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Abstract: This paper proposes a method for accurate 3D posture sensing of the soft actuators, which
could be applied to the closed-loop control of soft robots. To achieve this, the method employs
an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-
term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators.
The method takes into account the hysteresis of the soft robot and non-linear sensing signals from
the flexible bending sensors. The proposed approach uses a flexible bending sensor made from
a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used
to model the posture of the soft actuator. The effectiveness of the method has been demonstrated
on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible
sponge resistive sensors placed on the soft actuator’s outer surface. The sensor-characterizing results
show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which
has an insignificant impact on the actuator motion based on the working space test of the actuator.
Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with
error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is
expected to contribute to the advancement of soft robot dynamic posture perception by using thin
sponge sensors and LSTM or other machine learning methods for control.

Keywords: soft robotics; soft sensors; flexible porous structures; deep learning; long short-term memory

1. Introduction

Soft robots, a novel category of robots that has emerged in recent decades, are charac-
terized by their high flexibility, compliance, and safety [1]. Compared with conventional
rigid robotics, soft actuators and robotic devices have advantages in human–robot interac-
tion, range of motions, fabrication difficulties, and adaptations to varying environments [2].
However, the perception of posture, which can be easily represented by the status of joints
and links in rigid-link robots, presents a significant challenge in the development of soft
robotics due to the difficulty in accurately modeling elastic continuous structures.

Researchers have developed sensing methods, which can be broadly categorized into
two main groups: on-board sensing and external sensing of robot posture. On-board
sensors, such as flexible bending gauges [3,4] and inertial measurement units (IMUs) [5,6],
may lack flexibility and restrict the robot’s motion. Fully soft sensors embedded in flexible
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materials [7–10] require complex fabrication methods or specialized equipment. To over-
come these challenges, researchers have also utilized external sensing methods, such as
vision-based sensing [11–13] and magnetic tracking [14–16], to obtain posture information
for soft robots, particularly for proof-of-concept use in laboratory environments.

As a result, there is an increasing need to develop advanced and flexible sensing
techniques that can accurately detect the postures of soft robots. In [17,18], researchers
developed a piezoresistive actuator body by mixing carbon fiber with elastomer, resulting
in changes in resistance values during deformation. In [19], researchers achieved soft robot
posture sensing by utilizing a kirigami-inspired sensor and a deep learning calibration
method, representing an innovative approach to the closed-loop control of soft robots. In
the recent work of Ye et al. [20], a significant breakthrough has been achieved in robotics by
utilizing a kirigami-inspired porous sensor for robot teleoperation. In addition to their use
in detecting robot postures, flexible sensing techniques have found extensive applications
in other areas that require safe and comfortable human–robot interactions, such as the
development of artificial skins [21,22] and the monitoring of human body conditions and
motions [23–25]. In this paper, we propose an end-to-end method that effectively captures
the dynamic behavior of soft actuators, with potential applications for perceiving the
posture and dynamic behavior of objects during deformation, such as bellow-shaped soft
actuators, where deformation is mainly driven by buckling [26]. Specifically, the neighbor
wall angle α (see Figure 1) changes during actuator deformation, allowing us to indirectly
perceive the posture of the soft robot through the observation of angle changes.
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Figure 1. Proprioception of posture in a pneumatic soft actuator. On the side of the actuator (left),
there are nine distributed flexible bending sensors (scale bar = 1 cm) made by a thin conductive
sponge via the planar fabrication method. The neighbor wall angle α was indicated. A trained
neural network was employed to calibrate the sensor, and the 3D representation of the posture of soft
actuator is shown on the right. (The perspective of the right figure is a top–down view along the x−z
plane, parallel to the vector (3, 0, 1)).

In this study, we utilized commercially available thin conductive sponges as the sensor
material, which were attached to the lateral surface of a three-degree-of-freedom (DoF)
soft actuator. Previous research has demonstrated that the piezoresistive properties of
thin conductive sponges enable the detection of deformation and tactile information of
attached objects [22,27–33]. Due to their flexible and lightweight nature, sensors developed
with sponge materials have been widely employed in human–robot interactions, including
tactile sensing [22,27,29,30] and human motion detection [28]. The porous and flexible
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nature of the conductive sponge structure minimizes impediments to the movement of
attached objects induced by sensor deformation.

Although recent research work has explored the feasibility of collecting the tactile
information of robots using conductive sponge sensors [31,34,35], only a few studies have
employed sensors developed with conductive sponge material to detect or estimate the
deformation of soft robots. In our previous work [36], we proposed a kirigami-inspired
flexible sponge sensor that could estimate the bending angle of a single degree-of-freedom
flexible fiber-reinforced bending actuator. By connecting the sensor information and cali-
bration neural network organically, we achieved highly accurate robot posture estimation.
In this paper, we simplified the sensor structure to make it suitable for bending detection
and increased the sensor number, enabling us to achieve dynamic 3D posture perception
of soft robots. To the best of our knowledge, this is the first study to seamlessly combine
sponge sensors and a neural network calibration method to achieve soft robot dynamic 3D
posture perception.

We employed an end-to-end method in our study to calibrate our sensing system via
RNN deep learning. This approach obviates the need for developing a complex kinematic
model. The idea has been widely explored and validated in the soft robotics commu-
nity [9,19,36–39] as a means of addressing the non-linearity and hysteresis issues associated
with data. We utilized a long short-term memory (LSTM) neural network [40], which
is a specialized type of recurrent neural network (RNN) that can handle sequential data
with the aforementioned difficulties. We trained an LSTM neural network using feedback
sensing signals from nine sensors distributed on the side wall of the actuator. The posture of
a 3-DoF soft actuator was predicted using this network in conjunction with the input sensor
value, and the overall root mean square error (RMSE) value was calculated to gauge the
accuracy of our sensing system. Despite the acceptable prediction accuracy of the sensor,
certain issues were uncovered during the study. The primary issue concerns the saturation
of sensor readings when the sensor approaches full compression, thereby leading to a loss of
prediction accuracy in situations where the attached object undergoes extreme deformation,
which would be indicated in the experimental results of sensor characterization.

Overall, this paper makes the following contributions:

(1) An end-to-end (indirect) method for soft robot posture perception with flexible porous
piezoresistive sensors via the RNN deep learning approach.

(2) The design and characterization of a scalable miniature flexible bending sensor that
can be quickly attached to existing bellow-shaped actuators to perceive the posture and
dynamic behaviors as sensing units while minimizing the effect of motion restriction.

(3) The validation of our proposed method on a small-scale 3 DoF bellow-shaped soft
robot actuator with three pneumatic chambers.

2. Design Overview and Rationale
2.1. Soft Robot and Flexible Porous Piezoresistive Sensor Design

Fluidic elastomer actuators (FEAs) are widely used in soft robotics. To perceive the
posture of FEAs, researchers have employed various methods, including flexible bending
gauges [3], sensors with micro-channels and liquid metal [9], piezoresistive materials
embedded in the actuator body [41], fiber optic intensity-based sensors [42], and others.
As mentioned in Section 1, these sensing methods can either restrict the motion of soft
actuators or require bulky serving systems. Consequently, researchers have pursued
a sensing method that can integrate independent sensors into the FEA body. Such a method
was first developed in [19], which bypassed the need for designing both the soft actuators
and their sensing systems. In this study, we present a robot sensing system that utilizes
a similar distributed sensing method, employing bending-based thin conductive sponge
sensors. Our approach can be easily applied to the surface of soft actuators that undergo
deformation during changes in posture.

We designed and fabricated a negative pressure-powered bellow-shaped FEA. The
FEA body was fabricated using casting techniques and silicon material (Smooth-Sil 945,
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Smooth-On Inc., East Texas, PA, USA). The actuator comprises three hexagonal bellow-
shaped chambers, with hex-edge lengths of 5 mm, bonded in parallel using silicon adhesive
(Sil-Poxy, Smooth-On Inc., USA). The angle between two bellow walls is 55 degrees, and
each chamber was constructed by bonding two half-chambers and two sealing caps with
the same silicone adhesive. The fabrication process of the FEA is illustrated in Figure 2c–e.

(a)

(b) (c)

(d) (e) (f)

Acrylic Assemble Base

Bottom Layer: Adhesive

Top Layer: Conductive Sponge

11mm

2mm

1mm

Figure 2. Fabrication of flexible bending sensor and pneumatic soft actuator. (a) Sketches of planer
fabrication process of sensor body. (b) Flexible bending sensor via planar fabrication method.
(c) Molds for silicone casting. (d) Half-chamber of the soft actuator made by silicon after the de-
molding process. Two half-chambers were combined to form one air chamber using silicon adhesive.
(e) Three air chambers combined via silicon adhesive with top and bottom caps. (f) Soft pneumatic
actuator with distributed flexible bending sensors. Sensors were attached to the actuator side via
silicon adhesive. Four reflective makers are used to determine the true posture of the soft actuator
(scale bar = 1 cm).

The planar fabrication method has been applied in the sensor fabrication, similar to
the methods used in [36,43]. By employing such manufacturing techniques, it is possible
to produce the sensors in small batches. The sketches of the planer fabrication process are
shown in Figure 2a. Each flexible bending sensor comprises two layers fabricated using
planar fabrication methods and cut by a laser cutter. The top layer is made of a 1 mm thin
layer and 2 mm wide PU conductive sponge material (Beilong Inc., Wujiang, China) with
a constant thickness, while the bottom layer is composed of adhesive (300LSE, 3M, Saint
Paul, MI, USA). Copper electrodes with leading wires were attached to the two ends of
the sponge using silver conductive adhesives (3703, Sinwei, Shanghai, China) (Figure 2b).
After drying at room temperature for 12 h, the sensors were trimmed and the undesired
portions were removed. The sensors were then affixed to the actuator body using the
aforementioned silicon adhesive (Figure 2f). To fit the finger-sized bellow-shaped actuator,
the length, width, and thickness of the flexible bending sensor were selected to be 11 mm,
2 mm, and 1 mm, respectively. The length and width of the flexible bending sensors can
be varied by changing the laser cutting pattern to match the dimensions of different soft
actuators, while the thickness of the sensors can be adjusted by selecting a conductive
sponge sheet with a different thickness. The number of sensors attached to the soft actuator
depends on the required level of accuracy. In our design, we bonded nine thin sponge
sensors to the actuator body.

2.2. Working Mechanism of Flexible Porous Piezoresistive Sensor

The resistance of our thin sponge sensor follows the relationship Rs = C(l/A) since
porous structures are evenly distributed inside, where C is a constant relative to the resistiv-
ity and porosity of the material. l and A represent the length and cross-sectional area of the
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sensor, respectively. The schematic diagram of the flexible sponge sensor and its operative
principle is depicted in Figure 3. The left-hand side of the figure illustrates the fundamental
components of the flexible sponge sensor. The electrical resistance of the sensor is sensitive
to the angle of the attached object, as denoted by the variable α as shown on the right-hand
side of Figure 3. By subjecting the attached object to external deformations, the angle α
is likely to vary, thereby causing a change in the compression region of the sensor. This
alteration in the compression region affects the electrical resistance of the sensor. Hence,
the resistance of the flexible sponge sensor provides an indirect measure of the posture or
deformation of the attached object. It is noteworthy that the object under investigation in
this study is the bellow-shaped FEA. Developing a mathematical model for the sponge
sensor would be inefficient due to the uncertain nature of its porous structure. Therefore,
a learning-based method is more appropriate, and we utilized an LSTM neural network as
our calibration neural network. The design of our LSTM neural network is presented in
Section 2.4.

Flexible Bending Sensor

Electrode
Conducting

Wire

Attached

Object

Object 

Deformation

α

α

Sponge

compression

Figure 3. The cross-view sketch in the left panel shows the flexible sponge sensor, while its working
mechanism is depicted in the right panel. When there is deformation on the attached object, the
sponge compression region changes, resulting in a change in electrical resistance.

2.3. Soft Robot Kinematic Description

We utilized the parameter vector q = (k, φ, L) to represent the posture of the soft
actuators (Figure 4), where k is the curvature of this bellow-shaped FEA. Here, we used a
constant-curvature model to simplify the problem. Therefore, we have k = 1/r, where r is
the radius of the actuator arc. φ represents the angle between the x− z plane of the reference
frame and the plane of the actuator arc. L represents the length of the actuator, which is
relative to the length of the three parallel chambers l1, l2, and l3. For our actuator, the length
of each chamber li (i = 1, 2, 3) is relative to β, which is the angle between neighboring walls.
For simplicity, we have li = n · a · sin(β/2), where n is the number of bellow units, and a is
the length of the bellow wall segments.

r

Tip Point (x,y,z)

x

y

z

o

θθφ 

Actuator Arc Center

Figure 4. Kinematic representation of soft pneumatic actuator. The principle axis of reference frames
was indicated.
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In our case, we can directly measure the coordinates of the tip point P1 = (x1, y1, z1)
and the rear point P2 in the task space of the actuator. To transfer these coordinates to the
configuration space, some manipulations are required. We set P2 as the origin, and then φ
can be calculated based on the tangent values of x1 and y1 if the projection of the actuator
on the x− y plane does not lie on the primary axis.

φ = arctan
(

y1

x1

)
(1)

When the tip is located on the z-axis, the actuator is at singularity. In this case, we set
φ to be zero.

Then, we rotate the actuator arc to the x− z plane by multiplying a rotational matrix
about the z-axis. Then, we could obtain P′1 = (x1, y1, z1) on the x− z plane,x′1

y′1
z′1

 =

cos (−φ) − sin (−φ) 0
sin (−φ) cos (−φ) 0

0 0 1

x1
y1
z1

 (2)

After that, we have

x′1 = r(1− cos θ)

z′1 = r sin θ (3)

Solving Equation (3), we can obtain the values of r and θ. Then, the actuator length
L can be calculated using L = r · θ. Reference [44] provides more details on posture
representations. In the rest of the paper, we will use either the parameter vector q or the
tip point coordinates P1 to represent the posture of the bellow-shaped FEA. We will use an
LSTM neural network as a function approximator for the time-series response of sensors.
The velocity, i.e., dynamic behavior, of the tip point of the actuator can be determined by
taking the first-order differentiation of the tip coordinates, which is suitable for both the
predicted value and the ground truth.

2.4. Neural Network Design

We employed an LSTM neural network to establish the relationship between the values
of the thin sponge sensor and the posture of the bellow-shaped actuator. As previously
discussed in Section 2.1, the development of an accurate mathematical model for the sponge
sensor is an inefficient process. Hence, a learning-based approach was deemed optimal for
our purposes.

The neural network architecture comprises an input layer, a fully connected layer, and
an output layer, with the number of hidden layers ranging from one to four (validation
results with different numbers of hidden layers are compared in Figure 5). Dropout
layers follow the hidden layers to prevent overfitting. The inputs consist of a time-series
sensing signal feedback from each sensor (R1, R2, R3. . . R9), and the output represents the
absolute spatial position (x, y, z). The LSTM neural network’s structure is illustrated in
Figure 6. The use of dropout layers helps to prevent overfitting. Furthermore, fine-tuning
hyperparameters such as the number of hidden layers, number of hidden states, and
dropout layer rate is critical to achieving optimal performance, which is compared and
determined in Section 4.2. The overall root mean square error (RMSE) is selected as the cost
function to evaluate the performance of the trained LSTM neural network, representing its
ability to perceive the 3D dynamic posture of the bellow-shaped FEA in the presence of
non-linear and hysteretic sensor feedback response. The MATLAB Deep Learning Toolbox
is utilized to train and test the LSTM neural network, as detailed in Section 3.2.
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Figure 5. RMSE of validation set prediction for LSTM neural network with different neural network
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Figure 6. Structure of LSTM neural network. The neural network contains the input layer, hidden
layer, fully connected layer, and output layer.

3. Experiment Setup
3.1. Sensor Response Experiment Setup

In this experiment, we investigated the electrical resistance and rotating torque re-
sponse of a thin sponge bending sensor as a function of the bending angle. One end of
the sensor was affixed to a fixed plate, while the other end was attached to a rotational
plate with a virtually fixed axis of rotation. The experimental setups for the electrical
resistance and sensor torque response tests are illustrated in Figure A1a,b, respectively. In
the experiment, to measure the electrical resistance response of the sensor, the rotational
plate was driving by a worm gear and stepper motor, which allow the plate to rotate
with a speed of 4◦/s accurately. To mitigate the impact of fabrication defects, an enlarged
sensor with dimensions of 30 mm in length, 5 mm in width, and 2 mm in thickness was
employed for the resistance measurement test. The sensor was connected in series with
a 220 Ω resistor in the measuring circuit. The value of angle β varied between 10◦ and
100◦ periodically for the diverse test. The electrical resistance of the sensor during the first
ten cycles was recorded and calculated during the diverse cycle test. The average electrical
resistance of the sensor when values of β are round numbers of ten are calculated with
mean and standard deviation (S.D.) value. For the sensor torque testing setup, a torque
sensor with a measuring range of ±0.1 Nm (SBT850A, Simbatouch, China) was positioned
at the bottom of the rotational plate. Both the enlarged sensor and the sensor attached on
the soft actuator were tested. The electrical conducting wires were removed to eliminate
the effects of cable tension on the testing results. The torque was recorded once it reached
a stable state. The sensor torque was measured in increments of 10◦.
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3.2. Soft Robot Operation and Data Acquisition

The experimental setup for soft robot operation and data acquisition included a vacuum
pump that generated negative pressure, an MCU (Portenta H7, Arduino, Ivrea, Italy)
equipped with three proportional valves (ITV2090-212L, SMC Corporation, Tokyo, Japan)
to regulate the pressure inside each actuator chamber, a data acquisition card (USB-6212,
National Instrument, Austin, USA), and a motion capture system (Bonita 10, Vicon Inc.,
Yarnton, UK).

To characterize the robot’s performance, the pressure inside each chamber was se-
quentially varied from 0 to −70 kPa at a rate of 2.44 kPa/s to explore the soft actuator’s
working space. A comparison was made between soft actuators with and without sensors.
During the data acquisition period for neural network training, the pressure within each
actuator chamber was randomly varied within the range of 0 to −70 kPa with a 25 Hz
refresh rate. Within each refreshing period, the pressure changed randomly from 0 to
−70 kPa. Consequently, the pressure within each actuator exhibited a random triangular
wave pattern.

In the data acquisition circuit, the resistance Rs of the thin sponge sensors was con-
verted into voltage information Vout using voltage divider circuits with the relationship
Vout = VccRs/(R0 + Rs), where Vcc and R0 are 0.5 V and 20 Ω, respectively. The sensor
information Vout was collected by a DAQ card at a frequency of 1000 Hz, which was suffi-
cient for capturing the motion of pneumatic soft robots. During data processing, the sensor
data was downsampled to a frequency of 100 Hz. A low-pass filter with a cut-off frequency
of 20 Hz was applied to the sensor data to remove high-frequency noise.

The Vicon motion capturing system employed nine cameras distributed on the ceiling
to capture the coordinates of reflective markers at a frequency of 100 Hz. The diameter
and mass of the sphere markers were 1 cm and 0.42 g, respectively, and they did not
significantly affect the performance of the soft actuator. One marker was placed on the top
of the actuator to obtain the coordinates of the top point (P1), while three markers were
placed on the fixed rear part to obtain the coordinates of the rear point (P2). The overall
measuring error of the motion capturing system was less than 0.5 mm.

3.3. Neural Network Training

The data used to train the LSTM network were collected from random movements,
with the pressure in the three chambers being randomly varied between 0 and −70 kPa.
The training and validation data were obtained within 10 min and 400 s, respectively, with
70 s of validation data presented in Section 4.

The LSTM network training and generation were performed using the MATLAB
Deep Learning Toolbox, with the default RMSE cost function and the Adam optimizer
algorithm [45]. L2 regularization was adopted to prevent overfitting of the data. The
initial learning rate was set to 0.001, and network performance was validated using
a test set every 30 iterations, with overall iteration stopping after 100 epochs. The time-
series data were sequentially divided, with 85% of the samples assigned to the train-
ing set and 15% assigned to the test set. The time series spanned 150 s and contained
9000 data points. Training the network with different sets of hyperparameters, includ-
ing the number of hidden layers, number of hidden states, and dropout layer rate, was
critical to optimizing network performance. These parameters were varied in the ranges
[1, 2, 3, 4], [25, 50, 100, 200], and [0.1, 0.25, 0.5]. The root mean square error (RMSE)
was used to evaluate the prediction accuracy, with RMSE =

√
mean[(error∗)2], where

error∗ =
√
(xpred − xtrue)2 + (ypred − ytrue)2 + (zpred − ztrue)2 represents the distance be-

tween the predicted and true actuator tip positions. The results of these calculations are
summarized in Section 4.2. For the neural network with the lowest RMSE value, the neural
network parameters were employed to estimate the data in the validation dataset, which is
discussed in Section 4.3.
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4. Experiment Results
4.1. Soft Sensor and Actuator Characterization
4.1.1. Soft Actuator Working Space

In this experiment, the response characteristics of the soft actuator and sensors were
explored, and the working space of the actuator with and without thin sponge bending sen-
sors was determined. The tip point was treated as the origin in the experiment to facilitate
comparison. When the pressure inside the three air chambers was varied from 0 to−70 kPa,
the bending angle θ (as shown in Figure 4) varied between 0 and 90.69 degrees, while the
actuator length L varied between 80.2 and 64.2 mm. Figure 7 shows the coordinates of
the actuator tip point during changes in air pressure inside the chambers. The red curve
represents the trajectory of the tip point when sponge bending sensors are attached to the
actuator, while the blue curve represents the tip point trajectory when no sponge bending
sensor is attached. These two working spaces are almost identical. Therefore, we can
conclude that the attachment of distributed sponge bending sensors does not significantly
affect the working space of the soft actuator.

(a)
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Figure 7. Working space of bellow−shaped actuator with (red curve) and without (blue curve)
sponge bending sensor. (a) Top view of working space. (b) Side view of working space. The bending
angle θ of the actuator could vary between 0 and 90.69 degrees. This shows that the thin sponge
sensor has negligible influence on the soft actuator’s motion.

4.1.2. Response of Flexible Bending Sensor

The electrical resistance response of the sensor is presented in Figure 8a. The small
cycles on the figure represent the mean value of the electrical resistance during the ten cycles
test when the value of angle β is the round numbers of ten. The error bars are representing
the correspondence standard deviation (S.D.) value. The resistance of the enlarged sponge
bending sensor varied from 8 to 31 Ω as the angle between two rigid plates β changed
from 10 to 100 degrees. The sensor’s resistance in the ten-cycle diverse test would go up
gradually (Figure 9). Calibrating such sensor drifting using the conventional model-based
calibration method would be challenging. In this work, by combining the flexible sensors
and LSTM neural network calibration method, we can overcome the sensor drifting issue
and predict the posture of the soft actuator with acceptable accuracy, which is presented
Section 4.2. The sensitive region of the sponge bending sensor with these dimensions
was found to be between 10 and 60 degrees. When the angle β exceeded 60 degrees, the
sensor became less sensitive, while when the angle β was less than 10 degrees, most parts
of the sensor were fully compressed, leading to saturation, as also shown in Figure 10.
The sensitive region of the sponge bending sensor may vary depending on the sensor
dimensions, but it can typically be divided into the aforementioned three sections.
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As discussed in Section 3.2, the response of the flexible bending sensor when attached
to soft pneumatic actuators was recorded, and the resulting voltage changes were plotted
in Figure 10. Sensors #1–3, #4–6, and #7–9 were attached to the same bellow side wall from
bottom to top, as shown in Figure 10a, resulting in similar responses of the three sensors
with respect to actuator shape-changing. In this experiment, we determined the saturation
region of the thin sponge bending sensor. When the air pressure was lower than −50 kPa,
the voltage change due to actuator deformation was small and smooth (Figure 10b). Beyond
this range, the sensor output saturated as the sponge edges fully contacted each other. This
phenomenon is further discussed in Section 4.3.

Figure 8b depicts the sensor torque response of the sensor as a function of the sensor
angle β. The torque exhibits an inverse relationship with respect to the angle β, with the
blue and red lines representing the response of the sensor during angular decreases and
increases, respectively. The maximum torque values for the enlarged sensor and the sensor
attached to the actuator were found to be 16 mNm and 4.7 mNm, respectively. These results
support the notion that the attached sensor does not significantly affect the working range
of the bellow-shaped actuator, as discussed in Section 4.1.1.
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Figure 10. Characterization of thin sponge bending sensor integrated pneumatic soft actuator.
(a) Photos show that −70 kPa negative pressure was applied to air chambers 1, 2, and 3, respectively
(scale bars = 1 cm). (b) Sponge bending sensor (#1, #4 and #7) response (voltage changing) with respect
to pressure changing in three air chambers with an interval of 1 kPa. (c) Tip displacement of actuator
versus deflation pressure applied to each air chamber with same actuation pattern shown in (a). The
tip point was treated as the original point. Index 1, 2, and 3 in each figure indicating each actuated
air chamber. In both (b) and (c), filled lines and dashed lines are representing bending and relaxing
processes, respectively. A median filter was applied in the plotting of (b).

4.2. Calibration Neural Network Performance

As delineated in Section 3.3, the process of optimizing the LSTM calibration neural
network entailed fine-tuning three key parameters: the quantity of hidden layers, the num-
ber of hidden neurons, and the dropout rate in dropout layers. To gauge the performance
of these neural networks, root mean square error (RMSE) values corresponding to the
predicted tip point coordinates were computed, and the results are presented in Figure 5.
An analysis of Figure 5 reveals that the LSTM neural network configuration with a single
hidden layer, 100 hidden neurons, and a dropout rate of 0.5 yields the most favorable RMSE
value of 12.57 mm. Subsequently, this LSTM neural network will be utilized to validate the
3D posture prediction of the soft actuator.
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4.3. Validation of 3D Posture and Dynamic Behavior Prediction

Using the trained LSTM neural network discussed in Section 4.2, we were able to
predict the 3D postures and dynamic behaviors of soft actuators, as demonstrated in
Figure 11. The validation results presented in Figure 11a show three moments captured
with time steps in the actuator random motions. Figure 11b presents 3D representations of
actuator postures plotted with prediction and ground truth. For each moment, we calcu-
lated and listed parameter q based on the algorithm described in Section 2.3. Throughout
the validation period, the predicted and ground truth displacements of the tip points are
shown in Figure 11c, with displacements in the x-, y-, and z-axis directions represented by
blue, red, and green colors, respectively. The dashed lines represent the ground truth of
displacement in each direction. The RMSE values of the predicted value in the x-, y-, and
z-axis directions were found to be 7.37 mm, 6.35 mm, and 3.70 mm, respectively. To assess
the accuracy of the prediction, we evaluated the mean value and standard deviation (SD)
value of prediction error in the coordinate axis direction, as reported in Table 1. The error
percentage was computed by the absolute values of mean prediction error value divided by
the working space of the actuator in the x-,y-, and z- axis direction. It is worth noting that
the primary source of error was the saturation region, which can occur when the bending
angle of the soft actuator is too large, causing the sensor to enter the saturation region. In
our study, we found that a minimum of three sensors was required to estimate the robot’s
posture. We present the posture estimation results for sensors arranged at low (sensors #1,
#4, and #7), middle (sensors #2, #5, and #8), and high (sensors #3, #6, and #9) levels (shown
in Figure 10) in Table 2.

Table 1. Prediction accuracy of actuator tip position for validation data set.

Direction Prediction Accuracy (mm) Error Percentage

x-axis −0.31 ± 7.37 0.37%
y-axis 2.00 ± 6.03 2.38%
z-axis 1.33 ± 3.46 1.58%

Table 2. Prediction accuracy of actuator tip position for validation data set using single-layer thin
sponge flexible sensors.

Sensors Prediction Accuracy
in x-Axis (mm)

Prediction Accuracy
in y-Axis (mm)

Prediction Accuracy
in z-Axis (mm)

#1, #4 and #7 3.21 ± 11.82 0.43 ± 9.53 1.78 ± 5.47
#2, #5 and #8 −5.19 ± 11.41 4.39 ± 14.38 6.91 ± 7.05
#3, #6 and #9 −2.46 ± 9.99 −4.97 ± 9.39 4.83 ± 6.62

By computing the differentiation of the coordinates of the tip points, we were able
to obtain the linear velocity of the actuator tip, which characterizes the dynamic behavior
of the soft actuator. Figure 12 illustrates the predicted tip velocities in the x-, y-, and
z-axis directions compared to the ground truth, demonstrating the ability of our method
to capture the dynamic behavior of soft actuators. The RMSE values for the predicted tip
speeds in the x-, y-, and z-axis directions were found to be 3.14 mm/s, 3.17 mm/s, and
1.44 mm/s, respectively. To evaluate the accuracy of the speed prediction, we computed
the mean and standard deviation of the prediction errors, which are reported in Table 3.

Table 3. Prediction accuracy of actuator tip speed for validation data set.

Direction Prediction Accuracy (mm/s)

x-axis 0.48 ± 3.11
y-axis −0.25 ± 3.16
z-axis 0.11 ± 1.44



Sensors 2023, 23, 6189 13 of 18

-60

-30

0

30

0 60

25

0-30-60 6030

50

75

100

0 10 20 30 40 50 60 70

Time[s]

-100

-50

0

50

100

D
is
p
la
c
e
m
e
n
t[
m
m
]

-60

-30

0

30

0 60

25

0-30-60 6030

50

75

100

-60

-30

0

30

0 60

25

0-30-60 6030

50

75

100

k = 0.0141 mm^-1 

φ= 80.04 degrees

L= 73.17 mm 

k = 0.0008 mm^-1 

φ= 31.74 degrees

L= 73.71 mm 

k = 0.0082 mm^-1 

φ= 318.45 degrees

L= 71.06 mm

1 2 3

321

(a)

(b)

(c)

t = 5.59s 

t = 5.59s 

t = 12.59s 

t = 12.59s 

t = 54.49s 

t = 54.49s 

Prediction

Ground truth

Δx Δy Δz

t = 5.59s t = 12.59s t = 54.49s 

x
[m

m
]

y[mm]
z[
m
m
]

Solid Line: Prediction

Dash Line: Ground Truth

x RMSE: 7.37 mm

y RMSE: 6.35 mm

z RMSE: 3.70 mm

z[
m
m
]

y[mm]

z[
m
m
]

x
[m

m
]

y[mm]

x
[m

m
]

y

z

x y

z

x y

z

x

Figure 11. Validation results on random actuator motions. (a) Photos with time step. (b) Respective
3D representations of postures of the soft actuator. Kinematic parameters k, φ, and L are shown
in the figure. In (b), the blue curve represents predictive posture; the red curve represents ground
truth. (c) Plots of ground truth (dashed lines) and predictive displacement in the x−axis direction
(blue curve), y−axis direction (red curve), and z−axis direction (green curve) of the reference frame.
Dashed lines are representing ground truth. Time steps in (a,b) are represented by a gray shaded
vertical bar (scale bar = 1 cm. The perspectives of (b) are top−down view along the x−z plane,
parallel to the vector (3, 0, 1)). Actuator motions in (c) are included in Video S1.
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5. Conclusions and Discussion

This paper presents a novel end-to-end method for perceiving the 3D posture and
dynamic behaviors of bellow-shaped soft actuators using distributed miniature flexible
porous piezoresistive sensors. Additionally, we demonstrate the calibration of non-linear,
hysteresis sensors using a trained RNN neural network. The scalable design of the sensor
can be achieved by selecting a conductive sponge sheet with different thicknesses and
laser-cutting patterns, making it applicable to different scales of soft robots. The porous
structure and flexible material of the sensor minimize the influence on actuator motions,
providing an advantage over previously developed flexible sensors, particularly in small-
scale applications. A comparison between our flexible sponge sensor and recent typical
works where RNN was applied in flexible sensor calibration is presented in Table 4. In
comparison with the sensors developed in [38,46,47], we separated the design and fabrica-
tion of sensors from that of the attached actuator, thereby reducing fabrication difficulties
and increasing design flexibility. Our flexible sponge sensor outperforms the sensors de-
veloped in [19] in capturing the velocity information due to the low inertia of the sponge
material. Furthermore, compared with our previous work in [36,39], we have increased the
degree-of-freedom of the motion.

5.1. Discussion on Kinematic Description of Soft Actuator

Although the posture of the soft actuator in this study was estimated based on the
constant curvature concept, our end-to-end posture-perceiving method can be expanded
to non-constant curvature situations. For soft actuators, this method is also suitable for
estimating posture based on piecewise constant curvature (PCC), Bezier curves, or splines.
The number and position of the sensor depend on the accuracy of the single sensor and the
model employed to estimate the actuator posture, respectively. In this study, redundant
sensors (theoretically only one sensor on each sub-chamber is necessary) were employed to
improve the overall accuracy. For the piecewise constant curvature situation, each divided
segment can be treated as having constant curvature, and the procedures in this study
can be followed. For Bezier curves/splines situations, the sensor can be combined with
the Bezier/spline model that enables non-constant curvature measurement. The neural
network-based method can be used to find the parameters in the models or together with
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the model. The joint angle can be measured based on the method in this study, after which
the joint angle distribution can be estimated. Finally, the overall posture of the soft actuator
can be estimated.

Table 4. Comparison among our work and recent typical works where RNN was applied in flexible
sensor calibration.

Research
Work

Sensor Material
/Structure

Design
Method Advantages Drawbacks

#1 Truby et al. [19]

Conductive Silicon

Separated 3-DoF Posture
Estimation

Only Steady-State
Estimation

#2 Shu et al. [39] Separated Dynamic Posture
Estimation

Only Performs on
Single DoF Motion

#3 Thuruthel et al. [38] Integrated
2-DoF Posture and
Contact Force
Estimation

Low Sampling Frequency
(10 Hz)

#4 Truby et al. [46]

Sealed Air Chamber

Integrated
3-DoF Dynamic
Posture Estimation
and Tactile Detection

Require Specific Fabrication
Equipment (High-Resolution
DLP 3D Printers)

#5 Ang et al. [47] Integrated
2-DoF Dynamic
Posture and Contact
Force Estimation

Low Sampling Frequency

#7 Shu et al.
(This Work) Conductive Sponge Separated 3-DoF Dynamic

Posture Estimation
Saturation Region Affects
Estimation Accuracy

5.2. Discussion on Sensor Characterization and Performance of the Sensing Method

As discussed in Section 4.1.2, both the sensitivity and resistive torque of the flexible
sponge sensor exhibit a negative correlation with the angle β. Based on the results of
ten diverse cycles of testing, it was observed that the electrical resistance of the flexible
sponge sensor exhibited variations across different cycles. This issue poses a challenge for
conventional model-based sensor calibration methods. However, the LSTM calibration
neural network proposed in this paper was found to effectively address this challenge,
enabling accurate calibration of the sensor and estimation of the posture of the soft actuators.
It is worth noting that a saturation region arises when the sensor is consistently pressured.
Specifically, when the sensors are adhered to the ravine of the bellow, the saturation occurs
when the bellow is fully compressed by negative pressure. In the context of the present
study, this saturation is reflected in the 3-DoF actuator under investigation when the
actuator is fully compressed (i.e., all three bellows are fully compressed) or the bending
angle θ is substantial (i.e., one or two bellows are fully compressed). Consequently, under
these two conditions, the estimation error of the sensing system would be more pronounced,
as evidenced by the data at 45 s when the bellow actuator is in random motion (see
Figure 11). It is worth noting that this issue cannot be resolved by employing a calibration
neural network, as there is an absence of effective training data.

The performance of velocity prediction is closely linked to the quality of the base
material of the sensor, particularly its bandwidth with respect to mechanical vibration.
With a larger bandwidth, the sensors can react to faster deformations of the attached objects.
In the present study, we used an off-the-shelf conductive sponge whose base material is PU
sponge, which has a slow recovery time to its original shape when pressure is removed.
Consequently, when tracking the velocity of the actuator, the estimation error is substantial
when the acceleration is large (reflected in Figure 12). Fortunately, for soft actuators, the
response is typically slow.

During testing, it was observed that the flexible sponge sensor may experience fatigue
after prolonged use, which is possibly due to damage of the conductive coatings. In the
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fabrication process of the conductive PU sponge, the base PU sponge was merged with
a conductive solution. After drying, the internal fibers of the sponge were enveloped by
a layer of conductive coating. During the use of the sensors, the coating may come into
contact with neighboring coatings, leading to damage after prolonged use. Another issue
pertains to the operating temperature, as the PU material is sensitive to high-temperature
environments. The heat generated by friction during operation may also shorten the
sensor’s lifetime. The presence of noise resulting from bare enameled wire during sen-
sor resistance measurement may also have an impact on the predictive accuracy of the
calibration neural network.

Moving forward, we aim to enhance the sensitivity, accuracy, and longevity of the
sensor. Moreover, we plan to investigate additional applications of the proposed sensing
system within the realm of soft robotics.
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