficiency and reliability of industrial wireless networks and real-time pressure process
control systems, which are critical for industrial automation and control applications.

Keywords: Arithmetic Optimization Algorithm; fractional-order Predictive PI; Harris Hawks Opti-
mization; industrial wireless mesh networks; optimal node placement; pressure process; real-time
control

1. Introduction

Network Control Systems (NCS) have become increasingly popular in mining, process,
and manufacturing industries that produce various goods such as food and beverages,
different metals, multiple chemicals, pulp and paper, automobiles, textiles, crude oil re-
fineries, and power generation plants [1]. NCS monitors and controls field instruments
effectively, ensuring efficient and accurate operations [2]. In recent times, WMN has gained
widespread acceptance in the industry, particularly with the wide acceptance of different
wireless networking protocols, namely WIA-PA, Zigbee, WirelessHART, Bluetooth, and
ISA 100 wireless. One of the primary advantages of these wireless standards is eliminating
clunky cabling—a costly and time-consuming process to repair and maintain [3,4]. Ad-
ditionally, WMN enables the expansion of network capability to the regions where it is
difficult or impossible to install the wired cables, thus making monitoring and controlling
operations in remote locations possible. Moreover, using WMNs increases data reliabil-
ity, reduces data loss or interference, and offers improved security measures, protecting
sensitive data from unauthorized access or theft [5]. It is essential to have a thorough
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knowledge of several factors such as transmission power, network topology, and wireless
node density. Ignoring these factors while deploying WMN routers can lead to inadequate
client coverage and connectivity, substandard network range, control-loop failures, and
transmission loss [6]. It is crucial to consider the technical constraints of the deployment
location and the basic topology before deploying wireless mesh routers. These constraints
include factors such as radio signal strength, frequency range, and interference from other
wireless networks [7,8].

WMNs offer many benefits for all the process control and automation industries [9].
However, some issues must be addressed to enhance the network’s performance, including
network coverage, router connectivity, network traffic, compatibility, data security, etc.
While comparing the outdoor regions, the indoor area is challenging while implementing
the WMN for process monitoring and control because of the stochastic interferences [10].
In some outdoor areas, installations require fewer clients than in indoor regions. Fur-
thermore, WMN can be implemented in multiple places with the availability of various
control services in indoor and outdoor conditions. Determining the appropriate location
for installing WMN routers for real-world applications is crucial. Therefore, optimization is
essential for ensuring reliable and efficient WMN performance [11]. Optimization involves
fine-tuning various parameters, such as router placement, transmission power, network
topology, and routing protocols, to achieve the best possible network performance [12]. Op-
timizing these parameters allows the network to ensure that the WMN provides seamless
coverage, reliable connectivity, and low latency, even in challenging industrial environ-
ments. Additionally, optimizing industrial WMNs can help improve network scalability
and reduce maintenance costs [13].

At the same time, a feedback controller is essential in WMNs to ensure the system’s
stability. In addition, the feedback controllers will help the system to maintain stable and
accurate control over the process variables [14]. However, to achieve optimal performance,
the controller must be optimized based on the system characteristics, process model, and
external disturbances of the system it controls. Optimization techniques such as trial and
error, Ziegler–Nichols, and the Cohen–Coon methods are commonly used to optimize
feedback controllers. These conventional techniques involve adjusting the controller’s
parameters to find the optimal values that result in suboptimal, unstable, and ineffec-
tive control. Thus, many researchers proposed using metaheuristic-based techniques to
optimize the controller parameters for different applications [15–20].

The population-based evolutionary algorithms use mutations and crossovers, which
produce new solutions using nature-inspired concepts from evolution. Swarm-based
optimization techniques also employ these procedures [21]. However, they utilize two core
processes for organizing initial swarms: scattering and intensifying them to specific high-
potential regions [22]. Simultaneously, it should be noted that the No Free Lunch theorem
affirms that no such existing metaheuristic optimization technique can be employed to solve
every category of the existing issues in simulation or real-time conditions. In addition, this
theorem highlights the need for a thorough understanding of the issue and the appropriate
optimization technique selection to achieve optimal results [23]. Thus, a brief review of
the Harris Hawk Optimization (HHO) and Arithmetic Optimization Algorithm (AOA) for
different types of applications was carried out and is presented in the following sections
for identifying the research gap for the proposed methodology.

1.1. Harris Hawk Optimization

Initial development of the Harris Hawk Optimization, a swarm-based optimization
technique, was proposed by Heidari et al. [24]. This method is motivated by the cooper-
ation and hunting strategies of Harris hawks in nature, which involve team action and
reaction, as well as prey evasion. The main objective of HHO is to discover solutions to
single-objective problems. The HHO method uses hawks’ chasing actions as search agents
and the prey as the best position. This approach has the potential to solve a variety of
real-world optimization problems, such as engineering design, pattern and speech recogni-
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tion, manufacturing optimization, bio-mechanical engineering, power production quality,
feature selection, and medical image segmentation [25–29]. As with other metaheuristic
techniques, HHO uses exploration and exploitation phases to identify and catch the prey.
However, the HHO differs from others in the exploitation phase, where it catches the
prey based on soft and hard besiege and rapid dives on soft and hard besiege movements.
Detailed information on the HHO algorithm can be found in these articles [24,25,28]. As a
result of the benefits provided by HHO, there has been a significant increase in HHO
research, with the number of studies continuing to grow rapidly to numerous applications
and creating new HHO variations.

The authors of [30] aimed to accelerate the convergence of the HHO by proposing an
improved version of the algorithm that employs two strategies. The first strategy involves
improving the exploration phase of HHO by incorporating opposition-based learning
and logarithmic spiral techniques. The second strategy combines the Modify Rosenbrock
method to enhance the HHO’s local searching capability and convergence rate. The authors
tested their algorithm by conducting experiments on 23 standard benchmark functions.
They also compared their results with various state-of-the-art metaheuristic algorithms.
In [31], two different variants of the HHO, namely binary HHO and quadratic binary HHO,
were used to improve the feature selection problem at various data classification conditions.
Binary HHO has a transfer function that can be either S-shaped or V-shaped, effectively
converting a continuous variable into a binary one. The quadratic binary HHO is designed
to improve the binary HHO by incorporating a binary quadratic model.

Dokeroglu et al. [32] developed a binary variant of the multi-objective HHO approach
to address a classification task. Their novel discrete operators for exploitation (besieging)
and exploration (perching) were introduced. Their study employed four machine learning
methods applied to a COVID-19 dataset for binary classification problems to increase
prediction accuracy. Reference [33] proposed a novel optimization algorithm, called the
modified HHO, to reconfigure photovoltaic modules and disperse shadow regularly to
increase the power generated. The algorithm was tested on different shade patterns with
9 × 9, 6 × 4, and 6 × 20 photovoltaic arrays based on the available simulation data.
The outcomes were analyzed and compared with varying techniques of reconfiguration
based on metrics such as mismatch power, fill factor, power loss, and power enhancement.
Hussain et al. designed an improved variant of the HHO named long-term memory HHO
that enhances the diversity of search agents by maintaining a broad search region for the
exploration phase resulting in better convergence results. The proposed technique uses
different engineering optimization test problems, including power flow optimization for
the power generation systems [34].

The improved HHO algorithm, as introduced by Houssein et al. [35], addresses the
challenge of optimizing large-scale wireless sensor networks. The approach involves
utilizing Prim’s shortest path algorithm to establish minimum transmission paths from the
sink node to all other sensor nodes in order to reconstruct the network. The researchers
have proposed energy-efficient wireless sensor networks using a hybrid Harris hawk-
salp swarm optimization algorithm in [36]. The approach uses a hybrid optimization
algorithm combining the HHO and salp swarm techniques to optimize the network’s
energy consumption. Additionally, a mobile sink strategy reduces energy consumption by
allowing the destination node to move toward the sensor nodes instead of the other way
around. For PID controller optimization, researchers used HHO to control the speed of the
DC motor [37]. Using the HHO algorithm for tuning the controllers improves performance
in terms of steady-state error, rise time, overshoot, and settling time, resulting in better
efficiency, accuracy, and stability of the motor control system. An overall detailed review of
the HHO literature is given in Table 1.
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Table 1. Summary of different modifications in the HHO technique.

Ref. Technique Application Improvements Performance Metrics Comparing
Techniques Results

[30] RLHHO
Complex

engineering
problems

Enhancement of the
exploration and

exploitation

23 standard functions
and 30 CEC 2014 test

problems

HHO, DE, PSO,
WOA, ABC, GOA,
SSA, ALO, BLPSO,
PPPSO, SADE, JDE,

HHO-DE, DHHO/M

Good stability and
prediction accuracy

than other algorithms

[38] HHO-JOS Engineering
design problems

Balancing of the
exploration and

exploitation phase

30 functions of CEC
2014 29 functions of

CEC 2017

HHO, HHO-DO,
HHO-SLO, HHO-SO

Good search space
identification, better

ability to escape from
local optima

[31]
Binary HHO,

Quadratic
Binary BHO

Engineering
problems

Binary variables with
the feature selection

improves phase
transition

22 benchmark
datasets

BDE, BFPA, BMVO,
BSSA, GA

High classification
accuracy with

improved feature
selection

[32] multi-objective
HHO

Real-world
problems

New discrete
operators for

enhancing the
hunting technique

13 benchmark
datasets and

COVID-19 patient
datasets

GWO, ABC, GSA,
TLBO, BOA

Higher prediction
accuracy up to 11.5%

with 83.8% better
feature selection

[33] MHHO Real-world
problems

Reconfigured
switching techniques

for each phases

9 × 9 photovoltaic
array TCT, GA, PSO, GOA

Excellent photovoltaic
array reconfiguration
with 12.5% on energy

saving

[34] Long-Term
Memory HHO

Complex
engineering

problems

Enhances the
diversity of search
agents until search

termination

10 benchmark
functions and

Optimal power flow
problem

HHO, PSO, ABC, FA,
EHO, TEO, BSDE,

GOA,GWO

Up to 68% superior
performance increase,
minimized fuel cost,

power loss and
emission

[35] HHO
Large-scale

wireless sensor
network

None WSN nodes EC, PSO, FPA, GWO,
SCA, MVO, WOA

Improved network
topology for for sink

node placement

[36] Hybrid HH-SS Wireless sensor
networks

A novel fitness
function to control the

balance between
phases

WSN nodes EAD, EASER, SEAR
Enhanced the packet
delivery of 98% with

0.1 s delay

[37] HHO Controller tuning None DC motor control HHO, GWO, SFS,
IWO,

Improved
steady-state error, rise
time, overshoot, and

settling time.

[39] MOHHO,
HMOHHO

Multi-objective
Controller tuning

Hybrid strategies to
promote global

searching capability

7 test functions and
hydraulic turbine
governing system

NSGA-III, MOPSO,
MOGWO

Better performance
during varying load
operating conditions

1.2. Arithmetic Optimization Algorithm

The AOA is a recently designed mathematics-inspired metaheuristic optimization
technique that draws inspiration from the distribution behavioral nature of arithmetic
functions from the mathematics proposed by Abualigah et al. [40]. It uses basic arithmetic
operations, such as addition, subtraction, multiplication, and division, as the primary
operator to explore the desired objective function and the optimal solution. AOA is also a
population-based optimization technique, a set of solutions, called individuals, are gener-
ated randomly and evaluated based on their fitness concerning the considered problem.
The best-fit individuals are chosen and subjected to various mathematical operations to
generate new individuals based on the desired objective values in both phases. These new
individuals are then evaluated for their fitness and the process is repeated until the desired
optimization level is reached [41].

A key advantage of AOA is that it can prevent getting stuck in local minima, a common
issue many optimization algorithms face. AOA achieves this by employing a mechanism
called elitism, which ensures that the best solutions in the population are always preserved
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and passed over to the next generation, allowing the algorithm to explore different areas
of the solution and converge to the global minimum efficiently. Premkumar et al. [42]
proposed a newly developed approach called Multi-Objective AOA (MOAOA) to solve
real-world constrained multi-objective optimization problems. The latest version of the
AOA algorithm has been improved by adding two new functions—elitist non-dominance
sorting and a crowding distance-based mechanism. This new algorithm has been tested
on 35 optimization problems with constraints and five test problems without constraints.
Its effectiveness has been compared with four other advanced multi-objective optimization
techniques. Additional performance metrics are also considered to evaluate the MOAOA for
higher accuracy and effective convergence, in which MOAOA achieved superior performance.

In [43–45], the researchers developed an enhanced form of artificial neural network
which uses a two-step process to identify, locate, and measure the extent of damage in
plate structures made of functionally graded materials, petroleum products, and other
electrical systems. In the first stage, a damage indicator based on the frequency response
function is utilized to forecast which components of the material have been affected.
In the second stage, the networks are employed to quantify the damage and it eliminates
healthy elements from the numerical model and utilizes information from the defective
components to estimate the degree of damage. Abualigah et al. [46] proposed a new
method for various multilevel thresholding in data analysis and image segmentation using
the AOA and differential evolution technique. The DAOA algorithm was assessed using
traditional examination images from nature and CT COVID-19 images. The accuracy of
the segmented images was measured using the peak signal-to-noise ratio and structural
similarity index test.

Zheng et al. [47] developed a new hybrid algorithm called DESMAOA, combining
two meta-heuristic algorithms—the Slime Mold Algorithm (SMA) and the AOA. The DES-
MAOA algorithm was designed to improve the optimization capability of the existing
techniques. The SMAOA algorithm is first used to improve the SMA algorithm, and then
two strategies from SMA and AOA are combined to create the DESMAOA. In [48], a
new method is developed to control an automatic voltage regulator using a robust Model
Predictive Controller (MPC). The suggested approach was crafted to address the challenge
of uncertain automatic voltage regulation parameters. Frequency domain conditions are
obtained through the Hermite–Biehler theorem to ensure stability in the face of pertur-
bations. The tuning of MPC parameters is performed using the AOA technique while
accommodating stability constraints. A time-domain objective is established to optimize
the voltage regulator’s performance by minimizing voltage peak overshoot and fastening
the process settling.

In [49], the authors introduced a forced switching mechanism for AOA termed IAOA
that helps search agents to switch between various local optima. The effectiveness of the
IAOA was tested on multiple benchmark functions and real-world test problems and the
results showed that it outperforms other optimization algorithms in most cases. Different
types of metaheuristic optimization were compared for the various engineering problems
in [50]. The researchers proposed an enhanced version of the AOA called nAOA. The nAOA
technique uses logarithmic and exponential mathematical operators to improve algorithm
performance. The overall summary of the AOA technique is given in Table 2.
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Table 2. Summary of different modifications of the AOA technique.

Ref. Technique Application Improvements Performance Metrics Comparing
Techniques Results

[42] MOAOA
Complex

engineering
problems

Non-dominated
sorting technique and

maintains the
diversity among the
obtained best values

35 Real-World
Multi-objective

Problems and 5 un-
constrained problems

NSGWO, MOMVO,
MOALO, MOSMA

Best coverage,
computational cost,

with high efficiency in
problem solving

[43] IANN-AOA,
IANN-BCMO

Engineering
problems None FGM metal and

ceramic materials AOA, BCMO

Improved damage
prediction with high
accuracy and better

damage quantification

[46] DAOA Real-world
problems

Improved the
convergence ability of

AOA with better
balancing between

the phases

Nature and CT
COVID-19 images

AO, WOA, SSA,
AOA, PSO,
MPA, DE

Improved results than
comparing techniques,

effective-segmented
images, PSNR, and

SSIM values

[47] DESMAOA
Complex

engineering
problems

Random contraction,
subtraction and

addition strategies to
expand the search
regions to increase

accuracy

23 benchmark
functions and
3 engineering

problems

SMA, AOA, GWO,
WOA, SSA,
MVO, PSO

Outperforms other
optimization algorithms

in terms of speed and
accuracy with better

local minima switching

[48] AOA MPC Controller
tuning

Reconfigured
switching techniques

for each phases

Automatic voltage
regulator

ABC, FSA,
MOEO, NSGA-II

Good performance in
minimizing voltage

maximum overshoot
and settling time

[49] IAOA
Complex

engineering
problems

Forced switching
mechanism to avoid

local minima trapping

23 benchmark
functions and 10

CEC2020
test functions

PSO, SCA, GWO,
WOA, SSA, MVO

Better optimization
performance in terms of

speed and accuracy
with better local

minima switching

[50] nAOA
Real-world
engineering
applications

Distributive
mathematical

operators to enhance
the performance

30 benchmark
functions and
3 engineering

problems

SA, SCA, GWO,
AOA,

CPSOGSA, GSA

Better performance
during different test

problems by
position relocation

[51] AOA Fuzzy-PID
Controller tuning None Interconnected power

system TBLO, AOA

Desired performance in
variable load, uncertain

and offers better
contingency

[52] dAOA
Real-world
engineering
applications

Chaotic theory to
improve the local
minima relocation

and
convergence speed

Proton exchange
membrane fuel cell

COA, ALO,
WOA, AOA

Reliable and accurate
with less training error

for the developed
machine learning model

[53] AOAGA
Real-world

engineering and
complex datasets

Hybridizing GA to
improve the searching

abilities without
compromising on
algorithm speed

Several benchmark
and two real-world

problems

SMA, HHO, SA,
MVO, SSA, MFO,
GOA, PSO, GWO

Provided a good
balance between the
number of selected

features and
classification accuracy

Some of the main contributions of this research article are listed as follows:

1. The primary motivation of HHAOA is to solve the problem of placing the routers
optimally to achieve adequate coverage and connectivity, along with finding the best
parameter for the Fractional-Order Predictive PI (FOPPI) controller.

2. The proposed HHAOA technique makes use of all the arithmetic operator combina-
tions, enabling smooth and efficient relocations between local minima without getting
stuck. This approach effectively minimizes computational complexity, resulting in a
more streamlined process outcome.
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3. To achieve a better convergence rate and reach the desired optimal solution location,
the proposed optimization was simulated and validated using 33 different benchmark
functions.

4. The proposed technique was implemented to enhance nodes’ placement and mitigate
congestion in wireless mesh networks (WMNs). The results reveal that the HHAOA tech-
nique is highly effective in reducing the number of node placements, leading to significant
cost savings and improved network congestion compared to alternative algorithms.

5. The HHAOA-optimized FOPPI controller was implemented on a real-time pressure
process plant to validate our proposed optimization algorithm, and the results show a
better performance than conventional controllers.

2. Proposed Hybrid Harris Hawks-Arithmetic Optimization Algorithm

The primary focus of this study was developing a hybrid HHAOA technique to
enhance the coverage and connectivity of a WMN, minimize network congestion, and
optimize parameters for the FOPPI controller [54]. The proposed technique hybridizes the
HHO and AOA techniques. Despite the impressive capabilities of HHO and AOA, some
drawbacks need to be addressed, including the risk of premature convergence, becoming
trapped in multiple local optima, and its phase-switching mechanism. The proposed
HHAOA approach improves convergence behavior, the position-switching mechanism, and
solution quality. When implementing the hybrid method for searching, the process becomes
notably more thorough and effective. This is due to the ability to navigate throughout the
desired search area and avoid becoming trapped in local optima. As a result, a diverse
range of potential solutions can be generated, increasing the likelihood of finding the
optimal outcome. Furthermore, the HHAOA will be used to optimize the placement of
WMN routers via simulation. Additionally, real-time experiment experimentation on the
pressure process plant using the HHAOA-optimized FOPPI controller was compared with
traditional techniques.

2.1. Proposed Hierarchical Structure

The proposed HHAOA hierarchical structure is depicted in Figure 1. The system
comprises a top layer (primary layer) with M HHO search agents and a bottom layer
(secondary layer) with groups containing an N AOA population. The AOA execution in
the bottom layer initiates the process of updating the search agents’ positions. In order to
find the most optimal solution, it is crucial to ensure that the positions of all search agents
in the upper layer are updated with the best solution discovered by the corresponding
group in the lower layer. New equations can be formulated for both the exploitation and
exploration phases, leading to an even more effective solution. This approach allows for a
comprehensive problem analysis and significantly improves the overall outcome.

Y1 Y2 YM  .

Y1N Y2N   . YMN

Figure 1. Hierarchy form of the proposed HHAOA optimization algorithm.
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2.2. Exploration

This section proposes an exploration mechanism for hybridizing the HHO and AOA
algorithms. The algorithm draws inspiration from the hunting behavior of Harris hawks,
capitalizing on their exceptional eyesight to effectively track and recognize prey. However, the
prey may not be immediately visible in some cases, prompting the hawks to patiently wait,
observe, and monitor the objective location for several hours until detecting a potential target.

The algorithm expertly utilizes Harris hawks to represent potential solutions, with the
ultimate goal of comparing the best solution to the ideal outcome. The algorithm flawlessly
imitates the hawks’ actions by strategically placing them in different locations and using
various approaches until the desired solution is found. Each strategy is meticulously
employed in equal measure to ensure maximum efficiency. The hawks rest closer to the
prey (rabbit) based on the positions of other family members during q < 0.5. When the
condition is met with q ≥ 0.5, the hawks will randomly perch on tall trees within the range
of their family members. Instead of selecting the random tall trees, the best position nearest
to the rabbit will be identified using the AOA algorithm, which will further enhance the
chances of reaching and identifying the target much faster. Therefore, the exploration
strategy of the proposed HHAOA is obtained using the equation given below.

Yi
j+1 =



yrand − r1 | yrand − 2r2(yj ÷ (MOP + ε)× ((UBj

−LBj)× µ + LBj) |, q ≥ 0.5 & c ≥ 0.5
yrand − r1 | yrand − 2r2(yj ×MOP×((UBj − LBj)

× µ + LBj) |, q ≥ 0.5 & c < 0.5
yB − ym − r3

[
LBj + r4

(
UBj − LBj

)]
, q < 0.5,

(1)

where Y j+1
i describes the location of t-th solution in the top layer (HHO) corresponding to

the j-th search solution in the AOA layer. j represents the current iteration of the algorithm.
r1, r2, r3, r4, c, and q are the random numbers that lies in the span of [0,1]. yrand, yB, ym, UB,
LB, MOP are the random hawk selected, the best location obtained so far in the present
iteration, average mean of the hawk’s position, upper and lower bound ranges of the
variables, and the math-optimizer probability coefficient. The MOP and average mean of
the hawk’s location values are calculated based on the equation given below.

MOP(j) = 1−
(

t
T

)1/α

(2)

ym(j) =
1
N

N

∑
j=1

yi(j), (3)

where α is a crucial parameter factor that determines the precision of the exploitation phase,
t, and T represent the current and the highest possible number of iterations, respectively.
The position of every hawk in iteration j is represented by yi(t), and the total number of
hawks is denoted by N.

2.3. Transition Stage

The HHO algorithm can alternate between exploration and exploitation modes de-
pending on the amount of energy the prey has left while attempting to escape. The prey’s
energy decreases notably during its escape. This energy is determined by using the equa-
tion below:

E = 2E0

(
1− t

T

)
, t = {1, 2, 3, . . . , T}. (4)

The escaping energy of the prey is represented as E and the maximum number of
iterations is represented by T with the current iteration being represented as t. Additionally,
E0 indicates the initial energy state of the prey, which randomly changes within the interval
of (−1,1) at each iteration in HHO. When E0 decreases from 0 to −1, the prey is physically
exhausted, while an increase in E0 from 0 to 1 demonstrates that the prey is becoming
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more powerful. During the iterations, the escaping energy (E) gradually decreases. When
the escaping energy is |E| ≥ 1, the hawks explore various locations to search for the
prey, thereby performing the exploration phase. Conversely, when |E| < 1, the algorithm
focuses on exploiting the neighbourhood of the solutions.

2.4. Exploitation

During the attacking phase, Harris hawks employ a surprise pounce maneuver to
take down their intended prey, which is identified in the previous stage. However, the
prey may attempt to evade danger, resulting in various chasing styles observed in actual
real-life scenarios.

Based on the prey’s fleeing behavior and the Harris hawks’ pursuit strategies, the
HHO proposes four potential approaches to simulate the attacking phase. As preys always
try to escape threatening situations, they have a chance (r) of successfully escaping (r < 0.5)
or not (r ≥ 0.5) before the surprise pounce. Hawks employ a hunting technique known
as hard or soft encirclement to capture their prey which involves surrounding the prey
from various angles, considering its energy level. The hawks gradually move closer to their
prey to increase their chances of a successful surprise attack in practical settings. As the
fleeing prey loses energy over time, the hawks intensify the besiege process to capture the
exhausted prey effortlessly. Parameter E models this strategy and enables the HHO to
alternate between soft and hard besiege processes. Similar to the exploration, the AOA will
reach the solution (prey) closer in this phase.

2.4.1. Soft Besiege

The rabbit retains sufficient energy to flee through random and deceptive jumps
during r ≥ 0.5 and |E| ≥ 0.5. However, its efforts prove to be unsuccessful, and the
Harris hawks gradually encircle it, causing the rabbit to become increasingly tired before
ultimately launching a surprise attack. The following Equation (5) represents this surprise
attack of HHAOA:

Yi
j+1 =

{
yB − [FA]− E | 2(1− r2)yB − [FA] |, c < 0.5,
yB − [FB]− E | 2(1− r2)yB − [FB] |, c ≥ 0.5,

(5)

where

FA = yj −MOP×
(
(UBj − LBj)× µ + LBj

)
FB = yj + MOP×

(
(UBj − LBj)× µ + LBj

)
.

2.4.2. Soft Besiege with Progressive Rapid Dives

When the rabbit’s energy is sufficient (|E| ≥ 0.5) for successful escape and the hawk’s
movement is rapid (r < 0.5), a gentle ambush is carried out before the surprise attack.
This approach is more intelligent than the previous method. To mathematically model the
prey’s escape patterns and the predator’s leapfrog movements, the HHAOA algorithm
utilizes the idea of incorporating the Levy flight (LF) pattern. LF simulates the erratic
zigzag movements of prey (especially rabbits) in the fleeing phase and hawk’s irregular,
sudden, and rapid dives as they approach the targeted prey. The LF mechanism used here
is given below.

LF(x) =
µ× δ

|ν|
1
ζ

× 0.01, δ =

 Γ(1 + ζ)× sin
(

πβ
2

)
Γ
(

1+ζ
2

)
× ζ × 2

(
ζ−1

2

)


1
ζ

, (6)

where µ and ν are random numbers that lie in the range of inside [0,1], ζ is a constant value
that is set at 1.5.

During the soft besiege, hawks perform multiple rapid dives around the rabbit, con-
stantly adjusting their position and direction to match the deceptive movements of the prey.
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This mechanism is also observed in other competitive situations in nature. The movement
of the hawks in this phase is obtained using the following position update rule given
in Equation (7).

Yi
j+1 =



Z if F(Z) < F
(

yj

)
&

yj =

{
FA, c < 0.5
FB, c ≥ 0.5

X i f F(X) < F
(

yj

)
&

yj =

{
FA, c < 0.5
FB, c ≥ 0.5,

(7)

where

Z = X + S× LF(D)
X = yB − E | JyB − ym |; J = 2− 2r2
S = Random vector in the dimension D (1× D).

2.4.3. Hard Besiege

When the conditions meet r ≥ 0.5 and |E| < 0.5, the rabbit will become exhausted
and have less energy to flee. As a result, the Harris hawks will attempt to capture the rabbit
by surrounding it aggressively and launching surprise attacks. The following equation can
describe this intense attack phase.

Yi
j+1 =


yB − E | yB − [yj −MOP× ((UBj − LBj)×
µ + LBj)] |, c < 0.5
yB − E | yB − [yj + MOP× ((UBj − LBj)×
µ + LBj)] |, c ≥ 0.5.

(8)

2.4.4. Hard Besiege with Progressive Rapid Dives

If |E| < 0.5 and r < 0.5, the rabbit lacks the necessary energy to flee and must
resort to a sudden, aggressive dive technique to catch its prey off guard. This maneuver
places the prey in a position similar to a soft dive. Still, the hawks work to minimize the
distance between themselves and the prey’s average location while attempting to escape.
The movement of this phase is obtained as follows:

Yi
j+1 =



Z if F(Z) < F
(
yj
)
&

yj =

{
FA, c < 0.5
FB, c ≥ 0.5

X i f F(X) < F
(
yj
)
&

yj =

{
FA, c < 0.5
FB, c ≥ 0.5

(9)

where,

Z = X + S× LF(D)
X = yB − E | JyB − yj |.

The HHAOA proposal consists of two distinct phases: exploration and exploitation. The ini-
tial phase is responsible for finding a new position to enhance the optimization process. At
the same time, the latter stage utilizes four different strategies to maximize the position
update to converge effectively. Detailed information about when to switch between these
two phases is presented in Table 3.
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Table 3. Different HHAOA conditions and their respective cases in exploration and exploitation
phases.

Phase Technique Primary Layer Secondary Layer Remark

Exploration

|E| ≥ 1 & q ≥ 0.5 c ≥ 0.5 Condition 1 of Equation (1)
|E| ≥ 1 & q ≥ 0.5 c < 0.5 Condition 2 of Equation (1)
|E| ≥ 1 & q < 0.5 Condition 3 of Equation (1)

Soft besiege |E| < 1 & |E| ≥ 0.5 & r ≥ 0.5 c < 0.5 Condition 1 of Equation (5)
|E| < 1 & |E| ≥ 0.5 & r ≥ 0.5 c ≥ 0.5 Condition 2 of Equation (5)

Soft besiege-
rapid dives

|E| < 1 & |E| ≥ 0.5 & r < 0.5 c < 0.5 or c ≥ 0.5 Condition 1, case 1 or 2 of Equation (7)
|E| < 1 & |E| ≥ 0.5 & r < 0.5 c < 0.5 or c ≥ 0.5 Condition 2, case 3 or 4 of Equation (7)

Exploitation Hard besiege |E| < 1 & |E| < 0.5 & r ≥ 0.5 c < 0.5 Condition 1 of Equation (8)
|E| < 1 & |E| < 0.5 & r ≥ 0.5 c ≥ 0.5 Condition 2 of Equation (8)

Hard besiege-
rapid dives

|E| < 1 & |E| < 0.5 & r < 0.5 c < 0.5 or c ≥ 0.5 Condition 1, case 1 or 2 of Equation (9)
|E| < 1 & |E| < 0.5 & r < 0.5 c < 0.5 or c ≥ 0.5 Condition 2, case 3 or 4 of Equation (9)

2.5. Pseudocode of Proposed Algorithm

The application of HHAOA for the industrial wireless mesh networks (WMN) and
FOPPI controller parameter optimization is comprehensively explained in the pseudocode
for the proposed technique presented in Algorithm 1. The respective implementation of
the HHAOA using the flowchart is illustrated in Figure 2.

Exploitation Phase

Initialize HHAOA 

parameters

Start

Initialize the search 

agents positions

Calculate fitness value 

for every location

Calculate prey energy 

(E) from Equation 4

Return the best 

solution

End

Update the position 

using the first case 

Equation 1

Yj = Yj+1

No

Yes

NoYes

NoYes

Initialization Phase

Exploration Phase

t   T

Check the search space 

boundary limits

|E|  1

Generate q and c

q   0.5

c   0.5

Update the position 

using the second case 

Equation 1

Update the position 

using the third case 

Equation 1

NoYes

NoYes

|E|  0.5

Generate r and c

Update the position 

using soft besiege

r   0.5
NoYes

Update the position 

using soft besiege 

with rapid dives

r   0.5
NoYes

Update the position 

using hard besiege

Update the position 

using hard besiege 

with rapid dives

Figure 2. Flowchart of the proposed HHAOA technique.
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2.6. Algorithm Complexity

It is crucial to note that the complexity of the proposed HHAOA algorithm is heavily
influenced by three critical processes: initialization of the transition stage, fitness function
evaluation, and position updating of Hawks. The initialization process has a complexity of
C(n) when there are n hawks. Updating the location vector of all hawks involves searching
for the optimal location, which can be complex. This involves C(T × n) + C(T × n × D)
operations, where T represents the maximum number of iterations and D is the dimension
of the current particular problem in hand. Therefore, it is imperative to understand that the
computational complexity of HHAOA can be expressed as C(n × (T + TD + 1)).

Algorithm 1 Pseudocode of HHAOA technique.

Input: Random WMN routers positions and manually calculated FOPPI controller param-
eters.

Output: Optimal WMN connection and FOPPI parameters
1: Initialize the search agents positions yj (j= 1, 2, 3, ..., N)
2: Check search space boundary and initiate the t ≤ T case
3: while (t ≤ T) do
4: Attain the initial solution yB
5: for (All hawks (yj)) do
6: Amend the position update
7: Use (4) to update the E
8: Phase: Exploration
9: if |E| ≥ 1 & q ≥ 0.5 then

10: if c ≥ 0.5 then
11: Update the solution using Equation (1) condition 1
12: else if c < 0.5 then
13: Update the solution using Equation (1) condition 2
14: end if
15: else if |E| ≥ 1 & q < 0.5 then
16: Update the solution using Equation (1) condition 3
17: end if
18: Phase: Exploitation
19: if |E| < 1 then
20: if (|E| ≥ 0.5 and r ≥ 0.5) then
21: if c < 0.5 then
22: Solution update using Equation (5) condition 1
23: else if c ≥ 0.5 then
24: Solution update using Equation (5) condition 2
25: end if
26: else if (|E| ≥ 0.5 and r < 0.5) then
27: if c < 0.5 or c ≥ 0.5 then
28: Solution update using Equation (7) condition 1
29: else if c < 0.5 or c ≥ 0.5 then
30: Solution update using Equation (7) condition 2
31: end if
32: else if (|E| < 0.5 & r ≥ 0.5) then
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Algorithm 1 Cont.

33: if c < 0.5 then
34: Solution update using Equation (8) condition 1
35: else if c ≥ 0.5 then
36: Solution update using Equation (8) condition 2
37: end if
38: else if (|E| < 0.5 & r < 0.5) then
39: if c < 0.5 or c ≥ 0.5 then
40: Solution update using Equation (9) condition 1
41: else if c < 0.5 or c ≥ 0.5 then
42: Solution update using Equation (9) condition 2
43: end if
44: end if
45: end if
46: end for
47: t = t + 1
48: end while
49: Return YB for optimal WMN connectivity with all the routers and optimal FOPPI

controller parameters for real-time pressure process plant.

3. Problem Formulation

The main focus of this subsection is the implementation of the proposed HHAOA
approach, which addresses the problem of optimal placement of WMN routers and finding
the optimal FOPPI controller parameters. The effectiveness of the HHAOA method was
compared against different metaheuristic optimization techniques, such as AOA, MFO,
SCA, GWO, WOA, and HHO. The benchmark algorithms and the proposed method were
evaluated using MATLAB software and the results were analyzed based on the original
positions of the clients generated using the Atarraya simulator [25].

3.1. Industrial Wireless Mesh Networks

Proper planning is essential when implementing a wireless mesh network to ensure
the optimal placement of mesh routers. Determining the ideal locations and the number of
routers needed to achieve complete coverage and connectivity is crucial. Our approach
assumes that mesh clients remain stationary and their locations are predetermined, as the
placement of mesh routers in an industrial environment depends on the clients’ locations.
Despite this, finding the optimal placement of WMN routers in a timely and precise manner
remains a computational challenge. To address this issue, we made certain assumptions
about the placement of mesh routers in a wireless mesh network.

• The devices connected to the mesh network stay in one place within a desired 2D region;
• Each router in the network has the same range for transmitting signals (Identical transmission);
• The routers are connected based on their transmission range to ensure connectivity.

The location of mesh clients establishes the ideal positioning of mesh routers and it is
represented by M = {L(p1, q1), L(p2, q2), L(p3, q3), . . . , L(pn, qn)}. It is crucial to remember
that a network N may not be entirely linked, meaning it could consist of multiple distinct
subgraphs. In order to improve the connectivity of the WMN, it is important to enlarge
the largest subgraph in the network until it reaches its maximum capacity. A network is
considered fully linked when all mesh routers are interconnected. The network coverage
for the clients can be obtained using the following equation.

Ω(N) =
c

∑
d=0

∆d (10)

where, ∆d =

{
1 if the router encloses the client d
0 Otherwise.
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Similarly, the network connectivity between the WMN routers will be measured using
the expression below.

Φ(N) = max
d∈{1,...,h}

|Nd|. (11)

The primary goal of the HHAOA is to enhance the efficiency of the WMN, aiming to
maximize the network range and connection while minimizing the usage of mesh routers to
alleviate network traffic. Moreover, when establishing the fitness function, the parameters
Φ (N), representing the level of connectivity among routers, and Ω (N), stating the network
coverage, were considered. The weighted sum technique is a straightforward approach
for streamlining a multi-objective problem. By expertly combining each objective and
assigning a user-determined weight, a single-objective problem is formed.

Fj = ξ ·
(

1− Φ(N)

n

)
+ (1− ξ) ·

(
1− Ω(N)

m

)
; (12)

where, the m and n are the numbers of mesh network clients and routers, respectively.
ξ is a weight-adjusting coefficient parameter that lies in the range of (0,1). Furthermore,
the metrics for the statistical comparison will be carried out in terms of mean, standard
deviation (std.), and best and worst.

3.2. Pressure Process Control

Figure 3 illustrates the schematics of the real-time pressure process plant, which
operates in real-time. The primary buffer tank, VL 202, was designed to withstand up
to 10 Bar of pressure from the centralized air compression system that supplies air to it.
The pressure inside the tank can be controlled using the hand valve, HV 202, while the
process control valve, PCV 202, ensures that the pressure inside the tank is maintained
at the desired level. The pressure transmitter, PT 202, is utilized to measure the pressure,
which is then converted to digital voltage signals ranging from 0 to 5 V. These signals are
sent to the pressure indicating controller PIC 202, which transmits the control signal to the
host PC via I/O interface boards.

Excess gas outlet 

connected to 

Process Control 

Valve PCV 203

Hand Valve

HV 202

Inlet gas from 

centralized 

compressor

Process Control 

Valve 

PCV 202

Buffer Tank 

VL 202

Pressure Transmitter 

PT 202

MATLAB Server

(HOST PC)

I/O Interface 

Board

Digital I/O Card 

PCI-1751

AI Card

PCI-1713U

AO Card

PCI-1720U

Figure 3. Real-time schematic of the pressure process plant.

For safety purposes, there is an analog pressure gauge that displays pressure changes
inside the tank. In case of an emergency, there is a hand-operated valve at the bottom of the
buffer tank that releases compressed air from the VL 202 if the valve PCV 202 fails. The hand
valve can also be used as an external disturbance injection channel during experimentation.
The pressure inside the buffer tank is regulated by releasing excess air through an outlet on
the top of the process tank, which is connected to another process control valve (PCV 203).
This valve is kept at a 50% opening during the experiment to prevent excessive pressure
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build-up inside the VL 202. The host PC sends signals to the control valve actuator PCV
202 based on the set-point value.

Figure 4 displays the piping and instrumentation diagram of the pressure process
plant. The plant operates in “Remote Desktop Connection” mode for safety, controlling
processes from the central control room. The communication between the mainframe PC
and field devices, such as the control valve actuator, flow sensors, and pressure transmitter,
is established with PCI cards. These cards provide isolation protection of 2500 V DC
between the PCI bus outputs. The process plant’s analog input is received by a 32-channel
analog input card called PCI-1713U. It has a 12-bit resolution and a sampling rate of
100 k samples. The PCI-1720U module, a crucial component of the PCI card, employs a
high-quality 12-bit, 4-channel analog output port to transmit precise control signals to the
host PC. Furthermore, the PCI-1751 card allows for remote control of the pressure process
plant by facilitating data transmission of digital signals from the PT 202 to the host PC and
vice versa, with 48 bits of parallel digital input/output.

Access through 

 Remote Desktop Connection 

Host PC Panel

PCI Bus

Host PC

Workstation at 

control room

PCI-1720U

PCI-1713U

PCI-1751

VL 202

PT 

202

PIC 

202

PCV 202

Inlet gas from 

centralized compressor

HV 202

0
-5

V

Excess gas outlet 

R/L

0-5V

0-5V

TCP/IP (Ethernet)

Figure 4. P&I diagram of the pressure process plant.

Obtaining the transfer function of the pressure process plant is achievable through
mathematical modeling using the open-loop response for the step input signal. By applying
the characteristic equation of the first-order plus dead-time system, the final transfer
function of the plant is equated as given below.

Gp(s) =
K

1 + Ts
e−sLp =

0.866
1 + 1.365s

e−s; (13)

where, K is the process gain, Lp represents system dead-time, and T is the system time con-
stant.

Fractional-order predictive PI controller is a dead-time compensating control mecha-
nism proposed by Arun et al. to overcome the limitations of conventional PI controllers [54].
The FOPPI controller’s design is characterized by its simplicity and effectiveness, and it
boasts the impressive capability to compensate for dead-time and is exceptionally adept at
rejecting stochastic disturbances. The FOPPI controller integrates the dead-time compen-
sating ability of the Smith predictor with the robust nature of fractional-order controllers.
The FOPPI controller is particularly useful for non-linear, fast response, and sensitive
applications such as pressure processes. The controller produces an adequate robust con-
trol signal unaffected by load changes or plant uncertainties. However, the controller
parameters that are identified through analytical techniques may not be enough to create an
effective control signal. This can cause problems with the performance of the plant. In order
to overcome this issue, the proposed HHAOA and various optimization algorithms were
used to obtain the optimal controller parameters. These parameters were then used to
investigate the pressure process plant. The FOPPI control signal was generated using the
equation provided below.

u(s) = Kp

(
1 +

1
Tisλ

)
e(s)− 1

Tisλ
(1− e−sLp)u(s); (14)
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where, Kp = 1
K . Let u(s) and e(s) represent the control and error signals, respectively. Kp

represents the proportional gain, Ti denotes the integral time, λ represents the fractional-
order integrator, and Lp represents the process dead-time. The proposed HHAOA tech-
nique was used for obtaining the FOPPI controller parameters with the goal of minimizing
the integral time absolute error (ITAE) value. The ITAE value was used as the objective
function for all optimization algorithms. Figure 5 shows how the FOPPI controller was
tuned using the HHAOA method. The ITAE value can be calculated using the following
formula:

ITAE =
∫ ∞

0
t|e(t)|dt. (15)

Figure 5. FOPPI controller tuning using HHAOA.

4. Results and Discussion

This section presents the benchmark functions and wireless mesh network simulation
analysis in the first and second subsections. Lastly, the HHAOA-optimized FOPPI con-
troller was experimented on with the pressure process plant. During the simulation of the
benchmark functions, the Hawks population was kept at 100, and ran for 300 iterations,
while in the WMN the simulation ran for 500 iterations, keeping the Hawks population
constant with dimensions of 1000 m by 1000 m. The experimentation and simulation
were conducted in the Intel(R) Xeon PC 3.10 GHz and 16.00 GB RAM using the MAT-
LAB/Simulink software (2021a). Additionally, extra parameters for the algorithms are
listed as min = 0.2, max = 1.0, convergence constant a = 2, initial and escaping energies
E0 = [0 1] and E = [−1 1], α = 5, µ = 1.5, and ε = 2.2204× 10−16.

4.1. Performance Analysis on Benchmark Functions

A simulation analysis for 30 benchmark functions (refer to Tables 4 and 5) using AOA,
MFO, SCA, GWO, WOA, HHO, and the proposed HHAOA was conducted. The selected
benchmark functions were independent of each other in multiple dimensions and had various
local minima, global minima (Gm), different ranges, and diverse boundary values to ensure
a reliable comparative analysis. Furthermore, the algorithms were comprehensively tested
using multimodal and hybrid composition functions in single and multiple dimensions.
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Table 4. Optimization test functions—Unimodal and Multimodal benchmark functions.

Cat. Gm Func. Description Range

U
ni

m
od

al

0 F1 F(x) = ∑n
i=1x2

i [100,100]

0 F2 F(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| [10,10]

0 F3 F(x) = ∑d
i=1

(
∑i

j=1xj

)2 [100,100]

0 F4 F(x) = maxi| Xi |, 1 ≤ i ≤ n [100,100]

0 F5 F(x) = ∑n−1
i=1

[
100
(

x2
i+1 − 2xi+1x2

i + x4
i

)
+
(

x2
i − 2xi + 1

)]
[30,30]

0 F6 F(x) = ∑n
i=1
(

x2
i + 0.25 + xi

)
[100,100]

0 F7 F(x) = ∑n
i=1ix4

i + random (0, 1) [128,128]

M
ul

ti
m

od
al

−148.9829× n F8 F(x) = ∑n
i=1−xi sin

(√
|xi|
)

[500,500]

0 F9 f9(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[5.12,5.12]

0 F10 F(x) = e + 20

(
1 + exp

(
−0.2

√
1
n

n

∑
i=1

x2
i −

(
1
n

n

∑
i=1

cos(2πxi)

)))
[32,32]

0 F11 F(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [600,600]

0 F12
F(x) =

π

n
{10 sin(πy1)}+

n−1

∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1) +
n

∑
i=1

u(xi, 10, 100, 4),

where yi = 1 +
xi + 1

4
, u(xi, a, k, m)


K(xi − a)m xi > a
0 −a ≤ xi ≥ a
K(−xi − a)m −a ≤ xi

[50,50]

0 F13 F(x) =0.1
[

sin2(3πx1) +
n

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]
+
(

x2
n − 2xn + 1

)
[
1 + sin2(2πxn)

]]
+

n

∑
i=1

u(xi, 5, 100, 4)

[50,50]

Table 5. Optimization test functions—Fixed dimension multimodal benchmark functions.

Cat. Gm Func. Description Range

Fi
xe

d-
di

m
en

si
on

m
ul

ti
m

od
al

1 F14 F(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65,65]

0.0003 F15 F(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5,5]

−1.0316 F16 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5,5]

0.398 F17 F(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5,5]

3 F18 F(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×
[
30 + (2x1 − 3x2)

2 ×
(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)] [−2,2]

−3.86 F19 F(x) = ∑4
i=1 ci exp

(
−∑3

j=1 aij

(
x2

j − 2pijxj + p2
ij

))
[1,3]

−3.32 F20 F(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij

(
x2

j − 2pijxj + p2
ij

)2
)

[−0,1]

−1.01532 F21 F(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 [0,10]
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Table 5. Cont.

Cat. Gm Func. Description Range

H
yb

ri
d

−19.2085 F22 F(x) =
∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣1− √x2
1+x2

2
π

∣∣∣∣)∣∣∣∣ [−10,10]

−117.49797 F23 F(x) = 1
2 ∑d

i=1
(

x4
i − 16x2

i + 5xi
)

[−5,5]

0 F24 F(x) = sin2(πw1) +
d−1

∑
i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+ (wd − 1)2

[
1 + sin2(2πwd)

]
,

where , wi = 1 +
xi − 1

4
, for all i = 1, . . . , d

[−10,10]

0 F25 F(x) = 100
(

x2
1 − x2

)2
+ (x1 − 1)2 + (x3 − 1)2 + 90

(
x2

3 − x4

)2

+10.1
(
(x2 − 1)2 + (x4 − 1)2

)
+ 19.8(x2 − 1)(x4 − 1)

[−10,10]

−3.86278 F26
F(x) = −

4

∑
i=1

αi exp

− 3

∑
j=1

Aij

(
xj − Pij

)2
, where, α = (1.0, 1.2, 3.0, 3.2)T

A =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 P = 10−4


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828


[0,1]

−10.5364 F27
F(x) = −

m

∑
i=1

 4

∑
j=1

(
xj − Cji

)2
+ βi

−1

,

where, m = 10; β =
1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

C =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6



[0,10]

−3.32237 F28

F(x) = −
4

∑
i=1

αi exp

− 6

∑
j=1

Aij

(
xj − Pij
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i
π

)
[0,π]

0 F30 F(x) = (x1 − 1)2 + ∑d
i=2(2x2

i − xi−1)
2 [−10,10]

4.1.1. Benchmark Functions

The algorithm’s accuracy was tested using unimodal functions (F1 to F7). As for
multimodal functions, they contain multiple local minimum points, which serve as a
measure of the algorithm’s exploration capacity. This capacity pertains to its ability to
move seamlessly from local to global minima without getting stuck in a single position.
Table 4 shows the F8 to F13 multimodal benchmark functions that have many local minima.
The F14 to F21 functions also have multiple local minima with fixed dimensions. These
functions help to evaluate the stability of optimization algorithms. It is necessary to mention
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that the first 13 benchmark functions have higher dimension values of 30, 100, 500, and
1000 to evaluate the proposed HHAOA.

The remaining functions, from F22 to F30, are hybrid functions as detailed in Table 5.
While working with unimodal functions, finding the optimal solutions was comparatively
effortless as they were conveniently located and easily reachable from the current location.
The likelihood of being trapped in a particular search area is minimal. Finding the optimal
position and movement between hybrid functions F19 and F33 is very difficult because
there are many local minimum values to consider in the search space. Figure 6 displays the
surface plots for all functions, providing a clear visualization of the search space needed to
identify the global minimum for both single and multi-minima functions. Functions can be
classified into different categories based on their surface area and shape. These categories
include bowl-shaped, plate-shaped, and valley-shaped functions. There are also functions
with single or multiple local minima. The latter type of function has a broad search space,
wide range, numerous layers, and multi-dimensional features due to its multiple local
minima values.

Figure 6. Benchmark functions search space plots.

4.1.2. Convergence Analysis

The benchmark procedures were evaluated through 300 iterations, with 100 for the
loop condition, to determine their convergence properties. Convergence, in this context,



Sensors 2023, 23, 6224 20 of 34

indicates the point at which an algorithm locates the smallest possible fitness value within
the specified number of maximum iterations. Figure 7 illustrates the convergence analysis
plot for all the benchmark functions in the presence of all the optimization algorithms.
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Figure 7. Convergence performance of all the benchmark functions.

In the unimodal functions (F1–F4), the conventional HHO had the fastest convergence
in reaching the global minima. However, in the remaining functions, the proposed HHAOA
relocated the positions faster, reaching the objective function in the first place. In this
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performance, the MFO had the major setback of exploring desired search regions, leading
to inadequate performance and securing the last position. In the multimodal functions
(F8–F13), using the hawk’s population effectively, the proposed HHAOA had a better
transition phase from exploration to exploitation while noticing the convergence speed,
which has a more significant speed of reaching the global minima with fewer iterations.
In addition, the amplitude reduction rate is directly proportional to its convergence speed
in the HHAOA performance in these functions. These results, in turn, illustrate the ability
of HHAOA to focus more on the desired search locations during the iterations.

It is important to note that, in F9, many algorithms were unable to reach the desired
value because of the existence of multiple minimum values. (see Figure 6). Still, the
HHAOA explicitly performed well and had the best and faster convergence near the global
minima. SCA and MFO had the least convergence speed in these functions, followed by
GWO, WOA, and AOA, respectively. Notably, the conventional HHO had performance
comparable to that of the proposed HHAOA but could not outperform it because of the
premature convergence towards reaching the objective function. In the fixed-dimension
multimodal functions (F14–F21), the proposed HHAOA continued the first position by
effectively finding the best minimum value. In these functions, AOA has the slowest
convergence rate. Surprisingly, the HHO had the least performance and lost the ability
to relocate the position to find the desired search regions within the desired number of
iterations.

As the number of dimensions increases, the quality of outcomes and the efficiency
of alternative approaches deteriorate noticeably. This indicates that HHO can effectively
uphold a favorable equilibrium between exploration and exploitation behaviors in scenarios
involving multiple variables. The performances in the hybrid functions (F22–F30) have
a similar results trend. Notably, in F24, MFO has the best convergence performance,
followed by the HHAOA. The proposed HHAOA performs best in non-zero global minima
functions by converging nearer to the global minima with fewer iterations, even at less than
50 iterations in most of the functions. Lastly, the proposed HHAOA can deliver exceptional
outcomes across all dimensions and consistently outperforms other methods when dealing
with problems involving many variables.

4.1.3. Quantitative Analysis

In this section, the efficiency of each algorithm was evaluated by measuring how
closely the statistical data match the global minimum of the benchmark function being
tested. HHAOA performs better than other algorithms, as it has significant performance
outcomes. However, this also means that HHAOA can identify a better optimal solution
with fewer iterations and is closer to the objective function, as evidenced by its lower mean
value. In contrast, a lower standard deviation (Stdv) signifies more excellent convergence
stability, effectiveness, and reliability. Consequently, HHAOA is capable of avoiding local
optima with great success. Table 6 show the numerical comparison for all the optimization
techniques. Here, the abbreviated terms are Func.—Benchmark Functions, Gm—Global
minima, and Std.Dev—Standard deviation.

Table 6. Quantitative analysis of the different benchmark functions for all the optimization algorithms.

Func. Gm Statistics AOA MFO SCA GWO WOA HHO HHAOA

F1 1

Mean 1.20× 10−14 2.00 × 103 2.4136 2.05× 10−33 5.28× 10−85 9.02× 10−96 3.16 × 10−6

Best 1.40× 10−270 0.2900 0.0036 6.88× 10−35 1.47× 10−96 1.75× 10−121 6.84× 10−17

Worst 6.00× 10−13 2.00 × 104 27.5418 1.10× 10−32 1.62× 10−83 4.51× 10−94 1.99× 10−12

Std. Dev 8.49× 10−14 4.95 × 103 4.3477 2.80× 10−33 2.34× 10−84 2.34× 10−84 5.19× 10−13

F2 0

Mean 0.0 31.5216 0.0100 6.27× 10−20 4.56× 10−53 1.89× 10−50 1.68× 10−20

Best 0.0 0.1102 9.06 × 10−5 1.06× 10−20 1.07× 10−61 4.45× 10−65 2.13 × 10−9

Worst 0.0 80.0085 0.0740 2.05× 10−19 1.32× 10−51 9.29× 10−49 7.75 × 10−7

Std. Dev 0.0 21.6905 0.0140 4.19× 10−20 2.20× 10−52 1.31× 10−49 1.71 × 10−7
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Table 6. Cont.

Func. Gm Statistics AOA MFO SCA GWO WOA HHO HHAOA

F3 0

Mean 0.0055 1.99 × 104 6.44 × 103 3.42 × 10−8 2.75 × 104 5.34× 10−81 1.09 × 10−7

Best 3.63× 10−224 1.73 × 103 381.3511 3.48× 10−12 3.72 × 103 3.05× 10−103 4.51× 10−13

Worst 0.0711 4.71 × 104 2.33 × 104 4.48 × 10−7 4.97 × 104 1.85× 10−79 2.06 × 10−6

Std. Dev 0.0138 1.27 × 104 5.13 × 103 8.42 × 10−8 1.11 × 104 2.75× 10−80 3.61 × 10−7

F4 0

Mean 0.0221 56.8052 25.9687 2.23 × 10−8 40.4751 3.71× 10−51 7.87 × 10−8

Best 7.89× 10−95 31.0704 4.4921 2.17 × 10−9 9.20 × 10−5 1.68× 10−59 0.0
Worst 0.0514 77.9037 58.7352 1.37 × 10−7 8.80 × 101 6.46× 10−50 3.62 × 10−7

Std. Dev 0.0201 10.3480 1.23 × 101 2.37 × 10−8 28.5894 1.25× 10−50 8.83 × 10−8

F5 0

Mean 28.2947 1.36 × 104 3.17 × 104 26.985 27.3725 0.0067 5.22 × 10−4

Best 26.9909 133.2200 38.2476 25.2216 26.6853 1.47 × 10−5 3.08× 10−12

Worst 28.9331 9.04 × 104 6.42 × 105 28.5425 28.7346 0.0465 0.0088
Std. Dev 0.4033 3.12 × 104 1.12 × 105 0.7227 0.4473 0.0086 0.0018

F6 0

Mean 2.8830 797.8558 9.8129 0.4537 0.0811 4.67 × 10−5 1.78 × 10−6

Best 2.2110 0.2982 4.0532 3.75 × 10−5 0.0124 8.73 × 10−8 1.65× 10−10

Worst 3.5479 1.01 × 104 61.0512 1.2572 0.3644 3.50 × 10−4 3.41 × 10−5

Std. Dev 0.2956 2.73 × 103 10.1503 0.3654 0.0844 7.22E-05 5.43 × 10−6

F7 0

Mean 3.29 × 10−5 3.3920 0.0682 0.0012 0.0023 1.03 × 10−4 5.78 × 10−5

Best 2.34 × 10−7 0.0592 0.0023 2.11 × 10−4 8.20 × 10−5 1.16 × 10−6 1.34 × 10−7

Worst 1.41 × 10−4 32.3393 0.4079 0.0031 0.0092 8.79 × 10−4 3.78 × 10−4

Std. Dev 3.40 × 10−5 7.2993 0.0741 6.13 × 10−4 0.0021 1.49 × 10−4 6.68 × 10−5

F8 −418.982 × n

Mean −5.59× 103 −8.80× 103 −3.84× 103 −6.27× 103 −1.09× 104 −1.26× 104 −1.25× 104

Best −6.81× 103 −1.06× 104 −4.43× 103 −7.77× 103 −1.26× 104 −1.26× 104 −1.26× 104

Worst −4.43× 103 −7.08× 103 −3.15× 103 −4.66× 103 −7.61× 103 −1.26× 104 −1.26× 104

Std. Dev 445.5937 836.3389 236.3415 600.7231 1.70 × 103 0.2895 0.1582

F9 0

Mean 0.0075 150.3165 34.7350 1.5057 0.0 0.0 0.0
Best 0.0 50.8095 0.0348 0.0 0.0 0.0 0.0

Worst 0.0 244.1201 124.7699 16.4049 0.0 0.0 0.0
Std. Dev 0.0 43.4749 29.2383 3.6694 0.0 0.0 0.0

F10 0

Mean 8.88× 10−16 13.2023 12.8245 4.27× 10−14 4.30× 10−15 8.88× 10−16 7.25 × 10−8

Best 8.88× 10−16 0.4113 0.0237 3.64× 10−14 8.88× 10−16 8.88× 10−16 1.42× 10−10

Worst 8.88× 10−16 19.9599 20.3176 5.42× 10−14 7.99× 10−15 8.88× 10−16 2.91 × 10−7

Std. Dev 0.0 8.1829 9.1160 3.84× 10−15 2.27× 10−15 0.0 7.46 × 10−8

F11 0

Mean 0.1010 24.1859 0.8524 0.0028 0.0122 1.96× 10−11 0.0
Best 0.0027 0.3535 0.0323 0.0 0.0 4.44× 10−14 0.0

Worst 0.2423 91.0085 1.5062 0.0274 0.2028 4.39× 10−10 0.0
Std. Dev 0.0722 39.8384 0.2655 0.0062 0.0427 7.02× 10−11 0.0

F12 0

Mean 0.4309 4.6051 2.77 × 103 0.0298 0.0168 2.52 × 10−6 2.24 × 10−8

Best 0.3170 0.3583 0.559 0.0033 0.0012 5.46 × 10−9 2.08× 10−13

Worst 0.5359 17.6617 1.02 × 105 0.0731 0.1415 1.55 × 10−5 7.07 × 10−7

Std. Dev 0.0482 3.5177 1.49 × 104 0.0128 0.0274 3.41 × 10−6 1.01 × 10−7

F13 0

Mean 2.8075 9.5337 1.09 × 104 0.3805 0.2106 2.72 × 10−5 1.85 × 10−6

Best 2.4792 0.6747 2.3552 9.01 × 10−5 0.0188 7.41 × 10−7 4.10× 10−13

Worst 2.9930 28.3836 1.48 × 105 0.7516 0.8096 1.64 × 10−4 3.97 × 10−5

Std. Dev 0.1253 6.0884 3.28 × 104 0.1971 0.1581 3.85 × 10−5 6.47 × 10−6

F14 1

Mean 8.9976 1.5926 1.514 3.5875 1.7886 1.1578 0.998
Best 0.9980 0.9980 0.998 0.998 0.998 0.998 0.998

Worst 12.6705 4.9500 2.9821 12.6705 10.7632 1.992 0.998
Std. Dev 4.2660 1.0769 0.8791 3.6212 1.5727 0.3678 0.0

F15 0.0003

Mean 0.0115 9.08 × 10−4 9.91 × 10−4 0.0035 5.47 × 10−4 3.29 × 10−4 3.45 × 10−4

Best 3.59 × 10−4 3.15 × 10−4 3.33 × 10−4 3.07 × 10−4 3.08 × 10−4 3.08 × 10−4 3.08 × 10−4

Worst 0.1171 0.0015 0.0016 0.0204 0.0014 4.01 × 10−4 4.35 × 10−4

Std. Dev 0.0244 2.89 × 10−4 3.69 × 10−4 0.0074 2.55 × 10−4 2.24 × 10−5 3.17 × 10−5

F16 −1.0316

Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std. Dev 8.21 × 10−8 0.0 0.0 0.0 0.0 0.0 0.0



Sensors 2023, 23, 6224 23 of 34

Table 6. Cont.

Func. Gm Statistics AOA MFO SCA GWO WOA HHO HHAOA

F17 0.398

Mean 0.4080 0.3979 0.3993 0.3979 0.3979 0.3979 0.398
Best 0.3983 0.3979 0.3979 0.3979 0.3979 0.3979 0.3980

Worst 0.4434 0.3979 0.4062 0.3981 0.3979 0.3979 0.398
Std. Dev 0.0089 0.0 0.0016 2.86 × 10−5 0.0 0.0 0.0

F18 3

Mean 8.4006 3.0 3.0 3.0 3.0 3.0 3.0
Best 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Worst 30.0 3.0 3.0 3.0001 3.0001 3.0 3.0
Std. Dev 10.9094 0.0 0.0 1.43 × 10−5 2.03 × 10−5 0.0 0.0

F19 −3.86

Mean −3.8536 −3.8628 −3.8548 −3.8615 −3.8587 −3.862 −3.86
Best −3.8626 −3.8628 −3.8613 −3.8628 −3.8628 −3.8628 −3.86

Worst −3.8405 −3.8628 −3.8512 −3.8549 −3.8277 −3.8552 −3.86
Std. Dev 0.0037 0.0 0.0024 0.0026 0.0065 0.0014 0.0

F20 −3.32

Mean −3.0815 −3.2168 −3.006 −3.2532 −3.2412 −3.1334 −3.32
Best −3.1835 −3.3220 −3.1714 −3.322 −3.3219 −3.311 −3.32

Worst −2.8472 −3.1376 −2.5881 −3.0604 −3.0807 −2.8095 −3.32
Std. Dev 0.0675 0.0448 0.1305 0.077 0.0915 0.0976 0.0

F21 −10.153

Mean 1.20× 10−14 2.00 × 103 2.4136 2.05× 10−33 5.28× 10−85 9.02× 10−96 3.16× 10−16

Best 1.40× 10−270 0.2900 0.0036 6.88× 10−35 1.47× 10−96 1.75× 10−121 6.84× 10−17

Worst 6.00× 10−13 2.00 × 104 27.5418 1.10× 10−32 1.62× 10−83 4.51× 10−94 1.99× 10−12

Std. Dev 8.49× 10−14 4.95 × 103 4.3477 2.80× 10−33 2.34× 10−84 2.34× 10−84 5.19× 10−13

F22 −19.2085

Mean 0.0 31.5216 0.0100 6.27× 10−20 4.56× 10−53 1.89× 10−50 1.68× 10−20

Best 0.0 0.1102 9.06 × 10−5 1.06× 10−20 1.07× 10−61 4.45× 10−65 2.13 × 10−9

Worst 0.0 80.0085 0.0740 2.05× 10−19 1.32× 10−51 9.29× 10−49 7.75 × 10−7

Std. Dev 0.0 21.6905 0.0140 4.19× 10−20 2.20× 10−52 1.31× 10−49 1.71 × 10−7

F23 −117.497

Mean 0.0055 1.99 × 104 6.44 × 103 3.42 × 10−8 2.75 × 104 5.34× 10−81 1.09 × 10−7

Best 3.63× 10−224 1.73 × 103 381.3511 3.48× 10−12 3.72 × 103 3.05× 10−103 4.51× 10−13

Worst 0.0711 4.71 × 104 2.33 × 104 4.48 × 10−7 4.97 × 104 1.85× 10−79 2.06 × 10−6

Std. Dev 0.0138 1.27 × 104 5.13 × 103 8.42 × 10−8 1.11 × 104 2.75× 10−80 3.61 × 10−7

F24 0

Mean 0.0221 56.8052 25.9687 2.23 × 10−8 40.4751 3.71× 10−51 7.87 × 10−8

Best 7.89× 10−95 31.0704 4.4921 2.17 × 10−9 9.20 × 10−5 1.68× 10−59 0.0
Worst 0.0514 77.9037 58.7352 1.37 × 10−7 8.80 × 101 6.46× 10−50 3.62 × 10−7

Std. Dev 0.0201 10.3480 1.23 × 101 2.37 × 10−8 28.5894 1.25× 10−50 8.83 × 10−8

F25 0

Mean 28.2947 1.36 × 104 3.17 × 104 26.985 27.3725 0.0067 5.22 × 10−4

Best 26.9909 133.2200 38.2476 25.2216 26.6853 1.47 × 10−5 3.08× 10−12

Worst 28.9331 9.04 × 104 6.42 × 105 28.5425 28.7346 0.0465 0.0088
Std. Dev 0.4033 3.12 × 104 1.12 × 105 0.7227 0.4473 0.0086 0.0018

F26 −3.8628

Mean 2.8830 797.8558 9.8129 0.4537 0.0811 4.67 × 10−5 1.78 × 10−6

Best 2.2110 0.2982 4.0532 3.75 × 10−5 0.0124 8.73 × 10−8 1.65× 10−10

Worst 3.5479 1.01 × 104 61.0512 1.2572 0.3644 3.50 × 10−4 3.41 × 10−5

Std. Dev 0.2956 2.73 × 103 10.1503 0.3654 0.0844 7.22 × 10−5 5.43 × 10−6

F27 −10.5364

Mean 3.29 × 10−5 3.3920 0.0682 0.0012 0.0023 1.03 × 10−4 5.78 × 10−5

Best 2.34 × 10−7 0.0592 0.0023 2.11 × 10−4 8.20 × 10−5 1.16 × 10−6 1.34 × 10−7

Worst 1.41 × 10−4 32.3393 0.4079 0.0031 0.0092 8.79 × 10−4 3.78 × 10−4

Std. Dev 3.40 × 10−5 7.2993 0.0741 6.13 × 10−4 0.0021 1.49 × 10−4 6.68 × 10−5

F28 −3.3224

Mean −5.59× 103 −8.80× 103 −3.84× 103 −6.27× 103 −1.09× 104 −1.26× 104 −1.25× 102

Best −6.81× 103 −1.06× 104 −4.43× 103 −7.77× 103 −1.26× 104 −1.26× 104 −1.26× 104

Worst −4.43× 103 −7.08× 103 −3.15× 103 −4.66× 103 −7.61× 103 −1.26× 104 −1.26× 104

Std. Dev 445.5937 836.3389 236.3415 600.7231 1.70 × 103 0.2895 0.1582

F29 −9.6602

Mean 0.0075 150.3165 34.7350 1.5057 0.0 0.0 0.0
Best 0.0 50.8095 0.0348 0.0 0.0 0.0 0.0

Worst 0.0 244.1201 124.7699 16.4049 0.0 0.0 0.0
Std. Dev 0.0 43.4749 29.2383 3.6694 0.0 0.0 0.0

F30 0

Mean 8.88× 10−16 13.2023 12.8245 4.27× 10−14 4.30× 10−15 8.88× 10−16 7.25 × 10−8

Best 8.88× 10−16 0.4113 0.0237 3.64× 10−14 8.88× 10−16 8.88× 10−16 1.42× 10−10

Worst 8.88× 10−16 19.9599 20.3176 5.42× 10−14 7.99× 10−15 8.88× 10−16 2.91 × 10−7

Std. Dev 0.0 8.1829 9.1160 3.84× 10−15 2.27× 10−15 0.0 7.46 × 10−8
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The unimodal function results show that the conventional HHO had a lead in reaching
the global minima value more than the other algorithms. Surprisingly, GWO and WOA
have an average performance compared to the newly developed AOA and SCA algorithms.
The proposed HHAOA has notable performances in F4–F7 due to the arithmetic operators’
and hawks’ ability to narrow down the desired global minima and avoid further searching
for the exploration locations. Meanwhile, the MFO performs poorly in these functions,
which shows its inability to reach even for the singular objective functions.

The HHAOA method is able to reach the global minimum in both multimodal and
fixed-dimension functions better than other techniques. HHO reached the desired value
in most functions, but HHAOA converged at the exact minimum values in many cases.
It’s important to note that almost all algorithms converged at the desired global minimum
values in F9 and F16. The MFO competed with the proposed HHAOA in mean and best
value in the fixed dimension functions. At the same time, the well-performed GWO and
WOA in the unimodal function have a significant setback in this multi-objective function.
They struggled to reach the best value in most of the and had an almost massive difference
in the final convergence values than the desired global minima.

Lastly, the same results’ trend has been repeated in the hybrid functions. Notably,
the HHO and SCA had poor performance and these algorithms quickly progressed in
the first few iterations, but then the rate of improvement slowed down. The GWO and
MFO had a closer convergence value in most functions, showing the same approach to
finding the best optimum values (see Figure 7), whereas the proposed HHAOA had a stable
and smooth value closer to the global minima, it suggests that the algorithm converges
stably. However, in F23, the HHAOA has a lower standard deviation, indicating that
the algorithm consistently finds a better solution for a stable convergence. Overall, these
statistical measurements prove that the convergence behavior of the HHAOA helps to
identify effective search locations for improving the exploration and exploitation phases of
the algorithm.

The Friedman ranking test, which compares algorithms based on their best mean
values in numerical analysis, is displayed in Table 7. In this comparative analysis, the Fried-
man ranking test is used to evaluate the performance of various metaheuristic approaches.
The algorithms were ranked according to their mean value for the corresponding functions
and the resulting list clearly compares each approach’s effectiveness. The top-performing
algorithm is awarded a rank of 1 as it is the closest to the global minimum. On the other
hand, the algorithm with the lowest mean value is assigned a rank of 5, indicating its
significant deviation from the desired global minimum value. In this analysis, the proposed
HHAOA has the smallest average value of 1.967, securing the first rank, which signifies the
technique’s effectiveness in identifying the best optimum value with fewer iterations in
most benchmark functions. In addition, the HHAOA has a massive 181.342% faster and
best mean value compared with the SCA, which has a final average value of 5.534 with the
last rank. The HHAOA has 35.587%, 64.412%, and 79.664% of increased performance than
the HHO, GWO, and respectively. Lastly, the MFO has an average of 4.2 and secures fifth
rank, followed by AOA with the value of 5.067, securing the second-to-last rank.
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Table 7. Different benchmark functions of Friedman ranking test for the comparing algorithms.

Function AOA MFO SCA GWO WOA HHO HHAOA

1 5 7 6 3 2 1 4
2 1 7 6 5 2 3 4
3 4 6 5 2 7 1 3
4 4 7 5 2 6 1 3
5 5 6 7 3 4 2 1
6 5 7 6 4 3 2 1
7 1 7 6 4 5 3 2
8 3 5 2 4 6 7 1
9 4 7 6 5 3 2 1
10 1 7 6 4 3 1 5
11 5 7 6 3 4 2 1
12 5 6 7 4 3 2 1
13 5 6 7 4 3 2 1
14 7 4 3 6 5 2 1
15 7 4 5 6 3 1 2
16 1 1 1 1 1 1 1
17 7 1 6 1 1 1 5
18 7 1 1 1 1 1 1
19 7 1 6 3 5 2 4
20 6 4 7 2 3 5 1
21 6 4 7 2 3 5 1
22 7 1 6 1 1 1 1
23 6 1 5 7 1 3 4
24 7 1 6 3 5 4 2
25 3 4 6 5 7 2 1
26 7 2 6 4 5 3 1
27 7 4 6 1 3 5 2
28 6 4 7 2 3 5 1
29 7 3 6 2 4 5 1
30 6 1 7 3 4 5 2

Average 5.067 4.2 5.534 3.234 3.534 2.667 1.967

Final Rank 6 5 7 3 4 2 1

4.2. Simulation Analysis of Industrial WMNs

Understanding the convergence behavior of optimization algorithms is crucial for ob-
taining optimal solutions. In the performance evaluation of the proposed HHAOA algorithm
against other algorithms, the convergence behavior was analyzed using 500 iterations with
100 runs for 100 search agent sets, shown in Figure 8. Table 8 shows the statistical analysis of
the convergence. By observing the convergence ability of these algorithms, their performance
can be determined clearly. The objective function was utilized to find the minimum fitness
value, which demonstrates improved connectivity and coverage.

Table 8. Convergence analysis for the WMN for all the algorithms.

Optimization Mean Best Worst Std. Dev

AOA 0.531 0.485 0.673 0.0858
MFO 0.488 0.475 0.735 0.0841
SCA 0.472 0.46 0.524 0.0675

GWO 0.463 0.450 0.720 0.0587
WOA 0.456 0.435 0.634 0.0046
HHO 0.469 0.455 0.755 0.0674

HHAOA 0.449 0.435 0.613 0.0025
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Figure 8. WMN convergence for different algorithms.

In the numerical analysis, the HHAOA method yielded the best outcomes with the
least mean value of 0.499. Comparatively, the AOA came in second place with a mean value
of 0.531. While the HHAOA method is 6.412% faster than AOA, it is worth noting that the
WOA method is lagging with a minimal difference of 0.007. This resulted in WOA reaching
a third place with a mean value of 0.456, which is 8.617% higher than the HHAOA method.
The GWO, HHO, SCA, and MFO methods were followed in the remaining ranking order,
which makes it clear that the proposed HHAOA method produced better results in the
numerical analysis.

Figure 9 shows the network connectivity and coverage region for the WMN for all
the algorithms and the initial WMN topology. Figure 9a illustrates that the initial iteration
resulted in insufficient mesh client coverage and high network congestion due to multiple
overlapping mesh routers, which increased deployment costs. Even with redundant mesh
routers, their connectivity did not reach the maximum capacity of 100%. Figure 9b–h shows
the optimized WMN connectivity and coverage of the AOA, MFO, SCA, GWO, WOA,
HHO, and the proposed HHAOA, respectively. In these, SCA has the maximum number of
disconnected clients and more number of overlapped router placements. It has a 150% less
efficient connectivity than the HHO, which secured second place, with four unconnected
clients in its optimized WMN. Additionally, the AOA has eight disconnected clients,
followed by MFO, WOA, and GWO, with seven, five, and four disconnected clients in the
WMN network. However, Figure 9h shows that the proposed HHAOA has dramatically
improved the client coverage and optimally deployed the mesh routers to achieve full
network connectivity with the least number of routers and had only one disconnected
client. Likewise, the proposed HHAOA significantly reduced network congestion by
reducing the number of mesh routers by 31.7% while maintaining high coverage and
connectivity. Furthermore, other comparing algorithms produced network topologies
where mesh routers overlapped, resulting in more significant interference. In contrast,
the topology formed by the HHAOA approach was more widely dispersed, resulting in
improved client coverage.
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Figure 9. WMN network connectivity and its coverage area for various algorithms. (a) Initial Network;
(b) AOA Optimized WMN; (c) MFO Optimized WMN; (d) SCA Optimized WMN; (e) GWO Optimized
WMN; (f) WOA Optimized WMN; (g) HHO Optimized WMN; (h) HHAOA Optimized WMN.

4.3. Performance Evaluation on Pressure Process Control

In the numerical analysis, the comparison was carried out for the process rise time
(tr), settling time before (ts1) disturbance, overshoot (%OS), and settling time after (ts2)
disturbance injection. In order to evaluate the ability of the FOPPI to decrease the stochastic
disturbance and to track the set-point effectively, an external disturbance of 35% was
injected at 100 s in the process feedback loop. Table 9 shows the quantitative analysis of the
optimized FOPPI controller using different optimization techniques, and the comparative
analysis is shown in Figure 10. Here, controller parameters Kp, Ti and λ were obtained
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based on the ITAE value and integral time was obtained by Ti =
Kp
Ki

, where Ki is the integral
gain.

Table 9. Experimental quantitative analysis of various optimized FOPPI controller on the pres-
sure process.

Optimization Type Kp Ki λ tr ts1 ts1 %OS

AOA 1.207 0.836 0.97 0.8404 59.6059 142.2151 2.8723
MFO 2.713 1.183 0.98 0.7552 57.5289 140.1284 18.9260
SCA 1.881 1.062 0.96 1.0371 66.9394 151.0140 23.3440

GWO 1.672 0.714 0.96 5.1078 52.9052 135.1132 2.5131
WOA 2.015 0.615 0.99 0.9381 54.2561 137.2006 2.6118
HHO 2.427 1.031 0.99 0.8411 49.2073 130.0259 4.8653

HHAOA 2.359 0.901 0.98 1.4504 37.2265 119.2158 4.7061
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Figure 10. Set-point tracking and disturbance rejection analysis for optimal FOPPI controller.

The numerical results from the table show that the MFO has the fastest rise time of
0.7552 s, followed by the AOA, HHO, WOA, and SCA with values of 0.8404, 0.8411, and
0.9381 s, respectively. Here the GWO has the slowest rise time of 5.1078 s which is 576.351%
slower performance than the fastest MFO. The proposed HHAOA optimized FOPPI had
the second-last rise time of 1.4504 s which is almost two times slower than the MFO.

During the settling time before disturbance (ts1), even with the slowest rise time,
the HHAOA-optimized FOPPI managed to settle faster at 37.2265 s which is 29.7129 s
faster than the slowest settled SCA with the settling at 66.9394 s. The result shows that
the proposed HHAOA has 79.816% faster performance, which is twice as fast as SCA.
The HHO comes second fastest, settling at 49.2073 s, followed by GWO, WOA, MFO,
and AOA with the respective values of 52.9052, 54.2561, 57.5289, and 59.6059 s. While
observing the settling time ts2 after disturbance injection performance, once again, the
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HHAOA settled faster at 119.2158, which is 34.7982 s ahead of SCA (151.0140s). The same
settling time trend is also observed in this, with the HHO settling at 130.0259 s followed
by GWO settling at 135.1132 s. The second last rank is for AOA settling at 142.2151 s.
In the peak overshoot performance, the HHAOA has 4.7601%, corresponding to a 396.037%
reduction of the value, while comparing the SCA at 23.3340%. Amazingly, the GWO has
the least peak overshoot value of 2.5131%, followed by WOA, AOA, HHO, and HHAOA,
respectively. In this numerical performance analysis, in most of the cases, the Friedman
ranking order is observed.

Based on the comparison results, it is evident that the FOPPI controller optimized by
HHAOA is more efficient in producing a stable control signal and rejecting disturbances.
However, it is worth noting that the HHAOA may have a slower rise time when tracking
the initial set-point, which is noticeable. In the same period, the HHAOA has the fastest
settling ahead of others with minimal peak overshoot, are shown in Figure 11, section
A. Later, in the external disturbance injection at 100 s, the HHAOA optimized FOPPI
had the fastest disturbance recovery and better set-point tracking ability (see, Figure 11,
section B). The control actions of the FOPPI for different algorithms are shown in Figure 11,
sections C and D. Here, the HHAOA has the robust and effectively generated control
signal at 4.3 itself, while others are starting at above 6.0. This is also true in the case
of the after-disturbance injection scenario. It is clear from the results that finding the
optimized controller parameters for the real-time process plant is essential in order to
improve its performance.
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Figure 11. Zoomed view of Figure 10 (A) Initial set-point tracking (B) Disturbance rejection perfor-
mance (C) Control signal during initial set-point (D) Control signal during disturbance rejection.

5. Summary and Conclusions

This section presents the overall summary, which includes the proposed techniques
and their advancements given in the first part. Later, the future scope of the current research
and the concluding remarks are given.
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5.1. Summary

This study analyzed different optimization techniques: AOA, MFO, SCA, GWO,
WOA, HHO, and the proposed HHAOA. The tests were conducted on various benchmark
functions and optimal router placement and connectivity for WMN benchmark functions.
Additionally, the optimized FOPPI controller for a real-time pressure process plant was
examined. The HHAOA technique outperformed all other algorithms in every comparison
analysis, including the rigorous Friedman ranking test. This statistical evidence unequivo-
cally proves the superiority of the HHAOA method over existing techniques. Moreover, it
is crucial to highlight the notable contributions that further emphasize the effectiveness of
the proposed technique.

1. Utilizing a range of multi-hopping methodologies, the proposed HHAOA can effec-
tively detect the global minima with fewer attempts throughout most benchmark
functions, resulting in a more efficient and accurate optimization process. These can
be evidenced by its consistently higher mean, best, and standard deviation scores in
benchmark functions testing.

2. Through various multi-hopping techniques, the proposed HHAOA is able to identify
the global minima in significantly fewer attempts in most of the benchmark functions.

3. In the WMN, the HHAOA demonstrated a highly competent desired objective search-
ing technique, producing the most optimal path for routing network traffic. The algo-
rithm significantly reduces congestion by minimizing the data transmitted across the
network, resulting in improved network performance.

4. HHAOA carefully selects the appropriate access points to connect to the network,
ensuring that clients are always connected to nearby routers. This makes it an essential
optimization technique for successfully deploying wireless mesh networks for the
best performance.

5. Notable improvements in producing the robust and smoother control signal of the
pressure process were achieved by optimizing the FOPPI controller parameters using
HHAOA. These include smaller peak overshoot, dynamic set-point tracking, and
practical disturbance rejection ability.

5.2. Conclusions

This research article introduced a novel optimization technique called hybrid HHAOA,
which combines two existing algorithms, HHO and AOA, to achieve a better performance.
In order to assess the efficacy of the HHAOA algorithm, tests were conducted on a total of
33 optimization benchmark functions. The analysis involved a comparison of performance
results, which were based on various measures, including mean, global best, worst, and
standard deviation. The convergence performance of the HHAOA algorithm is faster at
achieving global minima with fewer iterations than other algorithms. The comparison
results were evaluated using Friedman ranking, which showed that the proposed HHAOA
algorithm significantly outperforms various algorithms with a 181.342% increased perfor-
mance ranking in terms of the final mean value. In addition, the best connectivity, network
overlapping minimization, and optimal router placement for WMN using the proposed
HHAOA were simulated for 500 iterations with 100 search agents. The HHAOA produced
the most satisfactory desired performance by creating the best client router connectivity
with only one client disconnected in the network. Additionally, the network overlap-
ping was significantly reduced, with a 31.7% reduction in the WMN routers substantially
minimizing the operational cost. Experimentation was conducted on a real-time pressure
process to further demonstrate the HHAOA algorithm’s effectiveness. The findings showed
that the proposed algorithm performed best in the dynamic processes. Furthermore, using
HHAOA-optimized FOPPI resulted in a more reliable, smooth, and robust control signal,
leading to quicker settling and reduced peak overshoot which, in turn, significantly mini-
mizes the wear and tear on the control valve. As part of future research, newer evolutionary
algorithms with different mathematical operators will be investigated to enhance the al-
gorithm’s performance. Additionally, attempts will be made to hybridize the HHAOA
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algorithm with other metaheuristic optimization algorithms to widen its applicability to
more complex, real-time industrial and engineering problems.
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The following abbreviations are used in this manuscript:

ALO Ant Lion Optimizer
AOA Arithmetic Optimization Algorithm
ABC Artificial Bee Colony
BMVO Binary Multi-Verse Optimizer
BSSA Binary Salp Swarm Algorithm
BLPSO Biogeography-based Learning Particle Swarm Optimization
BOA Butterfly Optimization Algorithm
DESMAOA Deep Ensemble of Slime Mold Arithmetic Optimization Algorithm
DE Differential Evolution
FOPPI Fractional-order Predictive PI
GA Genetic Algorithm
GOA Grasshopper Optimisation Algorithm
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimization
HART Highway Addressable Remote Transducer
HHO Harris Hawk Optimization
HHSS Harris Hawk and Salp Swarm
HH-AOA Harris Hawk-Arithmetic Optimization Algorithm
HMOHHO Hybrid Mutation Operator Harris Hawks Optimization
IIAOA mproved Arithmetic Optimization Algorithm
IANN Improved Artificial Neural Network
ISA International Society of Automation
JOS Joint Opposite Selection
MPC Model Predictive Controller
MHHO Modified Harris Hawk Optimizer
MFO Moth Flame Optimization
MOHHO Multi-Objective Harris Hawks Optimization
MVO Multi-Verse Optimizer
NCS Network Control Systems
NGSA Non-dominated Sorting Genetic Algorithm
PPPSO Predator Prey Particle Swarm Optimizations
SSA Salp Swarm Algorithm
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SADE Self Adaptive Differential Evolution
SCA Sine Cosine Algorithm
TLBO Teaching Learning Based Optimization
WOA Whale Optimization Algorithm
WMN Wireless Mesh Networks
WIA-PA Wireless network for Industrial Automation-Process Automation
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