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Abstract: A new method for accurately estimating heart rates based on a single photoplethysmog-

raphy (PPG) signal and accelerations is proposed in this study, considering motion artifacts due to 

subjects’ hand motions and walking. The method comprises two sub-algorithms: pre-quality check-

ing and motion artifact removal (MAR) via Hankel decomposition. PPGs and accelerations were 

collected using a wearable device equipped with a PPG sensor patch and a 3-axis accelerometer. 

The motion artifacts caused by hand movements and walking were effectively mitigated by the two 

aforementioned sub-algorithms. The first sub-algorithm utilized a new quality-assessment criterion 

to identify highly noise-contaminated PPG signals and exclude them from subsequent processing. 

The second sub-algorithm employed the Hankel matrix and singular value decomposition (SVD) to 

effectively identify, decompose, and remove motion artifacts. Experimental data collected during 

hand-moving and walking were considered for evaluation. The performance of the proposed algo-

rithms was assessed using the datasets from the IEEE Signal Processing Cup 2015. The obtained 

results demonstrated an average error of merely 0.7345 ± 8.1129 beats per minute (bpm) and a mean 

absolute error of 1.86 bpm for walking, making it the second most accurate method to date that 

employs a single PPG and a 3-axis accelerometer. The proposed method also achieved the best ac-

curacy of 3.78 bpm in mean absolute errors among all previously reported studies for hand-moving 

scenarios. 

Keywords: heart rate (HR); photoplethysmogram (PPG); motion artifact; notch filter; Hankel  

matrix; singular value decomposition (SVD); beats per minutes (bpm) 

 

1. Introduction 

The first on-market PPG (photoplethysmogram) sensor was the pulse oximeter, 

which was commercialized around 1980 for hospital use [1]. This PPG sensor device con-

sists of two alternating LEDs in red/infrared and a photodetector (PD) to obtain infor-

mation about blood vessel pulsations from the output signals of the PD. The devices are 

now available on the market in the form of wearable smart watches, earphones, etc. [2]. 

The non-invasiveness, ease of use, and variety in price, design, and uses have made this 

industry of wearable smart watches flourish within a few years. However, further ad-

vances of this PPG technology are nowadays seriously hampered by the unavoidable con-

tamination of PPG signals by noises mainly from motion artifacts (MAs) [2–5], which are 

caused by significantly unavoidable changes in the optical power paths from LEDs and 

PDs during motions, resulting in undesired components to be measured in the PPG sig-

nals. These noises become worse when the sensor is dislocated or in loose contact with 

the body. With MAs, obtaining the correct heart rate (HR), blood oxygen saturation 

(SpO2), and blood pressure (BP) based on PPGs becomes very difficult and sometimes 
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impossible due to the absence of uncontaminated PPG signals measured from wearable 

devices. 

Many reported studies have been dedicated to detecting, evaluating, mitigating, 

and/or removing motion artifacts (MAs) from PPG signals. The detection of MAs can be 

carried out by statistical means. Rajet Krishnan et al. [3] used kurtosis and skewness in 

both time and frequency domains to distinguish between clean and MA-corrupted data. 

Some researchers, such as Hanyu et al. [6], have also used the standard deviation and 

mean error along with selected parameters to detect MAs and remove them. Another 

method is to consider the spectral analysis of measured raw PPG signals based on ensem-

ble empirical mode decomposition (EEMD) with spectrum subtraction (SS) [7,8]. In this 

method, corrupted PPG signals are classified into corrupted, moderately corrupted, and 

clean by the thresholds on the amplitudes and frequencies of dominant peaks. Bashar et 

al. [9] developed a method of variable frequency complex demodulation (VFCDM) and 

applied this to a set of 200 subjects for PPGs measured at fingers and wrists as well as with 

elbow movements. They acquired 449 recordings, with the result that 156 were misclassi-

fied and 29 were false-positives. Once detected, the MAs can be removed. Kong et al. [10] 

also used VFCDM. Some other studies, such as [11,12], conducted motion artifact removal 

(MAR) with assistance from reference signals from multiple LEDs (blind separation meth-

ods, Kalman filtering, etc.) and/or an accelerometer (adaptive filter). With multiple LEDs, 

Raghuram et al. [11] and Hara et al. [12] showed an accuracy of 0.392 bpm using PPG with 

finger motions, achieving a RMSE of 6.5 for walking, running, and jumping. On the other 

hand, using accelerometers, Lin and Ma [13] adopted discrete wavelet transforms for noise 

reduction. They calculated and tracked heart rates using the Kalman Filter. Mahdi Bolour-

saz et al. [14] utilized accelerometer signals before applying an LMS filter for MAR. Other 

techniques include an independent component analysis (ICA), adopted by [15–19]; empir-

ical mode decomposition (EMD), used by [11,20–25]; least mean squares (LMS), used by 

[26–29]; wavelet transform (WT), used by [30–32]; a notch filter, used by [33]; or recently, 

in 2022, adaptive filters, used by [34]. With advances in technology, some very recent at-

tempts at using machine learning for MAR have also been reported [35–39]. Most recently, 

in 2023, a�ention has been turned to lightweight machine learning modules [40] that are 

implementable in wearable devices. 

Different from all the previous studies, this study proposes two sub-algorithms in a 

series to remove motion artifacts, which were applied to cases of hand movements and 

walking. The first was a new quality-assessment criterion to disregard highly noise-con-

taminated PPG signals, while the second employed the Hankel matrix and the associated 

SVD to remove motion artifacts. The aforementioned pre-screening of noises by the first 

quality-check sub-algorithm, and the capability of the subsequent Hankel matrices and 

the associated SVD to identify, decompose, and remove the motion components in meas-

ured PPG were expected to deliver a high-precision HR estimation. Two cases of walking 

and hand movement were considered to demonstrate the effectiveness of the proposed 

MAR algorithm. The IEEE Signal Processing Cup 2015 dataset was used for performance 

evaluation. The average error result was 0.7345 ± 8.1129 bpm, with a mean absolute error 

(MAE) of 1.86 bpm (beats per minute); the second-best of all the reported results. As for 

hand-moving, this study showed the best accuracy of 3.78 bpm in MAE compared with 

all the reported studies. 

The remainder of this article is organized into four sections. Section 2 describes how 

the PPG signals were collected. Section 3 details the first algorithm of the quality check on 

measured PPG signals, while Section 4 describes the algorithm of motion artifact removal 

using the Hankel matrix and the associated SVD. Section 5 presents the experimental val-

idation of the performance of the proposed method. Finally, Section 6 concludes this 

study. 
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2. PPG Signals and Motion Artifacts 

2.1. Measuring PPG 

A typical PPG signal at the wrist artery, where most wearable devices measure PPG, 

is shown in Figure 1a, which was measured by the PPG sensor patch developed exclu-

sively by [41], as given in Figure 1b. This typical PPG waveform consists of AC and DC 

components. The AC component reflects the pulsatile component of blood vessel pulsa-

tions synchronized with heart beats, while the DC component is the non-pulsatile compo-

nent resulting from light absorption in tissue, skin, and bones along the optical paths be-

tween LEDs and PD of the PPG devices. To find the best wavelength of LEDs and the best 

location to measure PPG, a series of experiments with the subject si�ing still were con-

ducted with the PPG sensor in Figure 1 emi�ed at different wavelengths and a�ached at 

different locations 1–3, as illustrated in Figure 2a–c. It can be seen from Figure 2a–c that 

both green and infrared (IR) LEDs lead to larger AC components, while locations 1 and 3 

lead to larger ACs in the measured PPGs as opposed to others. This is, in fact, due to the 

presence of arteries under the locations as shown in Figure 2a, like seen in [42]. For the 

remainder of this study, to develop the algorithm for removing motion artifacts, the PPG 

sensor patch in Figure 1b is a�ached at location 1, as seen in Figure 2b, to obtain the PPG 

measured from the green LED. Typical PPGs contaminated by motion artifacts, measured 

by the green LED at location 1 on the wrist artery, are shown in Figure 3a,b, which are 

those during walking and with hand motion, respectively. Based on the comparison be-

tween Figure 3a,b, it can be seen that the PPG waveforms measured with hand movement 

exhibit much smaller DC drifts than walking, while the AC components of both cases are 

close to each other. Additionally, the large DC drifts, especially in the case of walking, 

present a serious, negative effect of motion artifacts on estimating the heart rate, blood 

oxygen, and/or blood pressure based on measured PPG waveforms.  
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Figure 1. (a) AC and DC components of a typical PPG signal; (b) PPG sensor patch developed by 

[41]. 
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Figure 2. (a) Human arteries at wrist; (b) three different locations on the wrist to measure PPG; (c) 

measured PPGs using green, red, and infrared LEDs at three different locations. 
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Figure 3. PPGs measured at a wrist artery contaminated by two different motion artifacts: (a) walk-

ing; (b) hand movement. 

2.2. Classification of Motion Artifacts  

Motion artifacts are understood nowadays as having two different magnitudes, mi-

cro and macro motions, as shown in Figure 4. The micro-motion artifacts have been de-

fined as those due to measuring position adjusting, gesture changing, or finger tapping, 

while the macro-motion artifacts are those having consistent body motion, such as walk-

ing, jogging, and running. Figure 4 shows the measured PPGs contaminated by the micro- 

and macro-motion artifacts due to finger tapping, measuring position adjusting (both 

leading to micro-MAs), and walking (macro-MAs). It can be seen from this figure that 

both micro- and macro-motion artifacts cause much more significant fluctuations to the 

measured PPG signal than sedentary gestures of the subject. All the aforementioned mo-

tions could range between 0.1 and 20 Hz, which is right within the frequency range for 

heart rate (1–4 Hz), causing much trouble for estimating heart rate based on measured 

PPG signals. Figure 5 shows the frequency response of a contaminated PPG signal with a 

few components away from the given frequencies. With the presence of micro and macro 
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motions, the estimation accuracy of heart rate could be seriously compromised. To rem-

edy this problem, two algorithms are proposed herein for motion artifact reduction 

(MAR), as described in the ensuing Sections 3 and 4. 
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Figure 4. PPG contaminated by motion and mispositioning. 
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Figure 5. Frequency response of the measured PPG signal. 

3. The First Sub-Algorithm of Quality Check on Measured PPG Signals 

The algorithm proposed by this study consists of two sub-algorithms to increase the 

accuracy of heart rate estimation with serious motion artifacts in PPGs measured by the 

wearable device. The first sub-algorithm is designed to check the quality of real-time raw 

PPGs measured to rule out those seriously contaminated and keep the information of 

heart rate still embedded in the measured PPGs. With this first sub-algorithm, the accu-

racy of estimating heart rate is expected to increase. To this end, a new algorithm for signal 

quality checking on measured PPG has been developed. Figure 6 elaborates on its com-

putation flow. Note that a qualified PPG signal at the end is defined as the one that is 

periodic in time domain and has the largest frequency component remaining within a 

limited range close to that of the legitimate heart rate. Accordingly, specific conditions in 

a sequence for checking are defined below for subsequent analysis to extract precision 

heart rate in the next section. 

(1) The number of valleys and peaks of the measured PPG signal is calculated, and then 

it is checked if  

(   )  (   ) 1Number of Valleys Number of Peaks  , (1)

to affirm the presence of pulsation in the measured PPG; otherwise, the signal is la-

beled as “unqualified” and we then return to stage one for motion artifact reduction.  
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(2) The ti values are defined as the time intervals between peaks that can be extracted 

from measured PPGs, as shown in Figure 7. It is next checked if all differences be-

tween consecutive ti values, 

Δt = ti+1 − ti, (2)

are each less than or equal to ±0.1 of ti. If this condition is true, the signal is labelled 

as “qualified,” and then we go to the next step in Figure 6; otherwise, the signal is 

labelled as “unqualified” and we stop the computation.  

(3) The statistical measures of kurtosis, mean, and standard deviation of the qualified 

PPG segments are calculated further at each cycle. If all calculated statistical values 

are within pre-defined thresholds, as shown in Figure 8a, the measured PPG is iden-

tified as “qualified;” otherwise, it is determined as as “unqualified” and then the 

computation is stopped. Note that a similar approach was used by [3] for motion 

artifact detection. 

(4) A marker SQT (Signal Quality Token) is defined as either ’0’ or ‘1’ to label the meas-

ured PPG segment as qualified or unqualified. Figure 8b shows three representative 

examples of PPG marked with different SQTs. Only the PPG with SQRT = 1 is passed 

on to calculate heart rate based on the Hankel matrix and SVD decomposition.  
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Figure 6. Computation flow of the quality-check algorithm on the measured PPG. 
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Figure 7. Measured PPG signal in time and frequency domains. 
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Figure 8. (a) Mean and kurtosis for qualified and unqualified PPG signals; (b) SQT for the PPG 

signal. 

4. The Second Sub-Algorithm for Motion Artifact Removal 

The PPG signals determined as “qualified” by the first sub-algorithm of quality 

checking in the previous section are next processed with the motion artifact removal 

(MAR) algorithm proposed herein. 

4.1. The Hankel Matrix and Its SVD 

Precision estimation of heart rate is carried out herein by singular value decomposi-

tion on the Hankel matrix of the measured PPG and motion via an accelerometer also 

a�ached to the PPG sensor, as shown in Figure 1b. The PPG and accelerometer signals are 

measured and recorded for six seconds and then first organized into Hankel matrices [43], 

Hppg, Hx, Hy, and Hz, respectively, for PPG and accelerations along x, y, and z. For example, 

Hppg is in the form of  

1 2

2

ppg

2

( ) ( ) ( )

( )
=

( ) ( )

n

n n

a t a t a t

a t

a t a t

 
 
 
 
 
  

H



 

  

 

, 
(3)

where a(t)’s are PPG data at times of t’s, and there are in total 2n PPG data in the sampled 

window of six seconds. Next, the single value decompositions (SVDs) [44] are conducted 

on each of Hppg, Hx, Hy, and Hz, leading to 

ppgppg ppg ppg= TH U Σ V , (4)

x x x x=
T

H U Σ V , (5)

y y y y=
T

H U Σ V , (6)

and z z z z=
T

H U Σ V   (7)

respectively, where U, Σ, and V correspond to orthogonal, diagonal, orthogonal matrices. 

U contains the orthogonal basis for the column space of H, while V contains the orthogo-

nal basis for the row space of H. Σ contains the eigenvalues of matrix H. The eigenvalues 

of the diagonal matrices Σ are stored as Λppg, Λx, Λy, and Λz for further processing. In the 

next steps, the eigenvalues with the associated components highly correlated to motion 
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artifacts are removed. To this end, the correlation matrix of PPG and 3-axis accelerometer 

signals can be calculated; that is [45], 

x,y

( - ) ( - )cov ( , )
=corr( , )= = ,

E E 


   
x y

x y x y

x yx y
x y  (8)

where the correlation value ρx,y gives the similarity index between the two signals, with 

expected values µx and µy, and standard σx and σy of the two signals. The components in 

measured PPG that are highly correlated to accelerations are removed. Then, the time-

domain PPG signal without motion artifacts can be restored by recovering the frequency 

response with the non-MR-related components only via the inverse Fourier transform, as 

seen in Figure 9. 

Magnitude of Frequency Response of PPG Signal

Acceleration Magnitude of Frequency Response of Acceleration

PPG Signal after Notch Filter Magnitude of Frequency Response

Raw PPG Signal

 

Figure 9. Estimating heart rate for hand movement using the proposed algorithms. 

4.2. The Computational Flow of the Proposed MAR Algorithm 

A new algorithm of motion artifact removal (MAR) is engineered herein for re-con-

structing MR-free PPG signals based on the decomposed Hankel matrices in Equations 

(5)–(7) and their mutual correlation in Equation (8). The associated computation flow is 

shown in Figure 10, while the pseudo-code is given below. The algorithm (Algorithm 1 in 

pseudocode) consists of five stages, (a) synthesizing the Hankel matrices Hppg, Hx, Hy, and 

Hz in the forms of (3); (b) Conducting singular value decomposition (SVD) on H’s; (c) Cal-

culating correlation to remove MR-related components; (d) Conducting discrete Fourier 

transform on the MR-free PPG signals and then finding the heart rate by taking the max-
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imum peak of the spectrum as the heartbeat component; (e) Finally, the heart rate is esti-

mated again to see if the consecutive estimated heart rates are close to each other to ensure 

the robustness of the algorithm. 

8 Second Window

PPG 

Start

Stop

Hankel Matrix

SVD

Correlation Matrix 
and Eigen Value 

Selection

Frequency 
Analysis

Heart Rate 
Estimation

Accelerometer
(x,y,z)

 

Figure 10. Computation flow of the proposed second sub-algorithm. 

Algorithm 1 In pseudocode: Motion Artifact Algorithm for Walking. 

1: Procedure Record PPG signal and accelerometer signal x,y,z for 8 s 

2: Initialize HR_est = 78 

3: Construct Hankel matrix Hppg for PPG 

4: Construct Hankel matrix Hx for x  

5: Construct Hankel matrix Hy for y 

6: Construct Hankel matrix Hz for z 

7: Find SVD of matrix obtained from step 3, 4, 5, 6 

8: Construct a correlation matrix between the 3-axis accelerometer and PPG 

9: Select eigenvalues 

10: Reconstruct using inverse SVD 

11: Find DFT of the reconstructed signal 

12: Find HR 

13: Heart rate estimation 

14: End procedure 

5. Experimental Results 

Experiments were conducted for the cases of hand movement and walking, as shown 

in Figure 11, to validate the performance of the two sub-algorithms built. A commercially 

certified oximeter was utilized to provide reference heart rates for validating the perfor-

mance of the two designed sub-algorithms. All experiments for collecting data were con-

ducted at room temperature, 28~31 °C. The skin temperature of the subject during the 

experiment is noted to be 35~37 °C. The PPG signals and the accelerometer signals are 
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recorded simultaneously using a printed circuit board (PCB). A Bluetooth connection was 

established, allowing the subject to freely move his/her arm and walk. 

Matlab GUI

PPG Sensor 
Patch on 
subject’s 

wrist.
An oximeter on 
the fingertip of 
another hand

A hand in 
moving

 

Hand Moving

 

Walking

 
(a) (b) (c) 

Figure 11. (a) Experiment setup for (b) hand movement and (c) walking. 

5.1. Hand Movement 

The experiment setup with hand movement is shown in Figure 11a,b. A PPG sensor 

was a�ached to the wrist artery of a subject, while the fingertip of another hand was 

clamped with the aforementioned oximeter for reference. The subjects were asked to sit 

and relax for some time, and then their information, such as skin color, temperature, and 

reference heart rate from the oximeter, was recorded and noted. Then the subjects were 

allowed to move the hand up and down with the PPG sensor patch worn at the wrist. The 

algorithm (consisting of two sub-algorithms) was tested on 10 subjects of three different 

skin tones (beige, honey, and bronze). The results are shown in Figure 12. The proposed 

system achieves an accuracy of 0.6525 ± 4.7 bpm with a window of 6 s. The Pearson corre-

lation is 0.6, while the average absolute error (MAE) is 3.78 beats per minute (bpm). 

Mean− std*1.96 = − 8.4739

Mean+std*1.96 = 9.7790

Mean Absolute 
Error = 3.78

Pearson Correlation = 0.85

 
(a) (b) 

Figure 12. (a) Bland–Atman plot for heart rate estimation. (b) Correlation plot of estimated HRs vs. 

ground-truth HRs for the case of hand movement. 

5.2. Walking 

The proposed MAR algorithm for walking was tested again on these 10 subjects for 

walking, as seen in Figure 11c, while the datasets of the IEEE Signal Processing Cup 2015 

were used to evaluate the performance of the developed algorithms. The results are shown 

in Figure 13. Seen in Figure 13a is the Bland–Altman plot of the results predicted by the 

proposed algorithm for 8-s windows of walking. The resulting average error is as low as 

0.7345 ± 8.1129 bpm (beats per minute), with a mean absolute error (MAE) of 1.86 bpm. 
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The associated Pearson correlation is 0.9499, as seen in Figure 13b. Note herein that the 

MAE of 1.86 bpm for walking being lower than 3.78 bpm for hand-moving is due to much 

smaller hand-waving amplitudes during walking than intentional hand movement of the 

subjects. 
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Figure 13. (a) Bland-Atman plot for heart rate estimation; (b) Correlation plot of estimated HRs vs 

ground-truth HRs for the case of walking. 

5.3. Discussion 

The performance of the proposed two sub-algorithms is compared herein to the re-

sults delivered by other reported past studies. Table 1 [6,13,19] and Table 2 [8,10,22–

25,29,46] show the comparison among the algorithms for hand movement and walking, 

respectively. The mean absolute error (MAE) is considered the main metric for perfor-

mance comparison. Table 1 gives the performance comparison with other reported studies 

on MAR for hand movement, while Table 2 does for walking. It can be seen from Table 1 

that the present study shows the best accuracy of 3.78 bpm in mean absolute error (MAE) 

as compared to all the reported studies. The reasons that the present study renders be�er 

results compared to other studies [6,13] are the use of the accelerometer signals as a refer-

ence and the much be�er quality checking offered by this work. In comparison to [19], this 

work identifies the pulsation from PPG before estimating HR, while the work in [19] relies 

only on a single accelerometer.  

Table 1. Comparison among various techniques for MAR on hand movement. 

 Year Technique Sensors (Database) 
Reference Sig-

nal 
Movement 

Mean Abso-

lute Error in 

(bpm)  

Mean 

Error 

(bpm) 

Measure-

ment Loca-

tion 

This study 2023 

Quality Check and Notch 

Filtering with peak selec-

tion and current and gain 

tuning 

One-channel PPG and 3-

axis accelerometer signals 

recorded in the lab 

Accelerometer Waving the hand 

3.78 

95% of HR es-

timation 

within ± 9.3 

bpm 

0.6525 Wrist 

Lin and Ma 

[13] 
2016 DWT PPG signals None Waving the hand 6.87 NA NA 

Hanyu and 

Xiao hui [6]  
2017 

Statistical 

Evaluation 
PPG signals None 

Finger tapping or 

hand swinging 
7.85 NA NA 

Chao Zhao et 

al. [19] 
2021 

ICA, VMD, WSST, SSA, 

and Kalman Smoothing 

A three-axis accelera-

tion signals 
None 

Finger tapping or 

hand swinging 

95% of HR es-

timation 

within ±8.86 

bpm 

NA Wrist 
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As for walking, the mean absolute error (MAE) offered by our algorithm for walking 

is 1.86 bpm (beats per minute), the second best but very close to the best [46] of all the 

reported results. Among all the studies in Table 2, most of them [8,10,22,23,29,46] render 

be�er results, with MAEs under 3 bpm, where two-channel PPGs and an accelerometer 

are employed for HR estimation, the same as in this study, to achieve favorable perfor-

mance. On top of these studies are those [29,46] that achieve MAEs under 2 bpm for walk-

ing. Arunkumar and Bhaskar in 2020 [29] achieved an MAE of 1.89 bpm by developing 

the recursive least squares (RLS) and normalized least mean squares (NLMS) adaptive 

filters to remove MAs in the frequency domain. As for the work by Motin et al. in 2019 

[46], recursive Wiener filtering was employed. Since Wiener filtering has been considered 

effective in removing MAs by many studies, the result showed a very favorable low error 

of HR estimation of 1.85 bpm. Even with very low MAEs [29,46], it could be difficult to 

remove MAs accurately if the frequency of motion (walking) is close to HR. The methods 

of Hankel and SVD proposed by this study are based on correlations, which are suppos-

edly more capable of identifying and then removing MAs in the frequencies close to HR. 

In a nutshell, the favorable precision of HR estimation is due to the pre-screening of noises 

by the quality-check sub-algorithm and the capability of the subsequent Hankel matrices 

and the associated SVD to identify, decompose, and remove the components in measured 

PPGs that are highly correlated to motions. 

Table 2. Performance comparison among various techniques for MAR on walking. 

 Year Technique Sensors (Database) Reference Signal Movement 

Mean Abso-

lute Error 

(bpm)  

Mean Er-

ror  

(bpm) 

Measure-

ment Lo-

cation 

This Study 2023 
Hankel Matrix, SVD 

and Spectral Analysis 

Two-channel PPG sig-

nals, three-axis accelera-

tions 

Accelerometer and 

a single PPG 
Walking  1.86 0.7345 Wrist 

Amirhossein 

Koneshloo et al. 

[22] 

2019 
Joint Basis Pursuit Lin-

ear Program 

Two-channel PPG sig-

nals, three-axis accelera-

tions 

Accelerometer and 

PPG signal. 

Walking and 

running 
2.61 NA Wrist 

Mohammod 

Abdul Motin et 

al. [46] 

2019 
Recursive Wiener Fil-

tering 

Two-channel PPG sig-

nals, three-axis accelera-

tions 

Accelerometer and 

PPG signal 

Walking and 

running 
1.85 NA Wrist 

Wenwen He et 

al. [23] 
2020 

Motion tracking, 

Sparse Representation-

based MA elimination, 

and Spectral Peak 

Tracking for HR 

PPG signals with 3-axis 

accelerometer signal 
Accelerometer 

Quasi-periodic 

motions. 
2.40 NA Wrist 

Deniz Alp 

Savaskan et al. 

[24] 

2020 

SPECMAR, TROIKA 

and JOSS methods 

along with pre and 

post processing 

Two-channel PPG sig-

nals, three-axis accelera-

tion signals for 12 sam-

ples 

Accelerometer and 

PPG signal 

Walking and 

running 
4.19 NA Wrist 

Youngsun 

Kong et al. [10] 
2019 

VFCDM approach, Cu-

bic Spline 

Two-channel PPG sig-

nals, three-axis accelera-

tion signals 

Accelerometer and 

PPG signal 

Walking and 

running 

2.94 

NA Wrist 

Two-channel PPG sig-

nals, three-axis accelera-

tion signals (lab) 

Accelerometer and 

PPG signal 

Walking and 

running 
NA Forehead 

Nicholas 

Huang et al. 

[25] 

2020 TAPIR Method 

Two-channel PPG sig-

nals, three-axis accelera-

tion signals 

Accelerometer 

and PPG signal 
Walking 9.21 NA Wrist 

K.R. 

Arunkumar et 

al. [29] 

2020 

Recursive Least 

Squares (RLS) and Nor-

malized Least Mean 

Squares (NLMS) 

Two-channel PPG sig-

nals, three-axis accelera-

tion signals recorded for 

23 samples 

Accelerometer and 

PPG signal. 

Walking and 

running 
1.89 NA Wrist 

S. Friman et al. 

[8] 
2022 

Electromyogram 

(EMG) and accelerome-

ter (ACC) 

PPG signals with three-

axis acceleration signals  

Accelerometer, 

EMG and PPG sig-

nal 

Walking and 

running 
2.83 NA Wrist 
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6. Conclusions 

Effort was dedicated to developing new algorithms for motion artifact removal 

(MAR) to accurately estimate heart rate when the subject is in motion, such as hand move-

ment and walking. The proposed algorithm consists of two sub-algorithms. The first is a 

new quality-assessment criteria to disregard highly noise-contaminated PPG signals, 

while the second employs the Hankel matrix and SVD to remove motion artifacts. The 

second sub-algorithm for MAR (motion artifact removal) is built upon (1) assembling 

Hankel matrices of PPG and accelerations and (2) singular value decomposition to remove 

the frequency components related to motions for accurate heart rate estimation. The result 

shows a mean absolute error (MAE) of 1.86 bpm (beats per minute) for walking, the sec-

ond best but close to the best among all the reported results. As for hand movement, the 

algorithm shows the best accuracy of 3.78 bpm in MAE as compared to all the other re-

ported results. 
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