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Abstract: The paper proposes a topology-free specification of distributed control systems by means
of a process-oriented programming paradigm. The proposed approach was characterized, on the
one hand, by a topologically independent specification of the control algorithm and, on the other
hand, by the possibility of using existing formal verification methods by preserving the semantics
of a centralized process-oriented program. The paper discusses the advantages of a topologically
independent specification of distributed control systems, outlines the features of control software,
argues why the use of a process-oriented approach to the development of the automation of cyber-
physical systems is suitable for solving these problems, describes a general scheme for implementing
a distributed control system according to a process-oriented specification, and proposes a formal
heuristic algorithm for partitioning a sequential process-oriented program into independent clusters.
We illustrate our algorithm with bottle-filling and sluice case studies.

Keywords: distributed control systems; control software; process-oriented programming; topology-
independent algorithm specifications; hyperprocess

1. Introduction and Motivation

Cyber-physical systems (CPSs) are usually defined as network systems with a compu-
tational core that interacts with the physical world through sensors and actuators. Some
researchers insist on adding the network architecture to the definition. This remark is
confirmed by the widespread use of distributed architectures for the implementation of
cyber-physical systems. For example, a modern car control system can include up to a
hundred microcontrollers connected to the CAN bus [1]. The distributed architecture of the
vehicle control system provides a reduction in the length and weight of connecting wires,
ease of maintenance, eliminates the mechanical or hydraulic implementation of various
functions, thereby minimizing the weight and size characteristics of the system as a whole,
and also makes it possible to implement various control strategies [2–4]. Due to these
circumstances, software development has a significant part in the costs of creating new
and redesigning existing control systems. Usually, software development costs account for
more than half of all expenses [5].

Cyber-physical systems (CPSs) are being actively developed as part of the Industry 4.0
concept. According to the concept, which declares the shift from mass production to mass
customization, the CPSs must meet requirements such as modularity, adaptability, reusabil-
ity, and flexibility. The class of cyber-physical systems that integrate physical and virtual
components in the automation of production processes is called cyber-physical production
systems (CPPSs). IEC 61131-3 languages and a later superstructure over them—IEC 61499
function blocks—are positioned as the main means of specifying the algorithms for the
functioning of CPPSs. These approaches are seriously criticized by specialists for their
inability to respond to the challenges that arise in the development of industrial automation
systems and, in fact, for their inability to solve the problems for which these languages
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were created: to ensure portability, reconfigurability, interoperability, and the distribution
of the developed software [6]. The developers of the IEC 61131-3/IEC 61499 specifications
themselves agree with the conclusions about the standard’s inconsistency with the declared
goals [7].

The problems of existing approaches lead to the fact that, in practice, a module-oriented
(device-centric) approach is used [8], which involves the separate programming of each
controller of the control system. In particular, this is caused by the current “one function
per module” paradigm used in the development of control system components in accor-
dance with the V-cycle technology [9]. The main disadvantages of this approach are the
complexity of software maintenance, its readability and modification, flexibility, and the
complexity of verification, which is crucial for most cyber-physical systems. Based on the
current problems of programming cyber-physical systems, the need for the development of
the topologically independent (application-centric) programming of distributed control
systems was stated in [9]. The indisputable advantage of this concept is the possibility of
a simple and, in the most preferable case, sequential description of the control algorithm,
independent from the type of nodes, their number, and the topology of the distributed
control system. Topology-free programming could provide a drastic reduction in the cost
of developing and maintaining the control software being created. The implementation of
the concept involves creating a toolchain for the design and development of the control
algorithm: first of all, automatically dividing the algorithm into parts and deploying them
on controllers. The concept weeds out the tedious and error-prone manual process of
dividing it into parallel (more precisely, independent or loosely connected) parts. Although
the quality of automatic parallelization has improved over the past few decades, the fully
automatic parallelization of sequential programs by means of compilers remains a signifi-
cant challenge due to the need for complex program analysis and unknown factors (such
as input range) at compilation time [10]. This gives rise to serious problems associated
with the automatic generation of executable code. Automatic parallelization by compilers
or tools is very difficult due to different types of race conditions. Dependency analysis is
not easy for code that uses indirection, pointers, recursion, and indirect function calls. In
addition, access to shared or global resources can lead to bottlenecks, resource starvation,
or deadlocks [11]. The main direction for increasing the comprehensibility and reducing
the complexity of the verification of a system of concurrent processes is to ensure the
determinism of its execution [12].

These circumstances are typical for the field of parallel programming of computational
algorithms. In terms of control algorithms, the complexity of the problem can be reduced
due to the following features:

• First of all, in the field of automation, parallelism is an integral part of the control
algorithm. This circumstance is reflected in so-called process-oriented languages;
for example, in the recently developed poST language, which is a process-oriented
dialect of the IEC 61131-3 Structured Text [13]. In the poST language, a program is
built as a set of weakly dependent processes—FSM-like structures. Therefore, the
process-oriented specification of the control algorithm contains information about its
possible parallelization.

• Secondly, in contrast to parallel programming goals, the need for parallelization is
primarily caused not by the desire to reduce the computation time but by the desire
to reduce the cost of the system as a whole and the cost of its maintenance by using
smaller, less expensive, and more flexible microprocessors, reducing the length of
wires, reducing the complexity of wiring, and improving maintainability, providing
the opportunity to implement various control strategies [3,14].

• Thirdly, for control problems, an extremely important circumstance is the possibility
of formally verifying the algorithms being created. For the process-oriented paradigm,
we developed the mathematical model of hyperprocesses. Informally, a hyperprocess
involves expanding the processes in the system into one process by periodically
turning on the logical processes in the program according to the round robin strategy
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to execute the code in their current states. A number of formal methods for the
process-oriented programming languages have been developed [15,16] based on the
semantics of a hyperprocess. Correspondingly, when developing a methodology for
the topologically independent programming of control systems based on a process-
oriented approach, it is desirable to reuse the existing verification methods.

Following the above reasoning, we propose a fairly simple technique for parallelizing
the control algorithm on the basis of the process-oriented approach. Our automatic parti-
tioning algorithm works at the process level. We also need to preserve the semantics of the
hyperprocess.

The outline of this paper is as follows. Section 2 presents related works on distributed
control systems’ design and implementation. The main contribution is presented in the
three following parts. First, we describe the main basics of process-oriented programming
and formulate the hypothesis of the research (Section 3). The second part contains the gen-
eral approach for partitioning a centralized process-oriented control algorithm specification
into a distributed architecture (Section 4). Finally, we empirically demonstrate the approach
using bottle filling and sluice distributed control systems (Section 5). In the concluding
Section 6, we discuss the paper’s contribution and outline possible development paths.

2. Related Works
2.1. Distributed Control Systems for Vehicles

Probably the most well-known area of the application of distributed control today is
the automotive domain. Here, the associated data transmission lines are used to connect the
main electronic control unit (ECU) of the car to child ECUs and sensors/actuators. Based
on this approach, other systems in different domains are being developed for cases where
there is a sufficiently large number of interacting devices and it is required to minimize the
number of wires. Since the 90s of the last century, the advent of injection technology and the
implementation of closed-loop engine control algorithms have led to the need to take into
account the data and synchronization of a large number of signals from sensors connected
at different places in the system. Thus, the need for distributed control was recognized
early enough in the automotive industry and a number of connectivity protocols were
developed to enable in-vehicle network communication. Nowadays, these protocols have
been merged into a de facto standard for the in-vehicle controller area network (CAN) [17].
A CAN bus has been successfully integrated into the industry for data exchange between
controllers in a distributed system with a distance of several meters.

In [18], the authors explored CAN messages from a vehicular peripheral bus of a
real car. It was found that the peripheral bus is disconnected from the main bus, where
data are transmitted in the exchange of devices for monitoring engine parameters, is less
high-speed, and transmits data between the radio, heating installation, display, and control
knobs. There are several identifiers and data bytes are transmitted for each identifier
with some given periods. From such experiments, the distributed control approach used
in industry today can be stated as: (1) controllers transmit periodic messages to each
other about the state of key system variables (encoded information received from closely
connected sensors and derived information based on the processing of this data); (2) more
important information is transmitted at shorter intervals; (3) periods are calculated so that
there is not a large number of collisions during simultaneous transmission; (4) the data
network is essentially distributed into independent subnets that do not interfere with each
other when transmitting heterogeneous information (as in the example, the engine ECU
does not need to know about the radio station currently playing). In the existing literature,
such a control algorithm is called “time-triggered control” [19].

In [20], Albert et al. compared the applications of the time-triggered and event-
triggered approaches in automotive distributed control systems using the CAN bus and
its TTCAN variant (time-triggered CAN) [21]. It is noted that systems whose subsystems’
operation is pre-calculated by time windows are predictable; their components can be
interchanged from different vendors, with the requirements that the maximum operating
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times are not violated. However, such systems cannot properly respond to important
(system critical state) messages because the latter can only be processed after bus arbitration.
On the other hand, fully event-driven systems can process messages with the desired
priorities; however, due to non-determinism, when changing system components to others
(for example, faster or slower), the control algorithm must be completely revised. It is
concluded that it is necessary to use the event-triggered approach only for a few of the
most important messages and to include their processing in a special time window before
everyone else, while the processing of the normal messages should be performed using
time-triggered control. In this case, it is possible to calculate the change in the control law
of the object, and it becomes predictable.

Thus, when planning control algorithms, the delays associated with the bus should
be calculated and simulated. For instance, the work by Baek et al. [22] considers the
theory and practice of creating a controller for an autonomous all-terrain vehicle using the
CAN bus. Using a simple fixed-priority bus model [23], the worst-case response time was
calculated and the transit times and loss percentages between key system components were
measured. Taking into account the obtained information, a simulation was carried out on
the controller model based on control theory and it was concluded that the implementation
is built correctly, taking into account the specified delays and losses. The same has been
carried out in numerous research projects; for example, [24,25].

Of course, if the controllers are placed side by side, it makes no sense to use the
CAN bus. For example, Shiau et al. explored the possibility of designing a distributed
multi-MCU-based flight control system for unmanned aerial vehicles [26]. The system was
built on low-cost microcontrollers. For inter-node communication, the UART interface was
used. The distributed system is able to calculate complex non-linear Kalman filters and
calculate the attitude angle using base elements with a low performance. The system also
provides for error handling when receiving sensor data. The quality of the resulting design
was verified using MATLAB.

2.2. Design of Distributed Control Systems Based on IEC 61131-3/61499

Christensen in [27] suggested and adopted the model–view–control (MVC) design pat-
tern to the domain of industrial automation and integrated it with the IEC 61499 standard
architecture. According to the adopted pattern, control software is organized from two com-
ponents connected in a closed loop: a controller, implementing a set of control operations
available as published services, and a model, simulating the plant. Vyatkin et al. in [28]
extended the approach to include the formal verification of function block systems, appro-
priate for more rigorous verification by means of model checking.

Thramboulidis in [29] adopted a system-based approach for the development of
industrial automation systems (IASs). Based on the proposed methodology, the UML
software model of the system was obtained by extracting it from a formal system model
and was further developed into implementation code. The approach presented by the
author enables the development of control systems from diverse perspectives to meet
the demands of CPSs. The author provided evidence of the need for such an approach
by demonstrating the simultaneous engineering of various components of the system,
including mechanical, electrical, and software parts. This approach offers the advantage of
integrating the relationships between the physical and software aspects of components in
CPS, thereby improving the quality of IAS development.

In [30], Schwab et al. described the TORERO tool, which achieved a semi-automatic
allocation of the IEC 1499 control application to the distributed hardware underneath, and
generated communication-related code automatically based on the allocation.

In [31], Dai and Vyatkin proposed three different approaches to redesigning existing
PLC programs to the distributed architecture based on the IEC 61499 functional blocks: two
object-oriented approaches and a service-oriented one (class-oriented approach), in which
the program is structured based on the plant functionality. A study of the effectiveness of
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these approaches on an airport baggage handling system showed the improved effective-
ness of the latter approach, even when compared to the original IEC 61131-3 program.

Ribeiro and Bjorkman in [32] analyzed and identified several fundamental challenges
that need to be addressed before one can start to design cyber-physical production sys-
tems consistently. Among other things, the authors stated the existence of two different
approaches to the decomposition (structuring) of the system: functional or structural (object-
oriented) decomposition. In addition, the authors, analyzing the concept of holonic manu-
facturing systems, noted the lack of dedicated domain-specific language, leading to agent or
service-based architectures or a combination of both in articulation with other technologies.

Patil et al. in [33] proposed refined design patterns for cyber-physical system architec-
ture. These patterns were empirically tested in a series of projects and showed a reduction
in development complexity [34].

In [35], Cruz Salazar et al. proposed a classification of multi-agent approaches to the
design and implementation of cyber-physical production systems, classified them, and
showed their satisfactory properties, particularly for the implementation of the field control
level. The analytical part of the work provides an excellent overview of multi-agent technolo-
gies that are alternative to the conventional one based on the IEC 61131-3/61499 standard.

Zyubin and Rozov in [36] proposed a conceptual approach to the IEC 61499-based
specification for control software using the poST language. The approach is based on
the idea of a single reduced function block with one event input invoking the algorithm
specified in poST. The approach allows for developing distributed event-driven algorithms
using only one ST-like language, and thus drastically simplifies program maintenance. The
question of ensuring determinism was left out of consideration.

In [37], the researchers concluded that managing scenarios for reconfiguration within
the function block can be difficult at this stage as the reconfiguration and control models
are merged into a single ECC. This results in overlapped error handling, initialization, and
reconfiguration. Additionally, there is no differentiation between the control level and
higher levels within the ECC. This leads to a large number of states and transitions and
low readability and maintainability. Furthermore, due to the high dependency between the
states, it is challenging for the developer to extend or maintain an ECC.

Sinha et al. in [38] proposed a hierarchical and concurrent ECC (HCECC) to model
concurrent behaviors within the IEC 61499 paradigm. The HCECC-based function blocks
utilize a multilevel hierarchical state machine to integrate concurrent and hierarchical
behaviors and reduce system complexity. However, the authors did not tackle the reconfig-
uration issue, which is critical in distributed control systems where execution semantics are
influenced by environmental changes and user requirements.

Marschall et al. in [39] proposed an agent-controlled approach for CPPSs. Open
Platform Communications Unified Architecture (OPC UA) was selected as the standard
protocol for the data exchange in the multiagent control system. The internal control
logics of the system were implemented using the state machine design pattern. When
implementing the system, no verification tools were used and the resulting program
contained errors during execution.

Despite the fact that the IEC 61499 standard aims to achieve interoperability and
portability, the results of the experiments show that the options for exchanging data
between different tools within this standard are restricted. As part of their efforts to tackle
the challenge of porting IEC 1499 applications, Hopsu et al. in [40] suggested streamlining
manual processes for relocating functional blocks in a distributed system by creating a
standalone application in order to use the NxtStudio package, which automatically manages
communication between different devices.

In paper [41], the authors proposed an IEC-61499-based model for CPSs to distribute
the complexity of control software over numerous small devices. The approach enables
the creation of a comprehensive structure that can combine the design, simulation, and
distributed deployment of automation software. The proposed scheme was validated
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through a packet-sorting system implemented in the nxtSTUDIO platform. Thus, the article
outlines one of the variants of the so-called device-centric approach.

Parant et al. in [42] proposed a methodology for building the knowledge base from
the product’s specifications and a formal diagram linkage table (DLT) approach to ensure
the domains’ coherence and interdependence. This approach facilitates the identification
of a perturbation’s impact on the system and proposes the appropriate response during a
reconfiguration of its functionality. In fact, the authors extended the functional approach to
designing CPPSs and included in the development process not only the question “what the
system should do” but also the question “what the system can do”.

2.3. Solving Conflicts in Distributed Systems

Well-known approaches that deal with non-deterministic behavior during conflicts
over shared resources have been developed for concurrent processes. The development
of these methods is traditionally associated with Dijkstra’s classic work, e.g., [43]. Re-
views of the state of the art in this area can be found in [44]. However, since the concept
makes stronger demands and has specifics, particularly the interaction with the envi-
ronment, these algorithms are only partially applicable to the tasks of creating distributed
automation systems.

Eidson et al. introduced a programming model that captures the physical notion
of time for the model-based design of distributed real-time embedded systems, called
programming temporally integrated distributed embedded systems (PTIDESs). PTIDES
structures distributed software as an interconnection of components communicating using
timestamped events in order to provide determinism in CPSs [45].

Among the works on modeling cyber-physical systems, the papers of Edward Lee
should be especially noted. In his book [46] and also in his article [12], he dwells in detail
on aspects of the correct definition of the concept of a cyber-physical system. He notes
that this concept was introduced by Helen Gill in 2006 and is just a modern rethinking
of cybernetic systems, which, in turn, are systems studied in control theory. However,
modern cyber-physical systems are associated with large amounts of information from
heterogeneous sensors. Such systems operate in a distributed manner and have an impact
on people, and, when designing them, modeling cannot be dispensed with, since their
correct functioning can have consequences for the environment and humans. In their works,
Lee raises the key problem of modeling a non-deterministic world based on different types
of models, both deterministic and non-deterministic. For instance, in [12], he gives a
detailed description of PRET and Ptides projects, which aimed to use deterministic models
for CPS with faithful physical realizations. The author argues that such an approach is
practical due to deterministic models being easier to understand and analyze. The PRET
project shows that the timing precision of synchronous digital logic can be practically made
available at the software level of abstraction. The Ptides project shows that deterministic
models for distributed cyber-physical systems have practical faithful realizations. The time
stamp mechanism proposed in these projects allows for detecting synchronism violations
due to network delay or the clock synchronization error and processing these violations in
accordance with the context; for example, rejecting a database transaction.

In [47], in order to avoid undesirable non-determinism in the system of parallel
processes (e.g., data racing), M. Lohstroh et al. suggested time-tagging actions of parallel
processes that are sensitive to non-deterministic execution. These tags are used in additional
timing constraints that are supposed to ensure that concurrent processes run in a consistent
manner that does not allow for undesirable non-determinism. This technique requires a
careful study of the sequence of the processes’ execution, which is quite labor-intensive.

In paper [48], H. Li et al. studied the possibilities of ensuring the robustness for a
distributed consumption–production system with respect to deadlocks. They proposed
a strict proxy communication protocol for the system agents (processes) that limits the
number and frequency of process interactions. On the one hand, such restrictions strongly
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lead to the absence of deadlocks in the system, but, on the other hand, they significantly
complicate the interaction of parallel processes.

In the present work, however, we propose an algorithm for distributing components
into clusters running on the same controller so that synchronization does not have to be
taken care of inside of the cluster.

3. Theoretical Framework for the Proposed Approach

In this section, we present the basic theoretical grounds for process-oriented program-
ming and describe general schema for the deployment of process-oriented specification on
an arbitrary distributed architecture.

When we think about a contemporary control system, we typically envision a digital
controller linked to a controlled environment, which includes hardware and equipment
where physical processes occur. This environment, known as the plant, is the external
element of the control system. Sensors and actuators facilitate the connection between the
plant and controller. The sensors collect data from the environment and transmit them to
the control system. Subsequently, the controller reacts to the data inputs by generating
control values for the actuators. These actuators then modify the flow of physical processes
within the plant.

We consider the following features of an industrial automation system fundamental to
the class of control programs:

• interaction with an external environment via sensors, actuators, controls, and
indicators;

• indefinite running time;
• cyclic execution;
• event-driven behavior;
• synchronism, expressed in the active use of operations with time intervals, which is

required to ensure that the control program matches the dynamic characteristics of
the plant;

• control flow concurrency, which aims to describe the parallelism of physical processes
on the plant;

• hierarchical structure.

Another important point for the development of a practically useful methodology in
the field of creating control programs is the urgent need to ensure structural conformity
between the architecture of control programs and the technological description of the plant.
Modern studies show that this problem is actually very acute to date [49]. Control software
development fits well into the “client–contractor” paradigm. At the initial stages of the
project (system requirements specification, program specification), the client (plant and
process engineers) plays a leading and irremovable role. Their input gradually decreases
as the project progresses to the implementation stage. The contractor (programmer),
however, plays an auxiliary and dependent role at the start. It is only at the design and
implementation stages of the project that they start to gain relative independence. However,
this connection between the client and the contractor remains throughout the entire life
cycle, which involves program changes.

The authors strongly believe that a careful consideration of the plant design process
allows us to answer the frequently raised question of choosing between a functional
decomposition vs. an object decomposition of a control program [50–52], to name a few.

The paper [53] argues in favor of the functional structuring of control algorithms.
The author draws attention to the fact that the control algorithm appears at the stage of
creating a plant. The control algorithm is aimed at the implementation of certain technology
and has a process nature. From the point of view of the technological description, the
functions performed by the plant and the processes that take place on the plant are more
important, while the issue of their object implementation is in the background. For example,
the process of heating a certain volume required by a technology can be implemented
in many ways electrically, by current and resistance, by heated steam in a pipeline, by a
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microwave method, by a laser, or by mechanical friction. During the development process,
several options are usually considered by plant engineers; moreover, the method of heating
the volume (object representation) can change during the operation of the plant. Thus, the
process structure of the plant is more resistant to changes and it is preferable to choose it as
the base one.

3.1. Process-Oriented Programming

Process-oriented programming intends to provide a conceptual consistency of the
PLC source code with a technological description of the plant operating procedure. The
concept can be seamlessly implemented as a textual programming language for complex
PLC software. The approach uses the advantages. The process-oriented paradigm as-
sumes that a control program specified as a set of weakly connected concurrent processes
structurally and functionally corresponds to the technological description of the plant.
Each process is specified by a sequential set of states. The states are specified by a set
of arithmetic constructs, extended by a TIMEOUT operation, SET STATE operation, and
START/STOP/check state operations to communicate with other processes.

The process-oriented paradigm uses the hyperprocess model to represent the control
program that is an ordered set of processes, which are cyclically activated with a period in
a predetermined order. A formal definition of the model can be found in [13]. At this point,
we can assume that a process is just a function or a set of instructions (in a programming
sense). It should also be noted that a kind of perfect synchrony hypothesis [54] is assumed
in this model.

The newly developed poST language is one of the process-oriented programming
languages that implement the concept. The poST language can be utilized seamlessly as a
textual programming language for intricate PLC software in the IEC 61131-3 (3rd Edition)
context. The language incorporates the benefits of FSM-based programming and the tradi-
tional syntax of the ST language, making it easy to adopt. According to the poST language,
a poST program is a collection of weakly connected concurrent processes that structurally
and functionally correspond to the plant’s technological description. Each process is de-
fined by a sequential set of states, and each state is specified by a set of ST constructs that are
extended by a TIMEOUT operation, SET STATE operation, and START/STOP/check state
operations to communicate with other processes. The paper [13] outlines the fundamental
syntax of the poST language and demonstrates the usage of the poST language in creating
control software.

3.2. Deploying a Process-Oriented Specification on a Distributed Architecture with Semantics of a
Centrally Controlled Implementation

The main idea of mapping a process-oriented algorithm to a distributed architecture
is shown in Figure 1. The mapping preserves the semantics of a hyperprocess since the
algorithm is in fact executed sequentially. In accordance with this scheme, the execution of
a process-oriented algorithm occurs cyclically while maintaining the “read–calculate–write”
cycle. The reading of the input signals is performed in parallel, and then the cycle of the
inter-node synchronization of the read values is performed. After the synchronization cycle,
the processes on the first computing node are activated. At the end of the calculations, the
control (interprocess) signals and the calculated values of the output signals are transmitted
to the stakeholder nodes; at the end of the synchronization, the second (in the general case,
to the next) node computer executes its part of the control algorithm. After the sequential
execution of the algorithm on all computing nodes of the distributed control system, the
last microprocessor node initiates a parallel writing of output signals. After this, the next
cycle begins.

The discussed approach enables us to generate a distributed application for any
topology, comprising nodes up to the number of processes in the original process-oriented
specification. When specifying the control algorithm, we do not care about the number
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of nodes, their type, and the network topology. This makes our approach topology-free
programming.

Figure 1. Preserving the hyperprocess semantics while deploying a process-oriented specification on
a distributed architecture.

Advantages of the approach:

• deterministic behavior of a distributed system;
• a high degree of granularity up to placing only one process on a node of the distributed

system;
• preserving the semantics of the monolithic implementation.

Besides the advantages, the designed model also leads to a more intricate software
architecture as only one PLC can have access to a single output module. It also requires ad-
ditional communication between multiple PLCs to share information such as input/output
module data and program data. As a result, there is an increase in both hardware costs and
engineering effort required [31].

4. Proposed Approach
4.1. Motivation and Hypothesis

Summing up the above, we can state that a deterministic model is a beneficial property
for a system as it defines exactly one behavior under the given inputs. This property is
useful as it can establish the accurate behavior of the system being modeled, given the same
inputs. This type of model is helpful for developing tests to determine if a physical system
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conforms to the model and is ready for deployment. However, a nondeterministic model is
less useful for this purpose as it can have multiple possible “correct” behaviors [12]. Thus,
deterministic systems are easier to understand and analyze. They are easier to validate and
hence easier to certify.

However, distributed architectures suffer from several significant limitations, such
as the possibility of conflict arising from multiple nodes having write access to outputs.
To address the problem, IEC 61131-3 specifies that every remote output module should
either be allocated entirely to a single PLC, or a critical section/token mechanism should
be employed that restricts access to a single PLC at any given time. While this was
originally intended to prevent non-deterministic behavior and guarantee data synchronicity,
the downside is that, at the design phase, the owner of each output module must be
predetermined, leading to a decrease in runtime flexibility [31] and forcing the developer
to use the device-centric paradigm. The lack of structure in granularity can result in
interactions between components that operate at different levels of abstraction. These
parallel communication channels, which can operate asynchronously, have the potential to
introduce inconsistencies in the overall behavior of the system [32].

The theoretical section indicates that a process-oriented specification, specifically in the
poST language, includes a loosely coupled process algorithm that resembles critical sections
in parallel programming. Given this information, we propose a hypothesis that suggests
using the poST program as an architecture-independent specification for a distributed
control system. The individual processes of this specification can be combined into groups
or “clusters” following specific rules. The clusters, in turn, can be executed on the nodes
of a distributed system, and the deterministic behavior of the system as a whole can be
provided with minimal or no synchronization effort.

In summary of the subsection, the objective of dividing a process-oriented specification
into clusters is to identify sets of processes that are closely interconnected internally while
being only loosely linked to the rest of the system.

4.2. The Heuristic Approach

To minimize the computational complexity of inter-node synchronization, which
should ideally be excluded, we propose to divide the set of program processes into indepen-
dent groups (clusters) with the finest possible granularity. The heuristic requirements for
partitioning a control algorithm according to a process-oriented specification into clusters
are as follows:

• two processes using the same variable should both be in the same cluster;
• two processes using the same process should both be in the same cluster;
• processes forming a loop relative to the use relation should be in the same cluster.

Let the letters p, v, and e (possibly indexed) denote processes, variables, and elements
(both processes and variables), respectively. In poST program u, expression p use e denotes
that p uses e in program u, i.e., the specification of p includes operations with e. A transitive
closure of the relation use bounded by processes only is use+.

We define the relation ∼ on processes of program u as follows:

1. If p1 use e, and p2 use e, then p1 ∼ p2.
2. If p1 use+ p2, and p2 use+ p1, then p1 ∼ p2.
3. p ∼ p.
4. If p1 ∼ p2, and p2 ∼ p3, then p1 ∼ p3.

The relation ∼ is an equivalence; hence, it divides processes of program u into equiva-
lence classes called clusters. We can consider a poST program as a sequence of processes.
This sequence sets the order on the set of program processes. In reverse, some order
on a given set of processes generates a program. Processes in every cluster are totally
ordered with respect to the order of the original program. We would like to obtain such
∼-partitioning of the set of program processes that we can order its clusters in a way
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that the resulting order of processes would be the same as in the original program. The
following straight algorithm may produce such partitioning.

Let n be a number of processes of program u. UE(i) is a set of elements used by
process pi, and UP∗(i) is a set {j | 1 ≤ j ≤ n ∧ pi use+ pj}, which is a set of processes used
by process i possibly through other processes. Let CLSid ⊆ {1, . . . , n} be a set of cluster
identifiers. Let cl be an array of length n such that cl[i] = j means that process pi belongs
to cluster j ∈ CLS.

The array cl implements mapping processes to clusters. The following partitioning
algorithm produces the processes clusters for program u by checking if every pair of
program processes is related by ∼:

1. CLSid := {1, . . . , n};
2. for i = 1 to n do cl[i] := i;
3. for i = 1 to n do
4. for j = i + 1 to n do
5. if (cl[i] 6= cl[j] ∧ (UE(i) ∩UE(j) 6= ∅ ∨ i ∈ UP∗(j) ∧ j ∈ UP∗(i)))
6. then {cl[j] := cl[i]; CLSid := CLSid \ {j}; }

Let us explain what happens in the algorithm. The first two lines are the initialization:
in line 1, we define the initial set of cluster identifiers to be {1, . . . , n}, which is the maximal
set of clusters for n processes, and, in line 2, every process is associated with its initial
cluster. Lines 3 and 4 organize pairing cycles for processes to check the possibility of their
joining into one cluster. Line 5 checks the joining condition: two processes must not be in
the same cluster yet, and they must directly use at least one the same variable (or process)
or indirectly use the same processes, i.e., use them through the using process chain. If this
join condition is met, then in line 6 we associate the higher numbered process with the
cluster ID of the lower numbered process and remove the higher numbered cluster from
further processing. Figure 2 demonstrates the algorithm flowchart.

We consider the resulting partitioning CLS = {cl1, . . . , clm} based on cl and CLSid
successive if there is a partial order of ≺ on CLS such that, if a sequential program u′ is the
ordered sequence clk1 , . . . , clkm of clusters from CLS with regard to ≺, then the execution
of u′ is equivalent to the execution of u. If the final partitioning is successive, we can
distribute process clusters on the corresponding number of controllers, keeping the program
operational semantics.



Sensors 2023, 23, 6216 12 of 25

Figure 2. Partitioning algorithm flowchart.

5. Case-Study: Bottle-Filling System and Sluice System
5.1. The Bottle-Filling System

The bottle-filling system is considered as a case study (Figure 3). The conveyor is
used to transport bottles. The liquid is sterilized and maintained at 100 degrees Celsius.
Two temperature sensors are attached to the tank to monitor the liquid temperature. The
steam valve provides a superheated steam supply to the tank casing and heating of the
tank. The conveyor also has a limit switch that is used to detect the presence of a bottle
under the tank. At the bottom of the filling tank, there is a valve for pouring liquid into
the bottle. The liquid level in the bottle is determined by a photo sensor. The system has
two level sensors to control the degree of filling the tank with liquid. A valve at the top of
the tank ensures that the tank is replenished with liquid. The algorithm of the operation is
quite simple: we need to ensure the supply of bottles along the conveyor and the filling of
these bottles with liquid, which, in turn, must be sterilized. It also assumes that, after the
tank low sensor is triggered, the tank contains enough liquid to fill one bottle.
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5.2. Process-Oriented Specification of Plant Simulator and Controller

The software can be described by means of two specifications, which are a plant
simulator and controller.

The simulation algorithm is quite simple and plays an auxiliary role, so we pro-
vide only a textual description. The plant simulator program consists of six processes
(Initialization, TankSim, TempSim, BottleFillingSim, ConveyorSim, SetBottle). The
initial process Initialization launches the other processes and stops itself.

Figure 3. The bottle-filling system.

The TankSim process simulates the tank level. It calculates the TankLevel internal
variable according to the state of the oTankFilling and oFillBottle signals and changes
the state of the iHighLevel and iLowLevel sensors signal.

The TempSim process simulates the liquid temperature. It calculates the TankTemp
internal variable according to the state of the oTankFilling and oSteam signals and

changes the state of the iHighTemp and iLowTemp sensors signal.
The BottleFillingSim process simulates the liquid level in the bottle. If both the

liquid level in the tank is greater than zero (TankLevel > 0.0) and the bottle is under the
nozzle (iBottlePosition is ON), and the nozzle is open (oFillBottle is ON), then the liquid
level in the bottle BottleLevel increases. Then, in accordance with the calculated level, it
changes the state of the iBottleLevel.

The ConveyorSim process simulates the bottle movement on the conveyor. If there is a
bottle on the conveyor and the conveyor is turned on (oConveyor is ON), then the coordinate
of the bottle BottleCoord is incremented. If the bottle coordinate is within the specified
limits, then the iBottlePosition signal is set. If the coordinate exceeds the specified
threshold, then the bottle is removed from the conveyor.

The installation of a new bottle on the conveyor is carried out on the rising edge of the
iSetBottle signal. The SetBottle process handles this event and puts the bottle on the
conveyor.

Figure 4 shows a diagram of the processes interaction. The control algorithm is set
by seven processes: processes (1) Initialization and (2) MainLoop, which provide the
general control of the system; (3) process TankFilling, which controls filling the tank with
liquid; processes (4) ForcedSterilization and (5) KeepSterilization, which provide a forced
sterilization of the liquid in the tank and maintain the temperature of the liquid; the
BottleFilling process (6), which controls the outlet valve for filling the liquid and filling the
bottles to a predetermined level; and the NextBottle process (7), which controls the bottle
conveyor and stops the conveyor when the bottle is under the outlet valve. The listing of
the program in the poST language can be found at the link [55].
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Figure 4. Process interaction diagram for bottle-filling software.

The initial process Initialization (Figure 5, left) ensures that the tank is filled
with liquid and the filled tank is sterilized. At the beginning, the process launches the
TankFilling process and changes its current state to WaitForFilling. In the WaitForFilling
state, the process awaits the tank to fill with liquid by monitoring the inactive state of the
TankFilling process. After filling the tank, the process starts the liquid sterilization pro-
cess ForcedSterilization and enters the next state. In the WaitForSterilization state,
the process waits for the end of the sterilization process, and then it starts the process of
maintaining the temperature of the liquid and transfers control to the MainLoop process
(starts the MainLoop process and stops itself).

The MainLoop process (Figure 5, right) alternately starts the NextBottle process and
then the BottleFilling process. After filling the next bottle, the MainLoop process controls
the level of water in the tank. If the tank is empty, the MainLoop process transfers control to
the Initialization process (starts the Initialization process and stops itself).

The TankFilling process (Figure 6, left) starts filling the tank (sets the oFillTank
output in state ON), waits for the liquid level to be reached (iHighLevel), and stops filling
the tank. After this, it stops itself.

The ForcedSterilization process (Figure 6, center) starts heating the tank (oSteam),
waits for the sterilization temperature to be reached (iHighTemp), and sterilizes the liquid
for a minute. After the timeout, it stops itself.

The KeepSterilization process (Figure 6, right) maintains the temperature of the
fluid within a predetermined range. When the iLowTemp signal appears, the tank heating
(oSteam) is turned on, and when the sterilization temperature is reached (iHighTemp is ON),
the tank heating is turned off. The peculiarity of this process is that it runs constantly and
can only be started and stopped from outside.

The NextBottle process (Figure 7, left) starts the conveyor (oConveyor) and waits for
the moment when the bottle is under the nozzle (iBottlePosition is ON). After the event,
the process stops the conveyor and stops itself.

The BottleFilling process (Figure 7, right) opens the nozzle (oFillBottle) and
waits for the moment when the bottle is full (iBottleLevel). After the event, the process
closes the nozzle and stops itself.
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Figure 5. Flowcharts for the Initialization process (on the left) and MainLoop process
(on the right).
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Figure 6. Flowcharts for the TankFilling process (on the left), ForcedSterilization process
(on the center), and KeepSterilization process (on the right).

Using the proposed Partitioning Algorithm for Bottle Filling Software:

1. In the first step, the algorithm produces seven clusters identified by the process names:
Initialization, MainLoop, TankFilling, ForcedSterilization, KeepSterilization,
BottleFilling, and NextBottle clusters.

2. In the second step, the algorithm adds the variables to the clusters: iLowLevel
to the MainLoop cluster; iHighLevel and oFillTank to the TankFilling cluster;
iHighTemp and oSteam to the ForcedSterilization cluster; iLowTemp to the Keep
Sterilization cluster; iBottleLevel and oFillBottle to the BottleFilling clus-
ter; iBottlePosition and oConveyor to the NextBottle cluster.

3. In the third step, the algorithm merges the ForcedSterilization and
KeepSterilization clusters to the ForcedSterilization cluster because the pro-
cesses use the same variable.

4. In the fourth step, the algorithm merges the Initialization and MainLoop clus-
ters to the Initialization cluster because both processes use the same process
(KeepSterilization).

5. In the fifth step, the algorithm produces no changes because looped processes MainLoop
and Initialization already belong to the same cluster. Thus, finally, we have five

independent clusters separated by variables and processes.
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Figure 7. Flowcharts for the NextBottle process (on the left) and BottleFilling process
(on the right).

5.3. Implementation on AVR Microcontrollers

Based on the clustering carried out, a distributed control system for the bottling line
was implemented, consisting of four nodes (Figure 8). The Arduino Diecimila board based
on the ATmega 168 microcontroller was used as a computing node. The MCP2515 CAN
bus module was used for the internode communication.

Figure 8. Implementation of the bottle filling system on four controllers.
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We implemented the plant simulator on the Arduino boards according to the speci-
fication in the Reflex language (a process-oriented extension of the C language [56]). For
visualization, a simple communication board was developed to provide a safe connection
between the electrical signals of the plant simulator and the distributed control system. For
comfortable work, the board has LEDs that show the high level of signals.

The first controller hosts two clusters with the Initialiation, MainLoop, and Tank
Filling processes (physical signals iLowLevel, iHighLevel, oFillTank). The second

controller hosts the cluster with ForcedSterilization and KeepSterilization processes
(physical signals iLowTemp, iHighTemp, oSteam). In the third and fourth microcontrollers,
the NextBottle and BottleFilling processes are located, respectively. For reading
/writing physical signals, the regular functions of the Arduino platform
(digitalRead()/digitalWrite()) were used. The Arduino code was implemented ac-
cording to the specification in the Reflex language, which made it easier to manually
translate into the C language. The implementation used a standard time-triggered pattern
with an activation interval of 100 ms.

Interprocess communication over the CAN network was implemented as follows.
When starting a process hosted on a third-party network node, the encoded number of the
desired state (start state or inactive state) is written to the local copy of the process status
word and the corresponding network message is sent. Upon completion of the running
process, it sends a message about its transition to the inactive state. Upon receiving the
message, the calling process sets the local copy of the current state to an inactive state. Such
a protocol allows us to keep the standard implementation of inter-process communication,
regardless of the location of processes in a distributed system. However, it should be
noted that the protocol does not handle network failures. In real projects, this shortcoming
can be eliminated either by duplicating network equipment or by introducing a special
failure-handling procedure into the protocol and control algorithm.

Performance measurements were made in a standard way by measuring the execution
time of 1000 function calls. The standard micros() function was used to measure the
execution time. The measurements showed the following. The reading of signals by the
digitalRead() function takes time in the range of 3.9–5.0 µs. Writing a signal with the
digitalWrite() function takes 4.8 µs. Sending a message via CAN-bus takes 335 µs, and
reading a message takes 23 µs. The execution time of the control algorithm itself does not
exceed 4 µs (4 µs is the resolution of the micros() function). The worst-case execution time
(WCET) for the first processor was no more than 1 ms. In general, the measurement results
are typical for the industrial control systems: the most time-consuming operations are the
functions of reading/writing discrete and analog signals and network messaging. The
relation between WCET (1ms) and the activation interval (100 ms) ensures that there are no
race conditions and thus guarantees determinism.

5.4. The Sluice Control System

We also apply the proposed approach to the sluice case study. A sluice (Figure 9) is a
hydraulic structure on navigable waterways that ensures the passage of vessels between two
water basins with different water levels. The sluice consists of a sealed lock chamber with an
adjustable water level. The chamber is limited by two gates(openHighGate/openLowGate)on
both sides and has dimensions sufficient to accommodate one vessel. The water level in the
lock chamber is adjusted with two valves (openHighValve/openLowValve). The lock gates
at the ends of the chamber serve for sealing the chamber during the passage of ships. The
HighGateOpened, LowGateOpened, HighGateClosed, and LowGateClosed sensors are used
to control the gate positions.

Valves are used to fill and empty the chamber. The principle of sluice operation is as
follows: first, the entrance gate is opened, and the vessel enters the chamber and moors
to the bollards. The entrance gate then closes and the bypass valve opens, causing the
water level in the lock chamber containing the ship to fall or rise. The HighValveOpened,
LowValveOpened sensors are used to monitor the state of the bypass valves. Opening the
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bypass valve causes the water level in the lock chamber to align with the water level in the
adjacent reservoir in the direction of the vessel passage. Sensors (atLow and atHigh) are used
to control the leveling of the water levels in the chamber and in the pool. Once the water
reaches the required level, which is equal to the one outside the exit gate of the chamber,
the exit gate opens, and a signal (Low2ChmbrLight, Chmbr2LowLight, Chmbr2HighLight,
High2ChmbrLight) is given through the semaphore, allowing the vessel to continue and
exit the lock. Only one ship can pass through the lock at once. The airlock is equipped with
a ship presence sensor at the lower level (shipInHigh), the upper level (shipInLow), and
the lock chamber (shipInChmbr).

Figure 9. The sluice control system.

The control algorithm was implemented using 18 processes. A detailed description
of the poST-program is given in [57]. For this program, the proposed partitioning algo-
rithm gives three clusters only. Processes in one cluster are highlighted in the same color
(Figure 10). We marked with red dotted lines shared variables that formally cause the
processes to be combined into one large cluster. All these variables are reading sensors
only. They values are always analyzed to eliminate emergency situations at the local level.
For example, the OpenLowGate process checks the atLow sensor to avoid opening the gate
when the water levels are different because the acting leads to an accident.

Analyzing this confusing partitioning result, we observe the following facts. One the
one hand, using these sensor variables does not necessary result in process synchronization
because an asynchronized reading of the variables does not result in nondeterminism. On
the other hand, when the system starts from the specified normal initial state, undesirable
nondeterminism does not arise. Thus, there is no need to combine the processes into one
cluster.

Following these reasoning, we removed such variables from the joining condition of
our partitioning algorithm for the sluice program and obtained a more distributed system
with six clusters (Figure 11).

This case study demonstrates that the outcome of partitioning is influenced by the
selected architecture and implementation strategy. Additionally, we conclude that the
partitioning algorithm can be improved by including a careful analysis of variable access
order.
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Figure 10. The result of the proposed partitioning algorithm for the sluice control system: the
processes form three clusters, highlighted with magenta, yellow and orange.
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Figure 11. The result of the proposed partitioning algorithm ignoring safely shared variables for the
sluice control system: the processes form six clusters, highlighted in magenta, yellow, blue, purple,
cyan, and green.

6. Discussion and Conclusions

The paper presents the concept of a topologically independent specification of dis-
tributed control algorithms based on the process-oriented programming paradigm and a
straight approach to its implementation based on a network of microcontroller nodes. In
this schema, only operations for reading input and writing output signals are physically
parallelized, and the algorithm itself is executed sequentially, similarly to a centralized
implementation, with synchronization of information messages and the order of execu-
tion over the bus. The approach constructively ensures the absence of data races and the
preservation of the semantics of the original process-oriented program, which means the
applicability of existing methods for verifying centralized process-oriented programs to
distributed process-oriented programs. This opens the door to the formal verification of dis-
tributed programs using already developed approaches. In particular, our model checking
method for process-oriented programs [58,59] can be applied with minor corrections that
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concern constructing several independent action lines of parallel processes with regard to
given clusters. We also adapted our process-oriented deductive verification methods [15,60]
for distributed control algorithms by applying them to each cluster separately with the
original program annotations. A natural limitation on the degree of parallelization is the
number of processes in the specification.

We also proposed an algorithm for splitting a process-oriented specification into
clusters, which eliminates the need for data synchronization. The study of the algorithm on
the “bottle-filling system” case study showed a system control algorithm that consisted of
seven processes divided into five weakly connected clusters. The clusters communicate only
with 11 messages related to the events of beginning and end of technological operations
“sterilization”, “installation of a new bottle”, and “filling the bottle with liquid”. Clusters can
be arranged in any arbitrary combination on the computing nodes of a distributed system.
In any combination, the physical signals are processed locally and the implementation does
not require data synchronization.

The result obtained shows the promise of using the process-oriented languages for
creating distributed control software. In the final partitioning, it is possible that some
processes using intersecting sets of variables cannot be active simultaneously, and there-
fore do not lead to non-determinism. Thus, we can relax the clustering requirements by
replacing the conditions “use the same variable (or process)” with the condition “use the
same variable (or process) at the same time”.

Based on the adjusted requirements, we can find potential candidates for additional
clustering in the bottle-filling controller specification; for example, the activity of the
ForcedSterilization and KeepSterilization processes are mutually exclusive. How-
ever, formally, this splitting cannot be performed because the MainLoop process stops
the KeepSterilization process and starts the Initialization process, which, in turn,
starts the ForcedSterilization process. If we assume that the frequency of the activa-
tion of processes on different nodes can be arbitrary, then non-determinism may arise:
the ForcedSterilization process may already be running, but the KeepSterilization
process has not yet been stopped. The resolution of this issue involves the use of additional
information. Such a requirements correction obviously complicates the analysis of the
specification; however, it allows for more fine-grain partitioning.

In the future, we plan to improve the partitioning algorithm by adding procedures
for a more detailed analysis of access to variables. Such improvements can provide, in
particular, an exception from the clustering rules for cases of sequential processing; that
is, conflict-free access. Communication failure handling may involve the development of
an application layer of the CAN protocol, which includes message acknowledgment and
the control of response timeouts. Increasing the robustness of the system in the event of
a wire break or failure of individual nodes can be achieved by introducing a watchdog
mechanism and developing strategies for changing the state of the plant to a safe one. We
will also conduct research on the issues of the automatic partitioning of the process-oriented
algorithm for various initial conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

CAN Controller Area Network
CPS Cyber-Physical System
CPPS Cyber-Physical Production System
ECU Electronic Control Unit
HCECC Hierarchical and Concurrent Execution Control Chart
IAS Industrial Automation System
MCU Microcontroller Unit
MVC Model-View-Controller
PLC Programmable Logic Controller
PRET PREcision Timed (machine)
PTIDES Programming Temporally Integrated Distributed Embedded Systems
TTCAN time-triggered CAN
UART Universal Asynchronous Receiver/Transmitter
WCET Worst Case Execution Time
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