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Abstract: Distinguishing pathological gait is challenging in neurology because of the difficulty of
capturing total body movement and its analysis. We aimed to obtain a convenient recording with
an iPhone and establish an algorithm based on deep learning. From May 2021 to November 2022
at Yamagata University Hospital, Shiga University, and Takahata Town, patients with idiopathic
normal pressure hydrocephalus (n = 48), Parkinson’s disease (n = 21), and other neuromuscular
diseases (n = 45) comprised the pathological gait group (n = 114), and the control group consisted of
160 healthy volunteers. iPhone application TDPT-GT captured the subjects walking in a circular path
of about 1 meter in diameter, a markerless motion capture system, with an iPhone camera, which
generated the three-axis 30 frames per second (fps) relative coordinates of 27 body points. A light
gradient boosting machine (Light GBM) with stratified k-fold cross-validation (k = 5) was applied
for gait collection for about 1 min per person. The median ability model tested 200 frames of each
person’s data for its distinction capability, which resulted in the area under a curve of 0.719. The
pathological gait captured by the iPhone could be distinguished by artificial intelligence.
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1. Introduction

In clinical settings, pathological gait must be distinguished for recognizing symptoms,
diagnosis/differential diagnosis, and monitoring disease progression and the effects of
treatment and rehabilitation. Gait evaluation is complicated because it includes many
factors such as speed, power, position, angle, and cycle on each body part, expressing
posture, arm and leg swings, and steps. Furthermore, pathological gait is presented in
many combinations: asymmetry, unbalance, defragmentation, and reduced speed, length,
amplitude, and smoothness. Recognizing, diagnosing, and even describing all these
symptomatic disturbances are always challenging.

To evaluate gait, various quantified methods have been employed: pedobarography,
motion capture, floor sensors, and wearable sensors. Motion capture is useful for under-
standing whole-body movements, while others usually concentrate on parts of the body.
Optical motion capture systems require the attachment of several markers to the body,
usually with multiple cameras [1–8]. Marker-based motion capture for gait requires the
attachment of markers from head to toe during preparation and when recording for a
long time. Older people and patients, sometimes including individuals with cognitive
impairment, may not tolerate that. Therefore, most marker-based studies have focused on
healthy volunteers or athletes.

Active markerless motion capture systems emit light [9–12] or micro-doppler [13] to
collect the structures of objects, which requires a prepared place and settings like a labora-
tory. Passive systems rely on only the images captured by cameras and take a relatively
long time for analysis to generate the gait data after the recording [14,15]. By attaching
accelerometers and gyroscopes, called wearable devices, gait has been analyzed [7,16–18].
Some wearable devices are small and easy to wear; however, the information on gait is
limited to speed and acceleration. Multimodal sensors and analysis systems with machine
learning have been developed [10]; however, to date, the systems are not made for the
convenience of participants but for obtaining precise information on gait.

Along with the history of gait analysis, especially for use in patients and older indi-
viduals, clinicians need non-invasive markerless motion capture systems that are possible
to use in the general room for outpatients and that take participants as short a time as
possible. In this study, we used a passive markerless motion picture system, TDPT-GT
(Three-Dimensional Pose Tracker for Gait Test), which was novel in the circumstance in
that the gait recording was just like taking videos on an iPhone [19,20]. In addition to the
convenience and comfort for patients and older people, the system could immediately
generate and preserve three-dimensional coordinate data of 27 body points.

Gait recognition techniques based on machine learning have been evolving [7], as well
as our motion capture system [19]. Machine learning techniques have made it possible to
collect complicated movements of human gait quickly. Then, the next challenge was how
to analyze the large amount of gait data generated by these technologies. Machine learning
has also been applied to the analysis of the gait data of neurological disorders [21–23].
Here, in this study, having acquired gait data in 30 frames per second (fps) for 27 body
points with three axes produced by this iPhone application, we aimed to make artificial
intelligence distinguish the motions of a pathological gait from those of a healthy gait.

2. Materials and Methods
2.1. Subjects

We collected information on age, disease history, and gait data from May 2021 to
November 2022 at Yamagata University Hospital, Shiga University, and Takahata Town.
The pathological gait group (n = 114) was composed of patients with idiopathic normal
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pressure hydrocephalus (iNPH, n = 48), Parkinson’s disease (PD, n = 21), and other neuro-
muscular diseases (n = 55), which were mainly neurodegenerative diseases. The control
group consisted of 160 individuals who were healthy volunteers at local health check-ups or
family members of patients who did not have a neurodegenerative disease. The inclusion
criterion for both groups was the capability of walking independently and safely for several
minutes; using a single-point cane was the only assistance allowed.

2.2. Gait Data

The gait of each participant was recorded as they walked in a circular path of around
1 m in diameter. The recording was done from a distance of approximately 3 m away from
the trail, ensuring it fit within the frame of the application. Each participant completed
two laps, moving both clockwise and counterclockwise, as shown in the accompanying
picture (Figure 1). They were asked to walk at their comfortable speed clockwise for two
laps and counterclockwise for two laps. The application TDPT-GT (The versions were
20210525, 20211111, 20220314, 20220701, and 20220902) (Three-Dimensional Pose Tracker
for Gait Test) is a markerless motion capture system based on machine learning. From the
two-dimensional images taken by an iPhone camera, 3D heat maps of the body points were
estimated. As shown previously [19,20], the TDPT-GT generated the three-axis 30 frames
per second (fps) relative coordinates of 24 body points: the nose, navel, and bilateral points
such as the eyes, ears, shoulders, elbows, wrists, thumbs, middle fingers, hip, knees, heels,
and toes and calculated coordinates of three body points: the center of the head, neck,
and buttocks. These coordinates were processed by a low-pass filter, named the 1 euro
filter [24], setting the minimum cut-off frequency of 1.2, the cut-off slope of 0.001, and the
cut-off frequency of the derivate of 1, and preserved as CSV files. We defined the navel as
the reference point of the depth to each point. The raw X and Y coordinates were used to
represent the vertical and horizontal points, respectively.
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Figure 1. The markerless motion capture was recorded while the participants walked in a circle about
1 m in diameter and about 3 m away from the gait trail so that their whole body fit within the frame.

2.3. Deep Learning for the Distinction of Gait

About two hundred frames were extracted from the CSV files of each participant in
an early and stable state of the record. All coordinates were labeled either disease gait or
control gait. The total data were divided into 60 (n = 71–73 for disease and n = 102–104 for
control) for training and 20 (n = 18–20 for pathological gaits and n = 24–26 for controls) for
validation without dividing the data of the same participant into both datasets. (Table 1).
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Table 1. The number of participants in the datasets divided by the training, validation, and test.

Training Validation Test Total
Control Disease Control Disease Control Disease Control Disease

Dataset 1 103 72 25 19 32 23 160 114
Dataset 2 102 73 26 18 32 23 160 114
Dataset 3 103 72 25 19 32 23 160 114
Dataset 4 104 71 24 20 32 23 160 114
Dataset 5 104 72 24 19 32 23 160 114

For deep learning, a light gradient boosting machine (Light GBM) [25] was employed,
which was a technique involved combining a gradient boosting decision tree with gradient-
based one-side sampling and exclusive feature bundling. The learning aimed to predict
whether the gait was pathological in each frame containing the parameters of 27 three-
dimensional body points. The hyperparameters were tuned by Optuna [26]; the method
automatically selected the features and parameters that were determined to perform best.
The feature importance scores of the coefficients from linear regression were calculated to
identify the key points for predicting pathological gait. Stratified k-fold cross-validation
(k = 5) was used to evaluate the differentiation ability of the models of machine learning
by generating the classification accuracy, sensitivity, specificity, and area under the curve
(AUC) calculated from the receiver operating characteristic (ROC) curve.

2.4. Test

To test the ability of machine learning, we used the newest (data acquisition order)
20 data out of the data of all patients and controls. Among the five models, the model
with the median of the AUCs was employed for the final test to evaluate the model’s
generalization. The final test was evaluated as follows to evaluate the gait of a whole
person. The AUC was calculated from the ROC curve drawn based on the averaged
accuracy for 200 frames for each person, and the sensitivity and specificity were also
calculated from the curve. To optimize the hyperparameters, Optuna v.3.0 was used. The
feature importance scores of the coefficients from the linear regression were calculated to
identify the key points for predicting pathological gait.

2.5. Hardware, Software, and Statistics

Machine learning was carried out by Anaconda 3 on Ubuntu 20.04 LTS. The analysis
hardware comprised a Core i9 10940X 14core CPU (Santa Clara, CA, USA) and an NVIDIA
RTX A4000 16GB GPU (Santa Clara, CA, USA). EZR version 1.41 and Python 3.8 were used
for the statistical analysis. The results were expressed as the mean ± standard deviation
and numbers (percentages). The constructed model was considered to have sufficient
diagnostic capability when AUC > 0.700, along with a 95% confidence interval (CI).

2.6. Ethical Considerations

The study was conducted according to the Declaration of Helsinki and approved by
the Ethics Committee for Human Research of Shiga University of Medical Science (protocol
code: R2019-337; date of approval: 17 April 2020) and the Ethical Committee of Yamagata
University School of Medicine (protocol code: 2020-10; date of approval: 12 April 2021).

3. Results
3.1. Clinical Characteristics

The average age and standard deviation were 74.5 ± 7.8 years in the pathological
gait group and 72.9 ± 11.1 years for the controls, which were not significantly different
between the groups. Sex proportions were also not significantly different between the
groups (Table 2).
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3.2. Results of the Five Learning Models

Among the five models made by AI using stratified K-fold cross-validation (k = 5),
dataset 1 presented the median of the AUCs: an AUC of 0.882 (the 95% confidence interval
ranged from 0.875 to 0.890), a sensitivity of 0.740, a specificity of 0.898, and an accuracy of
0.8327 (Table 3, Figure 2).
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Table 2. The number, age, and sex proportion of the pathological gait group and the controls.

Pathological Gait n = 114 Controls n = 160 p

Age (average ± SD *) 74.5 ± 7.8 72.9 ± 11.1 0.141
Sex (male/female) 52/62 91/69 0.076

* SD, standard deviation.

Table 3. Five datasets making up the results of the five models: the diagnosis of pathological gait
evaluated by the cut-off, the area under the curve (AUC), sensitivity, specificity, and accuracy.

Cut-off AUC
(95%CI) Sensitivity Specificity Accuracy

Model 1 0.466 0.882
[0.875–0.890] 0.740 0.898 0.833

Model 2 0.415 0.932
[0.926–0.937] 0.852 0.878 0.868

Model 3 0.279 0.921
[0.915–0.926] 0.861 0.836 0.824

Model 4 0.273 0.820
[0.812–0.829] 0.798 0.723 0.716

Model 5 0.472 0.774
[0.764–0.784] 0.635 0.785 0.722

AUC: area under the receiver-operating characteristic curve; 95%CI: the parameter range within 95% confidence interval.

Each learning model’s cut-off value (specificity and sensitivity) is shown near the curve.

3.2.1. Discrimination of Pathological Gait

Machine learning model 1 made by dataset 1 was tested by the test data (Table 2). The
result of distinguishing pathological gait was a cut-off of 0.595, an AUC of 0.719 (the 95%
confidence interval was ranged from 0.576 to 0.862), a sensitivity of 0.652, a specificity of
0.781, and an accuracy of 0.709 (Figure 3).
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3.2.2. Feature Importance

The feature importance score was highest in the y coordinate of the right hip joint,
followed by high scores in the depth of the buttock, the depth of the right knee, and the x
coordinate of the center of the head (Figure 4).
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4. Discussion

In this study, AI distinguished the pathological gait from the control gait with an AUC
of 0.719 for the ROC and an accuracy of 0.702. The markerless motion capture system
on the iPhone successfully recorded the gaits for analysis. The present analysis included
two valuable methods. First, the motion capture of gaits was obtained very easily with
an iPhone camera and its application TDPT-GT. The participants did not need to wear
markers or devices when walking in a circle within the camera’s angle of view for just
several minutes at a comfortable speed. Second, we succeeded in diagnosing pathological
gait by constructing an AI analysis for the big and precise data from TDPT-GT, with 30 fps
and 27 body points in 3 dimensions.

4.1. Usage of the Present AI Model

The present AI model has been trained to effectively differentiate pathological gait,
a task that was challenging even for experts. Clinicians do not solely rely on visual
observation of a patient’s gait to determine if it is pathological. In the early stages of
disease, patients typically do not exhibit apparent gait disturbances when they come for
a visit. Therefore, we collect many clinical records, such as backgrounds, history, labo
data, systematic neurological examinations, physiological examinations, and neuroimaging.
Subsequently, other diseases are also differentiated and/or judged as complications. Gait
provides just a piece of information. After this process, we diagnose the disease and
comprehensively ensure that the person’s gait is pathological. AI distinguished the gait
without these long, clinical, and complicated procedures. Consequently, AI’s incorporation
into gait screening during health check-ups in communities of older individuals can lead to
earlier diagnoses.

Our ultimate objective in the future is not only to achieve the early diagnosis of patho-
logical gait but to also promote overall well-being. The ability to ambulate independently
is a major contributor to overall well-being and autonomy in older individuals, and gait
and its decline are crucial for the health and function of older patients [27]. Elderly patients
regularly present with complex gait disorders, with concurrent contributions from multiple
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causal factors [27], such as muscle weakness, cognitive impairment, alcohol consumption,
pain, and physical inactivity [28]. Among older individuals participating in a study, gait
abnormalities were observed in 48.4% [29]. The combination of multiple modes of gait
abnormalities including the self-reported gait difficulty predicted the risk of various geri-
atric outcomes, e.g., falls. [29]. Based on their study, we derived the notion that objectively
detecting gait abnormalities should be carried out when individuals subjectively perceive
difficulties in their gait. The ability of the present AI model to distinguish common patho-
logical gait patterns is applicable for analyzing complex gait disorders arising from diverse
causes. Our system aims to aid in identifying subjective gait disorders in order to prevent
their progression.

Gait encompasses more than just the physical manifestation of movement. Jason
reviewed and noted that the control of gait occurs via multiple cognitive domains [27].
Executive functions are a general system working with attention, memory, reasoning, and
cognitive integration, which are associated with gait parameters, such as velocity and
step length [30–32]. Gait velocity is related to cognitive processing speed [30], short-term
memory [30], and multiple cognitive domains [33]. By capturing gait disturbances, we
can also gain insights into recognizing cognitive decline and may contribute to overall
well-being.

The discrimination ability in the study was an accuracy of 0.709, with a sensitivity of
0.652 and a specificity of 0.781. di Biase introduced other studies that tried to discriminate
the gait of Parkinson’s disease by various measurements from control subjects with at
least 80% sensitivity and specificity [21]. Most previous studies have included clinically
engaged, diagnosed patients and analyzed gait through complicated monitoring [34–38].
We supposed that the gait impairment of Parkinson’s disease was one of the most charac-
teristic among other diseases and not difficult to diagnose with other symptoms without
gait information. Hence, it was possible to be promising to discriminate among their
participants. The discriminatory ability in our study was diminished due to the inclusion
of various diseases. Recognizing the challenges that arose from the hardships involved in
discriminating among our study subjects, we undertook the challenge.

With advancements in AI and the motion capture technology of TDPT, there is poten-
tial for further development to differentiate or indicate various types of gait disturbances.
Gait movement disorders are expressed as wide-based, shuffling, dragging, small steps,
hesitating, frozen, propulsive, waddling, swaying, spastic, and ataxic. Even among special-
ists, certain gait symptoms exhibit limited inter-rater reliability [39]. In addition, patients’
symptoms fluctuate naturally, affected by circumstances, timing, and fatigue. These aspects
lie beyond our reach during the examinations conducted at the hospital. The system im-
plemented in the study will assist us in perceiving and analyzing diverse gait disorders in
various settings.

4.2. Gait Analysis by TDPT-GT

TDPT-GT is an application of motion capture for various possible utilities, such as
making animations of humans and avatars and analyzing posture, dance, and sports. For
human health, the application may increase knowledge of human motion and may help
diagnose symptoms. It is significant that this application works on the iPhone with the
precise camera characteristics of the device and automatically generates the data of many
points of the entire body, including the head, trunk, arms, and legs. Furthermore, the data
incorporate the notion of time.

AI studies of movement in Parkinson’s disease (PD) were reviewed by Biase [21], who
focused on several features, for example, the maximum angles of a joint, stride length,
swings, and their statistical indexes. Each study tried to find characteristic disease features
among them. Hereditary spastic paraplegia and cerebral palsy were discriminated by
AI analysis of measures including strength and spasticity and kinematic gait metrics,
totaling 179 variables [22]; however, those measures were impracticable in clinical settings.
A smartphone was used to collect the tri-axial acceleration, and secondary associated
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statistical data were used to discriminate between PD and controls through AI analysis [23].
The advantage of our study was that the gait data were all primarily obtained automatically
by a smartphone.

The present study’s algorithm of distinction of gait was learned frame by frame, mo-
ment by moment, and one by one. Additionally, the pathological gaits were distinguished
from those of the controls by the entire gait time of a person. Although the learning method
was simple, gait was evaluated with the concept of time because the whole gait of the
subjects was analyzed for around one minute. Compared with previous studies of gait
analysis with AI, we employed the most convenient and low-cost motion capture, using Al
analysis but systematically for the whole human body and the gait process.

Discoveries Made by AI

Feature importance, which indicates particular coordinates that strongly affect the
decision of AI analysis, is being used in many fields of medicine, such as genetics [40], the
drug design field [41], and survival prediction [42]. In the study, high feature importance
scores were found in the coordinates of the hip joint, the buttocks, the knee, and the center
of the head. Despite the inherent lack of interpretability in AI analysis, it was observed
that the findings predominantly pertained to the body’s trunk. We usually describe the
gait mainly as the movement of the legs; however, the model seemed to focus on posture
during walking. Therefore, these results of feature importance suggested that we should
reconsider the clinical importance of posture and the trunk while walking. Such findings
may be valuable in reconstructing medical assessments and rehabilitation knowledge. The
results of the present study implied that pathological gaits, mainly with hydrocephalus
and neurodegenerative diseases, had common mechanisms of posture impairment. Static
posture and posture during gait are also objected to analysis with sensors [10,43–47].
In neurodegenerative diseases, Parkinson’s disease is the most analyzed for its posture
impairment [10,48,49]. In patients with Huntington’s disease, the wearable device revealed
that the magnitude of thoracic and pelvic trunk movements was significantly higher during
static periods (such as sitting or standing) compared to walking [46]. The function of the
trunk is associated with balance and falls, expressing frailty, among older people without
causative diseases [50]. Trunk posture adaptation before the onset of decline in gait speed
was found in at-risk community-dwelling older adults [51]. Leveraging AI to detect trunk
function will contribute to the early prevention and diagnosis of frailty or diseases.

We suppose it is advisable not to separate the evaluation and discussion of posture
and gait. For postural neural control, the mesencephalic area, the reticular formation,
the forebrain structure, and the spinal locomotor networks, cerebral, cerebellar, and basal
ganglia were affected [52]. The instability of the trunk can be attributed to various factors,
such as peripheral nervous system disorders and psychosomatic disorders [53]. Trunk
muscles are also crucial and responsive to training for the preventing falls [54]. Due to the
complexity of the system, clinicians face challenges in recognizing disruptions in trunk
function through direct observation. Our findings could facilitate earlier diagnosis or
intervention for persistent impairments in posture and gait.

4.3. Limitations

The methodological limitation was that we were within the capability of the present
smartphone (iPhone). The data we obtained from the system were 30 fps, while the VICON
(Vicon Motion Systems, Oxford, United Kingdom), the standard for motion capture, could
generate data of 100 Hz. More frequent analysis on the iPhone may exceed its processing
ability and make the iPhone slower in its performance. In an effort to achieve convenience
and versatility, as alternative motion capture systems, Microsoft Kinect [10,55] operated
at a frame rate of 30 fps, while the Kinect of YOLOv4 [56] had a frame rate of 17.5 fps.
Clinically, 30 fps seemed enough for human gait, which did not have a high-frequency
motion, especially since patients needed to walk safely within the angle view of the iPhone
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camera. Even with the limitations of using an iPhone, we were able to swiftly obtain gait
data directly at the hospital or the common space.

The clinical limitation of the study was that the severity of the pathological gait was
difficult to describe and control. Therefore, learning may be easy if very severe pathological
gaits are included. However, the patients with severe gait disturbance were not included
naturally because the method of the gait test in the study needed the participants to walk
safely and independently without assistance.

5. Conclusions

Gait data in the study were collected using a markerless motion capture system called
TDPT-GT, utilizing an iPhone. The study involved examining patients with iNPH, PD,
other neurodegenerative and neuromuscular diseases, and healthy volunteers. The deep
learning algorithm could distinguish a pathological gait from a control gait with an AUC
of 0.719 for the ROC and an accuracy of 0.702.
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