
Citation: Park, J.; Jeong, S.; Yeom, K.

Smart Contract Broker: Improving

Smart Contract Reusability in a

Blockchain Environment. Sensors

2023, 23, 6149. https://doi.org/

10.3390/s23136149

Academic Editors: Maurizio Talamo

and Christian H. Schunck

Received: 29 May 2023

Revised: 26 June 2023

Accepted: 3 July 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Smart Contract Broker: Improving Smart Contract Reusability
in a Blockchain Environment
Joonseok Park 1, Sumin Jeong 2 and Keunhyuk Yeom 3,*

1 Research Institute of Intelligent Logistics Big Data, Pusan National University,
Busan 46241, Republic of Korea; pjs50@pusan.ac.kr

2 Department of Information Convergence Engineering, Pusan National University,
Busan 46241, Republic of Korea; sumin2708@gmail.com

3 School of Computer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
* Correspondence: yeom@pusan.ac.kr; Tel.: +82-51-510-2475; Fax: +82-51-517-2431

Abstract: In this paper, we propose a smart contract broker to improve the reusability of smart
contracts in a blockchain environment. The current blockchain platform lacks a standard approach to
sharing and managing smart contracts, which makes it difficult for developers to reuse them and
leads to efficiency issues. The proposed smart contract broker uses tags to identify and organize smart
contracts, and it provides an environment for comparing and reusing smart contracts. This improves
the reusability of smart contracts and efficiency. The proposed smart contract broker can be applied
as a reference model that increases the flexibility and reusability of smart contract management in a
blockchain environment.

Keywords: smart contract; smart contract broker; smart contract management; blockchain

1. Introduction

In this paper, a smart contract broker is introduced to improve the reusability of a
smart contract in a blockchain [1] environment. Smart contracts are programs written
in languages such as Go [2] and Python [3], and stored on a blockchain for automating
the execution of an agreement. They are applied as a key technology [4] to realize the
immutability, transparency, and efficiency of blockchains in various domains such as
finance, smart cities, and voting. When a business transaction occurs on the blockchain, the
smart contract is executed automatically. For example, smart contracts can be used to trace
the movement of goods and materials through a supply chain.

However, there are issues, such as the difficulty of use, lack of convenience, and
lack of a support environment when applying smart contracts to Hyperledger Fabric,
a leading permissioned blockchain platform. The complexity and usability concerns of
open-source permissioned blockchains, such as Hyperledger Fabric [5], have inhibited the
configuration of the core blockchain network. Moreover, prior understanding of the Fabric
network’s command line interface (CLI) commands, flags, and other necessary vocabulary
is required. In addition, the network lacks a method for sharing smart contracts [6–8] for
transactions between blockchain peers (users) [9] or allowing other blockchain peers to
reuse smart contracts.

Therefore, in this study, an approach named smart contract broker is introduced to
improve the reusability of a smart contract in a blockchain environment. The proposed
smart contract broker consists of a smart contract management (SCM) system that sup-
ports the sharing of smart contracts, a dashboard that can be used as an interface between
the users and shared smart contracts, and a broker system that enables connection to the
blockchain network. The proposed methodology stores and manages the user, structure,
and asset information of the smart contract, as tags, for management.

Sensors 2023, 23, 6149. https://doi.org/10.3390/s23136149 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136149
https://doi.org/10.3390/s23136149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2763-5570
https://doi.org/10.3390/s23136149
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136149?type=check_update&version=2

Sensors 2023, 23, 6149 2 of 16

The proposed smart contract broker system will make it easier to share smart con-
tracts between users. This will improve the reusability of smart contracts and make it
easier to develop new applications. The dashboard will provide a user-friendly interface
for interacting with smart contracts. The broker system will ensure that smart contracts are
connected to the blockchain network and can be executed securely.

The smart contract broker is a promising approach to improving the reusability of
smart contracts in a blockchain environment. The broker has the potential to make it easier
to develop new smart contracts by comparing and reusing part of existing smart contract.

The paper is structured as follows: Section 2 reviews related work, and Section 3
introduces the architecture of the proposed smart contract broker and suggests a method
for managing smart contracts. Section 4 presents case studies and evaluations of the smart
contract broker, and Section 5 discusses practical implications. Section 6 provides the
conclusion and briefly describes future research directions.

2. Related Work
2.1. Permissioned Blockchain—Hyperledger Fabric

Hyperledger Fabric [10], the representative permissioned blockchain platform, has
proven to be beneficial for many enterprises because of its wide feature set and active
development community. It is a popular open-source permissioned blockchain platform
with modularity and a versatility-focused design. The latest version of Fabric as of March
2023 is 2.5.0-beta2. Hyperledger Composer [11]—also part of the Hyperledger Foundation—
is an open-source development toolset for simplifying application development on Fabric.
Although Composer provides REST (representational state transfer) server functionality,
it was officially deprecated on 29 August 2019, and only supports Fabric version 1.4 and
earlier. According to the deprecation of Composer, the usability of the blockchain network
and interface issues have been ignored, and essential API services are missing.

2.2. Smart Contract

In this paper, issues related to representative permissioned blockchains, as discussed
above, are presented, with a focus on researching smart contract management methods
that can interoperate with them.

Smart contracts have various functions that correspond to the contents of the contract.
Smart contract functions can be developed in a programming language that supports Java
Virtual Machine (JVM) or Node.js [12] runtime. Moreover, various functions and control
statements exist such as if . . . else or while, that process transaction data and status in
a blockchain environment. In Hyperledger Fabric, a smart contract is defined within a
chaincode. The smart contract is a key element in the blockchain network, and various
studies [13,14] such as smart contract design [15] and application development [16] have
been presented. Zou et al. [17] identified the lack of a plan for supporting the evolution,
management, and deployment of smart contracts as one of the open research topics to
be addressed. In Table 1 of Section 2.3, Discussion, we have presented a summary of the
related papers that deal with various issues concerning smart contracts.

Table 1. Literature review of papers on smart contract.

Study Main Objective Issues Future Trends

Khan et al. [18]

Smart contract optimization,
blockchain environment
modeling, smart contract

resources etc.

Resource immutability,
system scalability etc.

Layer2 protocol (network
issue), contract management

Singh et al. [19] Smart contract formalization,
smart contract vulnerabilities

Formal testing,
domain-specific languages

Formal verification of
smart contract

Sensors 2023, 23, 6149 3 of 16

Table 1. Cont.

Study Main Objective Issues Future Trends

Wang et al. [16] Blockchain architecture,
smart contract relationship

Smart contract
management etc.

Formal verification of
smart contract

Ante et al. [20]

Classification of technical
elements of

blockchain smart
contract system

Smart contract
standardization,
verification etc.

Layer2 protocol
(network issue),

definition of smart contract,
infrastructure

2.3. Discussion

We have focused on solving the difficulties of managing smart contracts related to the
smart contract broker proposed herein. Wu et al. [14] proposed a smart contract life cycle
comprising contract generation, contract release, and contract execution. They proposed
the overall life cycle from a programmatic perspective, including steps such as creating a
contract specification through the negotiation of contract participants and preparing a code
contract, as shown in the contract generation stage. This paper also proposes a mechanism
that allows smart contracts to be registered and searched for, based on tags, so that a new
smart contract can be generated by reusing an existing smart contract. Further, it proposes
a mechanism to automate the execution of smart contracts by deriving an API that can
provide smart contracts in linkage with blockchain.

In Table 1, we have summarized papers that have analyzed the emerging issues in cur-
rent smart contracts from the perspectives of the main objective, issues, and future trends.

As is shown in Table 1, smart contracts have been studied for various research pur-
poses, including optimization, modeling methods in blockchains, resources for contract
composition, and formalization methods. The issues of smart contract technology include
resource immutability, system scalability, formal testing, domain-specific language (DSL),
smart contract management, standardization, and verification. The analysis shows that
these technical issues arise because smart contracts do not have a standard model or a
unified language form, and have separate resource models and specialties for each platform.

Owing to a lack of smart contract management measures, this study aimed to con-
tribute to the creation of a standard method of generating smart contracts and smart
contracts that are generated as needed in the business domain. To this end, we propose a
smart contract broker to increase reusability when generating smart contracts. Furthermore,
we suggest a basic environment that can support the distribution of smart contracts in the
blockchain environment by applying the RESTful API [21,22].

3. Smart Contract Broker
3.1. Smart Contract Broker Architecture

Figure 1 shows the definition of the functionality architecture for performing smart
contract management.

The functional elements of smart contract management in Figure 1 were defined
to perform the role of the smart contract broker proposed herein by re-specifying smart
contracts and metadata that constitute smart contracts. This was accomplished using a
series of processes: creating, distributing, and operating smart contracts, and adding steps
to evaluate smart contracts. Each type of manager and resource are described as follows:

Smart contract manager: This performs the role of defining smart contracts and
preparing for their distribution on the blockchain platform. It uses contract specification
for smart contract definition, contract evaluation to judge the defined smart contract, and
contract registration to reflect the smart contract on the blockchain platform.

Class information manager: This prepares the application for the smart contract
management method proposed herein. To classify smart contracts, it creates tags for the
management of smart contracts and maps them to smart contracts in the tag specification.
It performs metadata specification to specify the metadata, which will be used to manage

Sensors 2023, 23, 6149 4 of 16

the smart contract so that external management can be performed. Through function speci-
fication, it specifies the functionality information so that it can be checked and managed
outside of the smart contract.

Delivery manager: This performs the role of linking smart contracts with the outside
world. It performs function extraction to extract each function that manages a smart contract
provided by an external blockchain platform and performs interface method construction
to establish a connection with the extracted function.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 16

Figure 1. Management Functionality Architecture.

Figure 2 shows the flow architecture of the smart contract management system
(SCMS), which is linked to the blockchain environment presented in this paper. The SCMS
performs the role of smart contract manager and class information manager in the func-
tionality architecture of Figure 1, and the RESTful fabric broker performs the role of de-
livery manager.

Figure 2. Smart Contract Broker flow architecture.

SCMs—This is a support system for independently searching and managing smart
contracts used in the blockchain network. As is illustrated in Figure 2, tags can be used to
group the smart contracts into various types, such as by user and programming language.
Furthermore, using JSON (JavaScript object notation) [23], the smart contract is designed
to enable internal and external information transfer.

Figure 1. Management Functionality Architecture.

Figure 2 shows the flow architecture of the smart contract management system (SCMS),
which is linked to the blockchain environment presented in this paper. The SCMS performs
the role of smart contract manager and class information manager in the functionality ar-
chitecture of Figure 1, and the RESTful fabric broker performs the role of delivery manager.

SCMs—This is a support system for independently searching and managing smart
contracts used in the blockchain network. As is illustrated in Figure 2, tags can be used to
group the smart contracts into various types, such as by user and programming language.
Furthermore, using JSON (JavaScript object notation) [23], the smart contract is designed to
enable internal and external information transfer.

Smart contract dashboard—This is the dashboard in which the user can access the SCM
system and blockchain network. Using this dashboard, smart contracts can be searched,
downloaded, compared, uploaded, and automatically installed onto the blockchain network
based on tags.

RESTful Fabric broker—This connects blockchain network and system components
through REST API and processes the requests. Blockchain functions, which is a component
of the broker, supports commands executed in the blockchain network to be executed
through API. Furthermore, external functions increase system scalability by linking to other
systems, e.g., the dashboard and tagging user input information.

Blockchain network—This refers to blockchain platforms, such as Hyperledger Fabric
and Ethereum, in which smart contracts are processed.

Sensors 2023, 23, 6149 5 of 16

Sensors 2023, 23, x FOR PEER REVIEW 4 of 16

Figure 1. Management Functionality Architecture.

Figure 2 shows the flow architecture of the smart contract management system
(SCMS), which is linked to the blockchain environment presented in this paper. The SCMS
performs the role of smart contract manager and class information manager in the func-
tionality architecture of Figure 1, and the RESTful fabric broker performs the role of de-
livery manager.

Figure 2. Smart Contract Broker flow architecture.

SCMs—This is a support system for independently searching and managing smart
contracts used in the blockchain network. As is illustrated in Figure 2, tags can be used to
group the smart contracts into various types, such as by user and programming language.
Furthermore, using JSON (JavaScript object notation) [23], the smart contract is designed
to enable internal and external information transfer.

Figure 2. Smart Contract Broker flow architecture.

Figure 3 shows the process of searching for, uploading, and installing smart contracts
onto the blockchain network.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 16

Smart contract dashboard—This is the dashboard in which the user can access the
SCM system and blockchain network. Using this dashboard, smart contracts can be
searched, downloaded, compared, uploaded, and automatically installed onto the block-
chain network based on tags.

RESTful Fabric broker—This connects blockchain network and system components
through REST API and processes the requests. Blockchain functions, which is a compo-
nent of the broker, supports commands executed in the blockchain network to be executed
through API. Furthermore, external functions increase system scalability by linking to
other systems, e.g., the dashboard and tagging user input information.

Blockchain network—This refers to blockchain platforms, such as Hyperledger Fab-
ric and Ethereum, in which smart contracts are processed.

Figure 3 shows the process of searching for, uploading, and installing smart contracts
onto the blockchain network.

Figure 3. Flowchart of smart contract search (left), upload (center), and installation on the block-
chain network (right).

3.2. Smart Contract Management
A tag is used to express the information of the smart contract, such as metadata and

user information, in the form of key value. The tag expression factors include the name of
the smart contract, creator, and blockchain transaction. Figure 4 presents an example of
tag expression.

Figure 3. Flowchart of smart contract search (left), upload (center), and installation on the blockchain
network (right).

Sensors 2023, 23, 6149 6 of 16

3.2. Smart Contract Management

A tag is used to express the information of the smart contract, such as metadata and
user information, in the form of key value. The tag expression factors include the name of
the smart contract, creator, and blockchain transaction. Figure 4 presents an example of tag
expression.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 16

Figure 4. Sample expression of smart contract tag information.

Figures 5 and 6 show the information specified for smart contract upload to the SCM
system according to the concept of the proposed tag. The smart contract upload specifica-
tion information proposed in this paper is divided into a metadata specification tag and
an implementation specification tag. Figure 7 shows a metadata specification tag for smart
contract management, including the smart contract identifier (ID), name, owner, descrip-
tion, target platform, and contract basic authentication specification. The metadata speci-
fication tag describes the classification of smart contracts and basic information for smart
contracts to be executed on the platform.

Figure 5. Upload specification for smart contract metadata.

Figure 4. Sample expression of smart contract tag information.

Figures 5 and 6 show the information specified for smart contract upload to the
SCM system according to the concept of the proposed tag. The smart contract upload
specification information proposed in this paper is divided into a metadata specification
tag and an implementation specification tag. Figure 7 shows a metadata specification tag
for smart contract management, including the smart contract identifier (ID), name, owner,
description, target platform, and contract basic authentication specification. The metadata
specification tag describes the classification of smart contracts and basic information for
smart contracts to be executed on the platform.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 16

Figure 4. Sample expression of smart contract tag information.

Figures 5 and 6 show the information specified for smart contract upload to the SCM
system according to the concept of the proposed tag. The smart contract upload specifica-
tion information proposed in this paper is divided into a metadata specification tag and
an implementation specification tag. Figure 7 shows a metadata specification tag for smart
contract management, including the smart contract identifier (ID), name, owner, descrip-
tion, target platform, and contract basic authentication specification. The metadata speci-
fication tag describes the classification of smart contracts and basic information for smart
contracts to be executed on the platform.

Figure 5. Upload specification for smart contract metadata. Figure 5. Upload specification for smart contract metadata.

Sensors 2023, 23, 6149 7 of 16Sensors 2023, 23, x FOR PEER REVIEW 7 of 16

Figure 6. Upload specification for smart contract implementation data.

Figure 7. Asset structure of Contract A.

When managing smart contracts, the tag information is managed and the cost of
smart contract functions is computed according to the criteria (see Table 2) [24], in order
to improve the execution and stability management of smart contract transaction pro-
cessing.

Table 2. Weight and criteria for determining the smart contract function execution cost.

Operation Execution Cost Weight
Code length (N lines = Cost 1) 1 1

Control statement

if-else

1 2
for

while
switch

Data processing
statement

stub.GetState 1 3

Figure 6. Upload specification for smart contract implementation data.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 16

Figure 6. Upload specification for smart contract implementation data.

Figure 7. Asset structure of Contract A.

When managing smart contracts, the tag information is managed and the cost of
smart contract functions is computed according to the criteria (see Table 2) [24], in order
to improve the execution and stability management of smart contract transaction pro-
cessing.

Table 2. Weight and criteria for determining the smart contract function execution cost.

Operation Execution Cost Weight
Code length (N lines = Cost 1) 1 1

Control statement

if-else

1 2
for

while
switch

Data processing
statement

stub.GetState 1 3

Figure 7. Asset structure of Contract A.

When managing smart contracts, the tag information is managed and the cost of
smart contract functions is computed according to the criteria (see Table 2) [24], in order to
improve the execution and stability management of smart contract transaction processing.

Table 2. Weight and criteria for determining the smart contract function execution cost.

Operation Execution Cost Weight

Code length (N lines = Cost 1) 1 1

Control statement

if-else

1 2for

while

switch

Data processing
statement stub.GetState 1 3

Sensors 2023, 23, 6149 8 of 16

Table 2 details the factors defined in this paper for determining the execution cost of
smart contract functions. The execution cost of each smart contract function is defined and
prioritized according to various factors affecting the execution time of the function.

The code length is assigned a unit cost for every N line. As the lengths of the functions
in the smart contract vary, N is arbitrarily set so that the functions can be distinguished.
Control statements are included in the calculation of the execution cost because it directly
affects function execution. Data processing refers to the functions that change data accord-
ing to a desired format or read and write values on a ledger. Data processing functions are
included in the calculation of the execution cost because it can also affect the execution time.

Execution cost is the cost allocated to each factor, in which the cost of all factors is set
to 1 and the cost is added whenever the factor appears. The lower the sum of all costs, the
shorter the execution time.

Weight is the weight to which each element is compared. If the final cost is the same,
the operation with the largest weight is compared.

After the smart contract is registered, it searches for similar smart contracts to be
reused by performing a search based on the tag. For example, a seller confirms a relevant
asset structure in the searched smart contract. Figure 7 shows a sample output of an asset
structure.

The seller may want to change the asset structure, in which color is to be expressed in
hex (hexadecimal) and a Boolean field called electric vehicle (EV) is to be added. Figure 8
shows the asset structure requested by the seller.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16

Table 2 details the factors defined in this paper for determining the execution cost of
smart contract functions. The execution cost of each smart contract function is defined and
prioritized according to various factors affecting the execution time of the function.

The code length is assigned a unit cost for every N line. As the lengths of the functions
in the smart contract vary, N is arbitrarily set so that the functions can be distinguished.
Control statements are included in the calculation of the execution cost because it directly
affects function execution. Data processing refers to the functions that change data accord-
ing to a desired format or read and write values on a ledger. Data processing functions are
included in the calculation of the execution cost because it can also affect the execution time.

Execution cost is the cost allocated to each factor, in which the cost of all factors is set
to 1 and the cost is added whenever the factor appears. The lower the sum of all costs, the
shorter the execution time.

Weight is the weight to which each element is compared. If the final cost is the same,
the operation with the largest weight is compared.

After the smart contract is registered, it searches for similar smart contracts to be reused
by performing a search based on the tag. For example, a seller confirms a relevant asset struc-
ture in the searched smart contract. Figure 7 shows a sample output of an asset structure.

The seller may want to change the asset structure, in which color is to be expressed
in hex (hexadecimal) and a Boolean field called electric vehicle (EV) is to be added. Figure
8 shows the asset structure requested by the seller.

Figure 8. Asset structure of Contract B.

The user downloads the smart contract (Contract A) and subsequently modifies the
asset structure and creates a new smart contract (Contract B) with the code inserted based
on requirement.

After the smart contract installation is complete, the blockchain network can be used
to investigate whether the smart contract executes properly, as shown in Figure 9. In Fig-
ure 9, the asset1 vehicle indicated in the red box is an electric Mercedes model and the
owner is Tomoko. Figure 10 shows a comparison between the vehicle information and the
asset structure of Contract B.

Figure 9. Actual blockchain assets using the asset structure of Contract B.

Figure 8. Asset structure of Contract B.

The user downloads the smart contract (Contract A) and subsequently modifies the
asset structure and creates a new smart contract (Contract B) with the code inserted based
on requirement.

After the smart contract installation is complete, the blockchain network can be used to
investigate whether the smart contract executes properly, as shown in Figure 9. In Figure 9,
the asset1 vehicle indicated in the red box is an electric Mercedes model and the owner
is Tomoko. Figure 10 shows a comparison between the vehicle information and the asset
structure of Contract B.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16

Table 2 details the factors defined in this paper for determining the execution cost of
smart contract functions. The execution cost of each smart contract function is defined and
prioritized according to various factors affecting the execution time of the function.

The code length is assigned a unit cost for every N line. As the lengths of the functions
in the smart contract vary, N is arbitrarily set so that the functions can be distinguished.
Control statements are included in the calculation of the execution cost because it directly
affects function execution. Data processing refers to the functions that change data accord-
ing to a desired format or read and write values on a ledger. Data processing functions are
included in the calculation of the execution cost because it can also affect the execution time.

Execution cost is the cost allocated to each factor, in which the cost of all factors is set
to 1 and the cost is added whenever the factor appears. The lower the sum of all costs, the
shorter the execution time.

Weight is the weight to which each element is compared. If the final cost is the same,
the operation with the largest weight is compared.

After the smart contract is registered, it searches for similar smart contracts to be reused
by performing a search based on the tag. For example, a seller confirms a relevant asset struc-
ture in the searched smart contract. Figure 7 shows a sample output of an asset structure.

The seller may want to change the asset structure, in which color is to be expressed
in hex (hexadecimal) and a Boolean field called electric vehicle (EV) is to be added. Figure
8 shows the asset structure requested by the seller.

Figure 8. Asset structure of Contract B.

The user downloads the smart contract (Contract A) and subsequently modifies the
asset structure and creates a new smart contract (Contract B) with the code inserted based
on requirement.

After the smart contract installation is complete, the blockchain network can be used
to investigate whether the smart contract executes properly, as shown in Figure 9. In Fig-
ure 9, the asset1 vehicle indicated in the red box is an electric Mercedes model and the
owner is Tomoko. Figure 10 shows a comparison between the vehicle information and the
asset structure of Contract B.

Figure 9. Actual blockchain assets using the asset structure of Contract B. Figure 9. Actual blockchain assets using the asset structure of Contract B.

Sensors 2023, 23, 6149 9 of 16Sensors 2023, 23, x FOR PEER REVIEW 9 of 16

Figure 10. Comparison between the asset structure of Contract B and an actual asset.

3.3. API for Smart Contract Management
The broker contains five modules that focus on specific functionality. Each module has

a RESTful API that fits the functionality of the module. Table 3 shows the name and descrip-
tion of each module, the method of the implemented API, and the features of each method.

Table 3. Modules and Implemented API.

Existing Module Implemented API
Module Name Description Method Feature

Lifecycle Perform chaincode operations
and manage admin status

GET
/fabric/lifecycle/commit

Query the committed chaincode defini-
tions

Peer Manage CLI and peer versions GET
/fabric/peer

Get the current peer binary version

Network Manage blockchain network
status

POST
/fabric/network/up

Start Fabric network with existing set-
tings

Chaincode Operate chaincode POST
/fabric/chaincode/query

Get endorsed result of chaincode func-
tion call and print it

Repository Manage external modules GET
/fabric/repository/pull

Pull changes from SCM

Figure 11 shows the result of executing the GET/fabric/lifecycle/commit from Table
3. This response from the broker provides details regarding the committed chaincode, in-
cluding its name and the channel to which it was committed.

Figure 10. Comparison between the asset structure of Contract B and an actual asset.

3.3. API for Smart Contract Management

The broker contains five modules that focus on specific functionality. Each module
has a RESTful API that fits the functionality of the module. Table 3 shows the name and
description of each module, the method of the implemented API, and the features of
each method.

Table 3. Modules and Implemented API.

Existing Module Implemented API

Module Name Description Method Feature

Lifecycle Perform chaincode operations
and manage admin status

GET
/fabric/lifecycle/commit

Query the committed chaincode
definitions

Peer Manage CLI and peer versions GET
/fabric/peer Get the current peer binary version

Network Manage blockchain
network status

POST
/fabric/network/up

Start Fabric network with
existing settings

Chaincode Operate chaincode POST
/fabric/chaincode/query

Get endorsed result of chaincode
function call and print it

Repository Manage external modules GET
/fabric/repository/pull Pull changes from SCM

Figure 11 shows the result of executing the GET/fabric/lifecycle/commit from Table 3.
This response from the broker provides details regarding the committed chaincode, includ-
ing its name and the channel to which it was committed.

Sensors 2023, 23, 6149 10 of 16Sensors 2023, 23, x FOR PEER REVIEW 10 of 16

Figure 11. Result of the queryCommittedCC request.

4. Case Study and Evaluation
4.1. Case Study

An example of applying a supply chain management [25] smart contract using a
smart contract broker was considered. The presented case study describes the process and
system of reusing a supply chain management smart contract that trades rice and milk
based on the implemented smart contract broker prototype. The progress of the case study
consists of uploading the smart contract, searching the smart contract, verifying reusabil-
ity via a comparison of search result assets, deploying the smart contract on the blockchain
network, and executing the transaction result.

An example of retrieving a smart contract provided by a smart contract broker based
on the upload specification is shown in Figure 12, which shows the dashboard result
screen searched with the keyword “Transfer”. The search result can check the smart con-
tract name, author, and tags such as the writing program language, contract platform, and
upload time.

Figure 12. Search results displayed on the dashboard.

Figure 13 shows that the smart contract is deployed and executed on the blockchain
network after uploading and searching for the smart contract. Smart contract specification
appears in dashboard (right) and the transaction result appears as a box by executing the
smart contract (left).

Figure 11. Result of the queryCommittedCC request.

4. Case Study and Evaluation
4.1. Case Study

An example of applying a supply chain management [25] smart contract using a smart
contract broker was considered. The presented case study describes the process and system
of reusing a supply chain management smart contract that trades rice and milk based on
the implemented smart contract broker prototype. The progress of the case study consists
of uploading the smart contract, searching the smart contract, verifying reusability via a
comparison of search result assets, deploying the smart contract on the blockchain network,
and executing the transaction result.

An example of retrieving a smart contract provided by a smart contract broker based
on the upload specification is shown in Figure 12, which shows the dashboard result screen
searched with the keyword “Transfer”. The search result can check the smart contract name,
author, and tags such as the writing program language, contract platform, and upload time.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16

Figure 11. Result of the queryCommittedCC request.

4. Case Study and Evaluation
4.1. Case Study

An example of applying a supply chain management [25] smart contract using a
smart contract broker was considered. The presented case study describes the process and
system of reusing a supply chain management smart contract that trades rice and milk
based on the implemented smart contract broker prototype. The progress of the case study
consists of uploading the smart contract, searching the smart contract, verifying reusabil-
ity via a comparison of search result assets, deploying the smart contract on the blockchain
network, and executing the transaction result.

An example of retrieving a smart contract provided by a smart contract broker based
on the upload specification is shown in Figure 12, which shows the dashboard result
screen searched with the keyword “Transfer”. The search result can check the smart con-
tract name, author, and tags such as the writing program language, contract platform, and
upload time.

Figure 12. Search results displayed on the dashboard.

Figure 13 shows that the smart contract is deployed and executed on the blockchain
network after uploading and searching for the smart contract. Smart contract specification
appears in dashboard (right) and the transaction result appears as a box by executing the
smart contract (left).

Figure 12. Search results displayed on the dashboard.

Figure 13 shows that the smart contract is deployed and executed on the blockchain
network after uploading and searching for the smart contract. Smart contract specification
appears in dashboard (right) and the transaction result appears as a box by executing the
smart contract (left).

Sensors 2023, 23, 6149 11 of 16Sensors 2023, 23, x FOR PEER REVIEW 11 of 16

Figure 13. Uploaded detailed view; transaction results (Left) and smart contract specification
(Right).

Figure 14 shows the derivation of “milkTransfer,” a milk transaction management
smart contract, based on “riceTransfer,” a rice transaction management smart contract
that already exists on the platform. As is shown in Figure 14, the code for reusing assets
used in rice transactions and additionally processing reused assets has been extended in
the smart contract.

Figure 14. Smart contract difference comparison check.

Figure 13. Uploaded detailed view; transaction results (Left) and smart contract specification (Right).

Figure 14 shows the derivation of “milkTransfer,” a milk transaction management
smart contract, based on “riceTransfer,” a rice transaction management smart contract that
already exists on the platform. As is shown in Figure 14, the code for reusing assets used
in rice transactions and additionally processing reused assets has been extended in the
smart contract.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16

Figure 13. Uploaded detailed view; transaction results (Left) and smart contract specification
(Right).

Figure 14 shows the derivation of “milkTransfer,” a milk transaction management
smart contract, based on “riceTransfer,” a rice transaction management smart contract
that already exists on the platform. As is shown in Figure 14, the code for reusing assets
used in rice transactions and additionally processing reused assets has been extended in
the smart contract.

Figure 14. Smart contract difference comparison check.
Figure 14. Smart contract difference comparison check.

Sensors 2023, 23, 6149 12 of 16

In addition, the comparison of smart contract execution results by smart contract
transaction domain is shown in Figure 15. Transactions are performed based on the basic
information in the existing rice transaction management smart contract. In the case of milk
transactions, additional information exists (e.g., freshness); thus, the production date is
added as shown on the right of Figure 15 in the transaction result.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16

In addition, the comparison of smart contract execution results by smart contract
transaction domain is shown in Figure 15. Transactions are performed based on the basic
information in the existing rice transaction management smart contract. In the case of milk
transactions, additional information exists (e.g., freshness); thus, the production date is
added as shown on the right of Figure 15 in the transaction result.

Figure 15. Transaction result comparison (left: riceTransfer, right: milkTransfer).

4.2. Evaluation
The performance evaluation of the smart contract broker (see Figure 16) is performed

by CLI on the existing permissioned platform and API request of the smart contract bro-
ker. After replicating and repeating the unit test with Apache Jmeter [26], an open-source
unit test, the latency of each transaction is measured. The performance evaluation was
conducted using the smart contract written in the case study.

Figure 16. Transaction evaluation.

Figure 15. Transaction result comparison (left: riceTransfer, right: milkTransfer).

4.2. Evaluation

The performance evaluation of the smart contract broker (see Figure 16) is performed
by CLI on the existing permissioned platform and API request of the smart contract broker.
After replicating and repeating the unit test with Apache Jmeter [26], an open-source
unit test, the latency of each transaction is measured. The performance evaluation was
conducted using the smart contract written in the case study.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16

In addition, the comparison of smart contract execution results by smart contract
transaction domain is shown in Figure 15. Transactions are performed based on the basic
information in the existing rice transaction management smart contract. In the case of milk
transactions, additional information exists (e.g., freshness); thus, the production date is
added as shown on the right of Figure 15 in the transaction result.

Figure 15. Transaction result comparison (left: riceTransfer, right: milkTransfer).

4.2. Evaluation
The performance evaluation of the smart contract broker (see Figure 16) is performed

by CLI on the existing permissioned platform and API request of the smart contract bro-
ker. After replicating and repeating the unit test with Apache Jmeter [26], an open-source
unit test, the latency of each transaction is measured. The performance evaluation was
conducted using the smart contract written in the case study.

Figure 16. Transaction evaluation. Figure 16. Transaction evaluation.

Sensors 2023, 23, 6149 13 of 16

The performance evaluation results are shown in Figures 17 and 18. Figure 17 presents
a comparison of the minimum, average, and maximum delay times of each method when
100 transaction requests are performed for each smart contract method using CLI and API.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16

The performance evaluation results are shown in Figures 17 and 18. Figure 17 pre-
sents a comparison of the minimum, average, and maximum delay times of each method
when 100 transaction requests are performed for each smart contract method using CLI
and API.

Figure 17. API, CLI performance test results.

Figure 18 shows a comparison of the average execution time of the CLI and API meth-
ods. API execution applied to the smart contract broker improved performance by 60 to
90 ms compared to CLI execution.

Figure 17. API, CLI performance test results.

Figure 18 shows a comparison of the average execution time of the CLI and API
methods. API execution applied to the smart contract broker improved performance by 60
to 90 ms compared to CLI execution.

Sensors 2023, 23, 6149 14 of 16Sensors 2023, 23, x FOR PEER REVIEW 14 of 16

Figure 18. Performance evaluation based on average latency.

5. Practical Implication
The key features of the proposed smart contract broker are described below:

• Tag-based management: Smart contracts can be registered, searched, deployed, and
executed using tags. This makes it easy to find and reuse smart contracts that are
relevant to a particular application.

• Asset structure comparison: The smart contract broker can compare the asset struc-
tures of similar smart contracts. This can be used to identify similarities and differ-
ences between smart contracts and to reuse parts of existing smart contracts to create
new smart contracts.

• REST API: The smart contract broker can be accessed using a REST API. This makes
it easy to integrate the smart contract broker with other applications and services.
First, based on the presented features, developers can use the smart contract broker

to create smart contracts that perform business transactions specific to the application do-
main. This may produce the effect of reducing costs by reducing the smart contract crea-
tion time. Second, the smart contract broker can be used as a smart contract search engine
or smart contract market. As tag information is specified and managed in the created
smart contracts, it can serve as a search engine for developers to find usable smart con-
tracts and can be applied as a market for trading smart contracts in the future. Third, it
can be used as a blockchain test bed. It provides an environment where users and compa-
nies intending to adopt and test blockchain can execute and test smart contracts using
APIs and dashboards without specialized knowledge.

6. Conclusions
In this paper, a smart contract broker was proposed to provide a mechanism to in-

crease the reusability of smart contracts and support their management. The concept,
structure, and application technique of a smart contract broker to support the manage-
ment and reuse of smart contracts in a blockchain environment were presented. In

Figure 18. Performance evaluation based on average latency.

5. Practical Implication

The key features of the proposed smart contract broker are described below:

• Tag-based management: Smart contracts can be registered, searched, deployed, and
executed using tags. This makes it easy to find and reuse smart contracts that are
relevant to a particular application.

• Asset structure comparison: The smart contract broker can compare the asset structures
of similar smart contracts. This can be used to identify similarities and differences
between smart contracts and to reuse parts of existing smart contracts to create new
smart contracts.

• REST API: The smart contract broker can be accessed using a REST API. This makes it
easy to integrate the smart contract broker with other applications and services.

First, based on the presented features, developers can use the smart contract broker to
create smart contracts that perform business transactions specific to the application domain.
This may produce the effect of reducing costs by reducing the smart contract creation
time. Second, the smart contract broker can be used as a smart contract search engine or
smart contract market. As tag information is specified and managed in the created smart
contracts, it can serve as a search engine for developers to find usable smart contracts and
can be applied as a market for trading smart contracts in the future. Third, it can be used as
a blockchain test bed. It provides an environment where users and companies intending to
adopt and test blockchain can execute and test smart contracts using APIs and dashboards
without specialized knowledge.

6. Conclusions

In this paper, a smart contract broker was proposed to provide a mechanism to increase
the reusability of smart contracts and support their management. The concept, structure,
and application technique of a smart contract broker to support the management and
reuse of smart contracts in a blockchain environment were presented. In addition, a

Sensors 2023, 23, 6149 15 of 16

prototype was developed by applying this concept. Case studies show that smart contract
management and reuse based on smart contract brokers are applied. Further, rather
than executing a smart contract via the CLI provided in the blockchain environment, the
execution performance improved using the API of the proposed smart contract broker.

The contributions of this paper are as follows: (1) We demonstrated that the efficiency
of smart contract search and management can be improved by classifying smart contracts
based on tags; (2) We proposed a mechanism for reusing existing smart contracts to reduce
the cost of creating new smart contracts; (3) We showed that the usability and accessibility
of smart contracts can be increased by applying REST APIs. Therefore, the smart contract
broker may facilitate access to blockchain networks while providing developers with a
systematic and flexible method of managing and reusing smart contract in the blockchain
network. This can increase the use of blockchain networks via transaction efficiency
between peers and user convenience. In the future, we plan to study a mechanism for
collecting and managing the access history of users who search and register based on tags
in the current smart contract broker. Based on this, we plan to propose a smart contract
broker technology to recommend smart contracts that meet the user’s purpose.

Author Contributions: J.P. is mainly responsible for the idea of this manuscript and the design of
the system and method. S.J. designed the experimental set-up and use cases and obtained data. K.Y.
provided the necessary environment and equipment for the experiment, as well as academic guidance
for this article. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2023-2020-0-01797) super-
vised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the authors upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Rajasekaran, A.; Azees, M.; Al-Turjman, F. A comprehensive survey on blockchain technology. Sustain. Energy Technol. Assess.

2022, 52, 102039. [CrossRef]
2. Go. Available online: https://go.dev/ (accessed on 1 May 2023).
3. Python. Available online: https://www.python.org/ (accessed on 1 May 2023).
4. Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.; Islam, A.; Shorfuzzaman, M. Permissioned Blockchain and Deep Learning for

Secure and Efficient Data Sharing in Industrial Healthcare Systems. IEEE Trans. Ind. Inform. 2022, 18, 8065–8073. [CrossRef]
5. Hyperledger Fabric. Available online: https://www.hyperledger.org/use/fabric (accessed on 1 May 2023).
6. Lin, S.; Li, J.; Ji, L.; Sun, Y. A survey of application research based on blockchain smart contract. Wirel. Netw. 2022, 28, 635–690.

[CrossRef]
7. Sharma, P.; Jindal, R.; Borah, M.D. A review of smart contract-based platforms, applications, and challenges. Clust. Comput. 2023,

26, 395–421. [CrossRef]
8. Almasoud, A.; Hussain, F.; Hussain, O. Smart contracts for blockchain-based reputation systems: A systematic literature review.

J. Netw. Comput. Appl. 2020, 170, 102814. [CrossRef]
9. Tang, H.; Jiao, Y.; Huang, B.; Lin, C.; Goyal, S.; Wang, B. Learning to Classify Blockchain Peers According to Their Behavior

Sequences. IEEE Access 2018, 6, 71208–71215. [CrossRef]
10. Elghaish, F.; Rahimian, F.; Hosseini, M.; Edwards, D.; Shelbourn, M. Financial management of construction projects: Hyperledger

fabric and chaincode solutions. Autom. Constr. 2022, 137, 104185. [CrossRef]
11. Hyperledger Composer. Available online: https://github.com/hyperledger/composer/blob/main/README.md (accessed on 1

May 2023).
12. Node.js. Available online: https://nodejs.org/en (accessed on 2 May 2023).
13. Dixit, A.; Deval, V.; Dwivedi, V.; Norta, A.; Draheim, D. Towards user-centered and legally relevant smart-contract development:

A systematic literature review. J. Ind. Inf. Integr. 2022, 26, 100314. [CrossRef]
14. Wu, C.; Xiong, J.; Xiong, H.; Zhao, Y.; Yi, W. A Review on Recent Progress of Smart Contract in Blockchain. IEEE Access 2022, 10,

50839–50863. [CrossRef]

https://doi.org/10.1016/j.seta.2022.102039
https://go.dev/
https://www.python.org/
https://doi.org/10.1109/TII.2022.3161631
https://www.hyperledger.org/use/fabric
https://doi.org/10.1007/s11276-021-02874-x
https://doi.org/10.1007/s10586-021-03491-1
https://doi.org/10.1016/j.jnca.2020.102814
https://doi.org/10.1109/ACCESS.2018.2881431
https://doi.org/10.1016/j.autcon.2022.104185
https://github.com/hyperledger/composer/blob/main/README.md
https://nodejs.org/en
https://doi.org/10.1016/j.jii.2021.100314
https://doi.org/10.1109/ACCESS.2022.3174052

Sensors 2023, 23, 6149 16 of 16

15. Dolgui, A.; Ivanov, D.; Potryasaev, S.; Sokolov, B.; Ivanova, M.; Werner, F. Blockchain-oriented dynamic modelling of smart
contract design and execution in the supply chain. Int. J. Prod. Res. 2020, 58, 2184–2199. [CrossRef]

16. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F. Blockchain-Enabled Smart Contracts: Architecture, Applications, and
Future Trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [CrossRef]

17. Zou, W.; Lo, D.; Kochhar, P.; Le, X.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and Opportunities.
IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [CrossRef]

18. Khan, S.N.; Loukil, F.; Guegan, C.G.; Benkhelifa, E.; Hani, A.B. Blockchain smart contracts: Applications, challenges, and future
trends. Peer-to-Peer Netw. Appl. 2021, 14, 2901–2925. [CrossRef] [PubMed]

19. Singh, A.; Parizi, R.M.; Zhang, Q.; Choo, K.R.; Dehghantanha, A. Blockchain smart contracts formalization: Approaches and
challenges to address vulnerabilities. Comput. Secur. 2020, 88, 101654. [CrossRef]

20. Ante, L. Smart Contracts on the Blockchain—A Bibliometric Analysis and Review. Telemat. Inform. 2021, 57, 101519. [CrossRef]
21. REST API. Available online: https://www.redhat.com/en/topics/api/what-is-a-rest-api (accessed on 4 May 2023).
22. Arcuri, A. RESTful API Automated Test Case Generation with EvoMaster. ACM Trans. Softw. Eng. Methodol. 2019, 28, 1–37.

[CrossRef]
23. JSON. Available online: https://www.json.org/json-en.html (accessed on 4 May 2023).
24. Park, D.; Song, H.; Eom, J.; Jeong, S.; Park, J.; Yeom, K. A Smart Contract Management System to Optimize Transactions in a

Permissioned Blockchain. KIISE Trans. Comput. Pract. 2022, 28, 360–365. (In Korean) [CrossRef]
25. Attaran, M. Digital technology enablers and their implications for supply chain management. Supply Chain. Forum Int. J. 2020, 21,

158–172. [CrossRef]
26. Jmeter. Available online: https://jmeter.apache.org/ (accessed on 4 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/00207543.2019.1627439
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1007/s12083-021-01127-0
https://www.ncbi.nlm.nih.gov/pubmed/33897937
https://doi.org/10.1016/j.cose.2019.101654
https://doi.org/10.1016/j.tele.2020.101519
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://doi.org/10.1145/3293455
https://www.json.org/json-en.html
https://doi.org/10.5626/KTCP.2022.28.6.360
https://doi.org/10.1080/16258312.2020.1751568
https://jmeter.apache.org/

	Introduction
	Related Work
	Permissioned Blockchain—Hyperledger Fabric
	Smart Contract
	Discussion

	Smart Contract Broker
	Smart Contract Broker Architecture
	Smart Contract Management
	API for Smart Contract Management

	Case Study and Evaluation
	Case Study
	Evaluation

	Practical Implication
	Conclusions
	References

