

 sensors-23-06149

sensors-23-06149

Sensors 2023, 23(13), 6149; doi:10.3390/s23136149

Communication

Smart Contract Broker: Improving Smart Contract Reusability in a Blockchain Environment

Joonseok Park 1, Sumin Jeong 2[image: Orcid] and Keunhyuk Yeom 3,*

1

Research Institute of Intelligent Logistics Big Data, Pusan National University, Busan 46241, Republic of Korea

2

Department of Information Convergence Engineering, Pusan National University, Busan 46241, Republic of Korea

3

School of Computer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

*

Correspondence: yeom@pusan.ac.kr; Tel.: +82-51-510-2475; Fax: +82-51-517-2431

Academic Editors: Maurizio Talamo and Christian H. Schunck

Received: 29 May 2023 / Revised: 26 June 2023 / Accepted: 3 July 2023 / Published: 4 July 2023

Abstract

:

In this paper, we propose a smart contract broker to improve the reusability of smart contracts in a blockchain environment. The current blockchain platform lacks a standard approach to sharing and managing smart contracts, which makes it difficult for developers to reuse them and leads to efficiency issues. The proposed smart contract broker uses tags to identify and organize smart contracts, and it provides an environment for comparing and reusing smart contracts. This improves the reusability of smart contracts and efficiency. The proposed smart contract broker can be applied as a reference model that increases the flexibility and reusability of smart contract management in a blockchain environment.

Keywords:

smart contract; smart contract broker; smart contract management; blockchain

1. Introduction

In this paper, a smart contract broker is introduced to improve the reusability of a smart contract in a blockchain [1] environment. Smart contracts are programs written in languages such as Go [2] and Python [3], and stored on a blockchain for automating the execution of an agreement. They are applied as a key technology [4] to realize the immutability, transparency, and efficiency of blockchains in various domains such as finance, smart cities, and voting. When a business transaction occurs on the blockchain, the smart contract is executed automatically. For example, smart contracts can be used to trace the movement of goods and materials through a supply chain.

However, there are issues, such as the difficulty of use, lack of convenience, and lack of a support environment when applying smart contracts to Hyperledger Fabric, a leading permissioned blockchain platform. The complexity and usability concerns of open-source permissioned blockchains, such as Hyperledger Fabric [5], have inhibited the configuration of the core blockchain network. Moreover, prior understanding of the Fabric network’s command line interface (CLI) commands, flags, and other necessary vocabulary is required. In addition, the network lacks a method for sharing smart contracts [6,7,8] for transactions between blockchain peers (users) [9] or allowing other blockchain peers to reuse smart contracts.

Therefore, in this study, an approach named smart contract broker is introduced to improve the reusability of a smart contract in a blockchain environment. The proposed smart contract broker consists of a smart contract management (SCM) system that sup-ports the sharing of smart contracts, a dashboard that can be used as an interface between the users and shared smart contracts, and a broker system that enables connection to the blockchain network. The proposed methodology stores and manages the user, structure, and asset information of the smart contract, as tags, for management.

The proposed smart contract broker system will make it easier to share smart con-tracts between users. This will improve the reusability of smart contracts and make it easier to develop new applications. The dashboard will provide a user-friendly interface for interacting with smart contracts. The broker system will ensure that smart contracts are connected to the blockchain network and can be executed securely.

The smart contract broker is a promising approach to improving the reusability of smart contracts in a blockchain environment. The broker has the potential to make it easier to develop new smart contracts by comparing and reusing part of existing smart contract.

The paper is structured as follows: Section 2 reviews related work, and Section 3 introduces the architecture of the proposed smart contract broker and suggests a method for managing smart contracts. Section 4 presents case studies and evaluations of the smart contract broker, and Section 5 discusses practical implications. Section 6 provides the conclusion and briefly describes future research directions.

2. Related Work

2.1. Permissioned Blockchain—Hyperledger Fabric

Hyperledger Fabric [10], the representative permissioned blockchain platform, has proven to be beneficial for many enterprises because of its wide feature set and active development community. It is a popular open-source permissioned blockchain platform with modularity and a versatility-focused design. The latest version of Fabric as of March 2023 is 2.5.0-beta2. Hyperledger Composer [11]—also part of the Hyperledger Foundation—is an open-source development toolset for simplifying application development on Fabric. Although Composer provides REST (representational state transfer) server functionality, it was officially deprecated on 29 August 2019, and only supports Fabric version 1.4 and earlier. According to the deprecation of Composer, the usability of the blockchain network and interface issues have been ignored, and essential API services are missing.

2.2. Smart Contract

In this paper, issues related to representative permissioned blockchains, as discussed above, are presented, with a focus on researching smart contract management methods that can interoperate with them.

Smart contracts have various functions that correspond to the contents of the contract. Smart contract functions can be developed in a programming language that supports Java Virtual Machine (JVM) or Node.js [12] runtime. Moreover, various functions and control statements exist such as if…else or while, that process transaction data and status in a blockchain environment. In Hyperledger Fabric, a smart contract is defined within a chaincode. The smart contract is a key element in the blockchain network, and various studies [13,14] such as smart contract design [15] and application development [16] have been presented. Zou et al. [17] identified the lack of a plan for supporting the evolution, management, and deployment of smart contracts as one of the open research topics to be addressed. In Table 1 of Section 2.3, Discussion, we have presented a summary of the related papers that deal with various issues concerning smart contracts.

2.3. Discussion

We have focused on solving the difficulties of managing smart contracts related to the smart contract broker proposed herein. Wu et al. [14] proposed a smart contract life cycle comprising contract generation, contract release, and contract execution. They proposed the overall life cycle from a programmatic perspective, including steps such as creating a contract specification through the negotiation of contract participants and preparing a code contract, as shown in the contract generation stage. This paper also proposes a mechanism that allows smart contracts to be registered and searched for, based on tags, so that a new smart contract can be generated by reusing an existing smart contract. Further, it proposes a mechanism to automate the execution of smart contracts by deriving an API that can provide smart contracts in linkage with blockchain.

In Table 1, we have summarized papers that have analyzed the emerging issues in current smart contracts from the perspectives of the main objective, issues, and future trends.

As is shown in Table 1, smart contracts have been studied for various research purposes, including optimization, modeling methods in blockchains, resources for contract composition, and formalization methods. The issues of smart contract technology include resource immutability, system scalability, formal testing, domain-specific language (DSL), smart contract management, standardization, and verification. The analysis shows that these technical issues arise because smart contracts do not have a standard model or a unified language form, and have separate resource models and specialties for each platform.

Owing to a lack of smart contract management measures, this study aimed to contribute to the creation of a standard method of generating smart contracts and smart contracts that are generated as needed in the business domain. To this end, we propose a smart contract broker to increase reusability when generating smart contracts. Furthermore, we suggest a basic environment that can support the distribution of smart contracts in the blockchain environment by applying the RESTful API [21,22].

3. Smart Contract Broker

3.1. Smart Contract Broker Architecture

Figure 1 shows the definition of the functionality architecture for performing smart contract management.

The functional elements of smart contract management in Figure 1 were defined to perform the role of the smart contract broker proposed herein by re-specifying smart contracts and metadata that constitute smart contracts. This was accomplished using a series of processes: creating, distributing, and operating smart contracts, and adding steps to evaluate smart contracts. Each type of manager and resource are described as follows:

Smart contract manager: This performs the role of defining smart contracts and preparing for their distribution on the blockchain platform. It uses contract specification for smart contract definition, contract evaluation to judge the defined smart contract, and contract registration to reflect the smart contract on the blockchain platform.

Class information manager: This prepares the application for the smart contract management method proposed herein. To classify smart contracts, it creates tags for the management of smart contracts and maps them to smart contracts in the tag specification. It performs metadata specification to specify the metadata, which will be used to manage the smart contract so that external management can be performed. Through function specification, it specifies the functionality information so that it can be checked and managed outside of the smart contract.

Delivery manager: This performs the role of linking smart contracts with the outside world. It performs function extraction to extract each function that manages a smart contract provided by an external blockchain platform and performs interface method construction to establish a connection with the extracted function.

Figure 2 shows the flow architecture of the smart contract management system (SCMS), which is linked to the blockchain environment presented in this paper. The SCMS performs the role of smart contract manager and class information manager in the functionality architecture of Figure 1, and the RESTful fabric broker performs the role of delivery manager.

SCMs—This is a support system for independently searching and managing smart contracts used in the blockchain network. As is illustrated in Figure 2, tags can be used to group the smart contracts into various types, such as by user and programming language. Furthermore, using JSON (JavaScript object notation) [23], the smart contract is designed to enable internal and external information transfer.

Smart contract dashboard—This is the dashboard in which the user can access the SCM system and blockchain network. Using this dashboard, smart contracts can be searched, downloaded, compared, uploaded, and automatically installed onto the blockchain network based on tags.

RESTful Fabric broker—This connects blockchain network and system components through REST API and processes the requests. Blockchain functions, which is a component of the broker, supports commands executed in the blockchain network to be executed through API. Furthermore, external functions increase system scalability by linking to other systems, e.g., the dashboard and tagging user input information.

Blockchain network—This refers to blockchain platforms, such as Hyperledger Fabric and Ethereum, in which smart contracts are processed.

Figure 3 shows the process of searching for, uploading, and installing smart contracts onto the blockchain network.

3.2. Smart Contract Management

A tag is used to express the information of the smart contract, such as metadata and user information, in the form of key value. The tag expression factors include the name of the smart contract, creator, and blockchain transaction. Figure 4 presents an example of tag expression.

Figure 5 and Figure 6 show the information specified for smart contract upload to the SCM system according to the concept of the proposed tag. The smart contract upload specification information proposed in this paper is divided into a metadata specification tag and an implementation specification tag. Figure 7 shows a metadata specification tag for smart contract management, including the smart contract identifier (ID), name, owner, description, target platform, and contract basic authentication specification. The metadata specification tag describes the classification of smart contracts and basic information for smart contracts to be executed on the platform.

When managing smart contracts, the tag information is managed and the cost of smart contract functions is computed according to the criteria (see Table 2) [24], in order to improve the execution and stability management of smart contract transaction processing.

Table 2 details the factors defined in this paper for determining the execution cost of smart contract functions. The execution cost of each smart contract function is defined and prioritized according to various factors affecting the execution time of the function.

The code length is assigned a unit cost for every N line. As the lengths of the functions in the smart contract vary, N is arbitrarily set so that the functions can be distinguished. Control statements are included in the calculation of the execution cost because it directly affects function execution. Data processing refers to the functions that change data according to a desired format or read and write values on a ledger. Data processing functions are included in the calculation of the execution cost because it can also affect the execution time.

Execution cost is the cost allocated to each factor, in which the cost of all factors is set to 1 and the cost is added whenever the factor appears. The lower the sum of all costs, the shorter the execution time.

Weight is the weight to which each element is compared. If the final cost is the same, the operation with the largest weight is compared.

After the smart contract is registered, it searches for similar smart contracts to be reused by performing a search based on the tag. For example, a seller confirms a relevant asset structure in the searched smart contract. Figure 7 shows a sample output of an asset structure.

The seller may want to change the asset structure, in which color is to be expressed in hex (hexadecimal) and a Boolean field called electric vehicle (EV) is to be added. Figure 8 shows the asset structure requested by the seller.

The user downloads the smart contract (Contract A) and subsequently modifies the asset structure and creates a new smart contract (Contract B) with the code inserted based on requirement.

After the smart contract installation is complete, the blockchain network can be used to investigate whether the smart contract executes properly, as shown in Figure 9. In Figure 9, the asset1 vehicle indicated in the red box is an electric Mercedes model and the owner is Tomoko. Figure 10 shows a comparison between the vehicle information and the asset structure of Contract B.

3.3. API for Smart Contract Management

The broker contains five modules that focus on specific functionality. Each module has a RESTful API that fits the functionality of the module. Table 3 shows the name and description of each module, the method of the implemented API, and the features of each method.

Figure 11 shows the result of executing the GET/fabric/lifecycle/commit from Table 3. This response from the broker provides details regarding the committed chaincode, including its name and the channel to which it was committed.

4. Case Study and Evaluation

4.1. Case Study

An example of applying a supply chain management [25] smart contract using a smart contract broker was considered. The presented case study describes the process and system of reusing a supply chain management smart contract that trades rice and milk based on the implemented smart contract broker prototype. The progress of the case study consists of uploading the smart contract, searching the smart contract, verifying reusability via a comparison of search result assets, deploying the smart contract on the blockchain network, and executing the transaction result.

An example of retrieving a smart contract provided by a smart contract broker based on the upload specification is shown in Figure 12, which shows the dashboard result screen searched with the keyword “Transfer”. The search result can check the smart contract name, author, and tags such as the writing program language, contract platform, and upload time.

Figure 13 shows that the smart contract is deployed and executed on the blockchain network after uploading and searching for the smart contract. Smart contract specification appears in dashboard (right) and the transaction result appears as a box by executing the smart contract (left).

Figure 14 shows the derivation of “milkTransfer,” a milk transaction management smart contract, based on “riceTransfer,” a rice transaction management smart contract that already exists on the platform. As is shown in Figure 14, the code for reusing assets used in rice transactions and additionally processing reused assets has been extended in the smart contract.

In addition, the comparison of smart contract execution results by smart contract transaction domain is shown in Figure 15. Transactions are performed based on the basic information in the existing rice transaction management smart contract. In the case of milk transactions, additional information exists (e.g., freshness); thus, the production date is added as shown on the right of Figure 15 in the transaction result.

4.2. Evaluation

The performance evaluation of the smart contract broker (see Figure 16) is performed by CLI on the existing permissioned platform and API request of the smart contract broker. After replicating and repeating the unit test with Apache Jmeter [26], an open-source unit test, the latency of each transaction is measured. The performance evaluation was conducted using the smart contract written in the case study.

The performance evaluation results are shown in Figure 17 and Figure 18. Figure 17 presents a comparison of the minimum, average, and maximum delay times of each method when 100 transaction requests are performed for each smart contract method using CLI and API.

Figure 18 shows a comparison of the average execution time of the CLI and API methods. API execution applied to the smart contract broker improved performance by 60 to 90 ms compared to CLI execution.

5. Practical Implication

The key features of the proposed smart contract broker are described below:

	
Tag-based management: Smart contracts can be registered, searched, deployed, and executed using tags. This makes it easy to find and reuse smart contracts that are relevant to a particular application.

	
Asset structure comparison: The smart contract broker can compare the asset structures of similar smart contracts. This can be used to identify similarities and differences between smart contracts and to reuse parts of existing smart contracts to create new smart contracts.

	
REST API: The smart contract broker can be accessed using a REST API. This makes it easy to integrate the smart contract broker with other applications and services.

First, based on the presented features, developers can use the smart contract broker to create smart contracts that perform business transactions specific to the application domain. This may produce the effect of reducing costs by reducing the smart contract creation time. Second, the smart contract broker can be used as a smart contract search engine or smart contract market. As tag information is specified and managed in the created smart contracts, it can serve as a search engine for developers to find usable smart contracts and can be applied as a market for trading smart contracts in the future. Third, it can be used as a blockchain test bed. It provides an environment where users and companies intending to adopt and test blockchain can execute and test smart contracts using APIs and dashboards without specialized knowledge.

6. Conclusions

In this paper, a smart contract broker was proposed to provide a mechanism to increase the reusability of smart contracts and support their management. The concept, structure, and application technique of a smart contract broker to support the management and reuse of smart contracts in a blockchain environment were presented. In addition, a prototype was developed by applying this concept. Case studies show that smart contract management and reuse based on smart contract brokers are applied. Further, rather than executing a smart contract via the CLI provided in the blockchain environment, the execution performance improved using the API of the proposed smart contract broker.

The contributions of this paper are as follows: (1) We demonstrated that the efficiency of smart contract search and management can be improved by classifying smart contracts based on tags; (2) We proposed a mechanism for reusing existing smart contracts to reduce the cost of creating new smart contracts; (3) We showed that the usability and accessibility of smart contracts can be increased by applying REST APIs. Therefore, the smart contract broker may facilitate access to blockchain networks while providing developers with a systematic and flexible method of managing and reusing smart contract in the blockchain network. This can increase the use of blockchain networks via transaction efficiency between peers and user convenience. In the future, we plan to study a mechanism for collecting and managing the access history of users who search and register based on tags in the current smart contract broker. Based on this, we plan to propose a smart contract broker technology to recommend smart contracts that meet the user’s purpose.

Author Contributions

J.P. is mainly responsible for the idea of this manuscript and the design of the system and method. S.J. designed the experimental set-up and use cases and obtained data. K.Y. provided the necessary environment and equipment for the experiment, as well as academic guidance for this article. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2023-2020-0-01797) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data used to support the findings of this study are available from the authors upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

	

Rajasekaran, A.; Azees, M.; Al-Turjman, F. A comprehensive survey on blockchain technology. Sustain. Energy Technol. Assess. 2022, 52, 102039. [Google Scholar] [CrossRef]

	

Go. Available online: https://go.dev/ (accessed on 1 May 2023).

	

Python. Available online: https://www.python.org/ (accessed on 1 May 2023).

	

Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.; Islam, A.; Shorfuzzaman, M. Permissioned Blockchain and Deep Learning for Secure and Efficient Data Sharing in Industrial Healthcare Systems. IEEE Trans. Ind. Inform. 2022, 18, 8065–8073. [Google Scholar] [CrossRef]

	

Hyperledger Fabric. Available online: https://www.hyperledger.org/use/fabric (accessed on 1 May 2023).

	

Lin, S.; Li, J.; Ji, L.; Sun, Y. A survey of application research based on blockchain smart contract. Wirel. Netw. 2022, 28, 635–690. [Google Scholar] [CrossRef]

	

Sharma, P.; Jindal, R.; Borah, M.D. A review of smart contract-based platforms, applications, and challenges. Clust. Comput. 2023, 26, 395–421. [Google Scholar] [CrossRef]

	

Almasoud, A.; Hussain, F.; Hussain, O. Smart contracts for blockchain-based reputation systems: A systematic literature review. J. Netw. Comput. Appl. 2020, 170, 102814. [Google Scholar] [CrossRef]

	

Tang, H.; Jiao, Y.; Huang, B.; Lin, C.; Goyal, S.; Wang, B. Learning to Classify Blockchain Peers According to Their Behavior Sequences. IEEE Access 2018, 6, 71208–71215. [Google Scholar] [CrossRef]

	

Elghaish, F.; Rahimian, F.; Hosseini, M.; Edwards, D.; Shelbourn, M. Financial management of construction projects: Hyperledger fabric and chaincode solutions. Autom. Constr. 2022, 137, 104185. [Google Scholar] [CrossRef]

	

Hyperledger Composer. Available online: https://github.com/hyperledger/composer/blob/main/README.md (accessed on 1 May 2023).

	

Node.js. Available online: https://nodejs.org/en (accessed on 2 May 2023).

	

Dixit, A.; Deval, V.; Dwivedi, V.; Norta, A.; Draheim, D. Towards user-centered and legally relevant smart-contract development: A systematic literature review. J. Ind. Inf. Integr. 2022, 26, 100314. [Google Scholar] [CrossRef]

	

Wu, C.; Xiong, J.; Xiong, H.; Zhao, Y.; Yi, W. A Review on Recent Progress of Smart Contract in Blockchain. IEEE Access 2022, 10, 50839–50863. [Google Scholar] [CrossRef]

	

Dolgui, A.; Ivanov, D.; Potryasaev, S.; Sokolov, B.; Ivanova, M.; Werner, F. Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain. Int. J. Prod. Res. 2020, 58, 2184–2199. [Google Scholar] [CrossRef]

	

Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F. Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]

	

Zou, W.; Lo, D.; Kochhar, P.; Le, X.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and Opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [Google Scholar] [CrossRef]

	

Khan, S.N.; Loukil, F.; Guegan, C.G.; Benkhelifa, E.; Hani, A.B. Blockchain smart contracts: Applications, challenges, and future trends. Peer-to-Peer Netw. Appl. 2021, 14, 2901–2925. [Google Scholar] [CrossRef] [PubMed]

	

Singh, A.; Parizi, R.M.; Zhang, Q.; Choo, K.R.; Dehghantanha, A. Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities. Comput. Secur. 2020, 88, 101654. [Google Scholar] [CrossRef]

	

Ante, L. Smart Contracts on the Blockchain—A Bibliometric Analysis and Review. Telemat. Inform. 2021, 57, 101519. [Google Scholar] [CrossRef]

	

REST API. Available online: https://www.redhat.com/en/topics/api/what-is-a-rest-api (accessed on 4 May 2023).

	

Arcuri, A. RESTful API Automated Test Case Generation with EvoMaster. ACM Trans. Softw. Eng. Methodol. 2019, 28, 1–37. [Google Scholar] [CrossRef]

	

JSON. Available online: https://www.json.org/json-en.html (accessed on 4 May 2023).

	

Park, D.; Song, H.; Eom, J.; Jeong, S.; Park, J.; Yeom, K. A Smart Contract Management System to Optimize Transactions in a Permissioned Blockchain. KIISE Trans. Comput. Pract. 2022, 28, 360–365. (In Korean) [Google Scholar] [CrossRef]

	

Attaran, M. Digital technology enablers and their implications for supply chain management. Supply Chain. Forum Int. J. 2020, 21, 158–172. [Google Scholar] [CrossRef]

	

Jmeter. Available online: https://jmeter.apache.org/ (accessed on 4 May 2023).

[image: Sensors 23 06149 g001 550]

Figure 1. Management Functionality Architecture.

Figure 1. Management Functionality Architecture.

[image: Sensors 23 06149 g001]

[image: Sensors 23 06149 g002 550]

Figure 2. Smart Contract Broker flow architecture.

Figure 2. Smart Contract Broker flow architecture.

[image: Sensors 23 06149 g002]

[image: Sensors 23 06149 g003 550]

Figure 3. Flowchart of smart contract search (left), upload (center), and installation on the blockchain network (right).

Figure 3. Flowchart of smart contract search (left), upload (center), and installation on the blockchain network (right).

[image: Sensors 23 06149 g003]

[image: Sensors 23 06149 g004 550]

Figure 4. Sample expression of smart contract tag information.

Figure 4. Sample expression of smart contract tag information.

[image: Sensors 23 06149 g004]

[image: Sensors 23 06149 g005 550]

Figure 5. Upload specification for smart contract metadata.

Figure 5. Upload specification for smart contract metadata.

[image: Sensors 23 06149 g005]

[image: Sensors 23 06149 g006 550]

Figure 6. Upload specification for smart contract implementation data.

Figure 6. Upload specification for smart contract implementation data.

[image: Sensors 23 06149 g006]

[image: Sensors 23 06149 g007 550]

Figure 7. Asset structure of Contract A.

Figure 7. Asset structure of Contract A.

[image: Sensors 23 06149 g007]

[image: Sensors 23 06149 g008 550]

Figure 8. Asset structure of Contract B.

Figure 8. Asset structure of Contract B.

[image: Sensors 23 06149 g008]

[image: Sensors 23 06149 g009 550]

Figure 9. Actual blockchain assets using the asset structure of Contract B.

Figure 9. Actual blockchain assets using the asset structure of Contract B.

[image: Sensors 23 06149 g009]

[image: Sensors 23 06149 g010 550]

Figure 10. Comparison between the asset structure of Contract B and an actual asset.

Figure 10. Comparison between the asset structure of Contract B and an actual asset.

[image: Sensors 23 06149 g010]

[image: Sensors 23 06149 g011 550]

Figure 11. Result of the queryCommittedCC request.

Figure 11. Result of the queryCommittedCC request.

[image: Sensors 23 06149 g011]

[image: Sensors 23 06149 g012 550]

Figure 12. Search results displayed on the dashboard.

Figure 12. Search results displayed on the dashboard.

[image: Sensors 23 06149 g012]

[image: Sensors 23 06149 g013 550]

Figure 13. Uploaded detailed view; transaction results (Left) and smart contract specification (Right).

Figure 13. Uploaded detailed view; transaction results (Left) and smart contract specification (Right).

[image: Sensors 23 06149 g013]

[image: Sensors 23 06149 g014 550]

Figure 14. Smart contract difference comparison check.

Figure 14. Smart contract difference comparison check.

[image: Sensors 23 06149 g014]

[image: Sensors 23 06149 g015 550]

Figure 15. Transaction result comparison (left: riceTransfer, right: milkTransfer).

Figure 15. Transaction result comparison (left: riceTransfer, right: milkTransfer).

[image: Sensors 23 06149 g015]

[image: Sensors 23 06149 g016 550]

Figure 16. Transaction evaluation.

Figure 16. Transaction evaluation.

[image: Sensors 23 06149 g016]

[image: Sensors 23 06149 g017 550]

Figure 17. API, CLI performance test results.

Figure 17. API, CLI performance test results.

[image: Sensors 23 06149 g017]

[image: Sensors 23 06149 g018 550]

Figure 18. Performance evaluation based on average latency.

Figure 18. Performance evaluation based on average latency.

[image: Sensors 23 06149 g018]

[image: Table]

Table 1. Literature review of papers on smart contract.

Table 1. Literature review of papers on smart contract.

	Study
	Main Objective
	Issues
	Future Trends

	Khan et al. [18]
	Smart contract optimization, blockchain environment modeling, smart contract resources etc.
	Resource immutability, system scalability etc.
	Layer2 protocol (network issue), contract management

	Singh et al. [19]
	Smart contract formalization,

smart contract vulnerabilities
	Formal testing, domain-specific languages
	Formal verification of smart contract

	Wang et al. [16]
	Blockchain architecture,

smart contract relationship
	Smart contract management etc.
	Formal verification of smart contract

	Ante et al. [20]
	Classification of technical elements of

blockchain smart contract system
	Smart contract standardization, verification etc.
	Layer2 protocol (network issue),

definition of smart contract, infrastructure

[image: Table]

Table 2. Weight and criteria for determining the smart contract function execution cost.

Table 2. Weight and criteria for determining the smart contract function execution cost.

	
Operation

	
Execution Cost

	
Weight

	
Code length (N lines = Cost 1)

	
1

	
1

	
Control statement

	
if-else

	
1

	
2

	
for

	
while

	
switch

	
Data processing statement

	
stub.GetState

	
1

	
3

[image: Table]

Table 3. Modules and Implemented API.

Table 3. Modules and Implemented API.

	
Existing Module

	
Implemented API

	
Module Name

	
Description

	
Method

	
Feature

	
Lifecycle

	
Perform chaincode operations and manage admin status

	
GET

/fabric/lifecycle/commit

	
Query the committed chaincode definitions

	
Peer

	
Manage CLI and peer versions

	
GET

/fabric/peer

	
Get the current peer binary version

	
Network

	
Manage blockchain network status

	
POST

/fabric/network/up

	
Start Fabric network with existing settings

	
Chaincode

	
Operate chaincode

	
POST

/fabric/chaincode/query

	
Get endorsed result of chaincode function call and print it

	
Repository

	
Manage external modules

	
GET

/fabric/repository/pull

	
Pull changes from SCM

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
"id": "string",
"owner" : "string",
"model": "string",
“color" : "string",
"value": "int32",

media/file4.png
___ Tag and metadata __

information

-

S_Contract1

User i{

S_Contract2

A
1

- -~ Tag, Metadata - - ﬂ
1

User j—

S_Contract3

JSON

Blockchain Environment

— CLI
RESTful
Fabric Blockchain
Broker Network
-Download»[Smart Contracts]
Display Smart Smart Contract
Contracts and Dashboard/Registry

Download with

A

CRUD Smart Contracts, Search

Blockchain User

media/file30.png
Domain change

Transaction Results Transaction Results

"ProductiD": "Product1™ "ProductiD": "Product?t .
*ProductName"” "Kimhae Rice", "ProductName" "pusan milk",
"ProductPrice": 1000, "ProductPrice": 1000,

“Owner": { "ManufacturingDate": "2023-02-20 07:01:51.203109 +0000 UTC",
"UserID": "User1", "Owner": {

*UserName": "selab1”, "UserlD": "User1”,
"UserBalance": 10000 "UserName”": "selab1",
) "UserBalance": 10000
) }

}

Added results due to contract changing

media/file18.png
~/g/s/g/h/fabric-samples/test-network > main !171 7?5 peer chaincode query -C
mychannel -n carB -c '{"Args":["GetAllAssets"]}’

[(“"value":300,"color":2018273,"id":"assetl", "owner":"Tomoko", "model": "Mercedes"
,'ev”:true}, {"value":400,"color":14758942,"id": "asset2","owner":"Brad", "model":

“"Benz","ev":false}, {"value":500,"color":1827873,"id":"asset3","owner":"Jin Soo"
, "model”:"f12","ev":false}, {"value":600,"color":15793920,"id": "asset4", "owner":
"Max","model":"Phantom","ev":false}, {"value":700,"color":262144,"id": "asset5","
owner":"Adriana","model":"Ghost","ev":false}, {"value":800,"color":16776958,"id"
:"asset6"”,"owner":"Michel”, "model"”:"R8","ev":true}]

media/file35.jpg
Performance Evaluation
for Average Basis APl and CLI

c =
S =
2 e =
S a0 =
3 =
o =
20 =
o =
o =
&
o
S
3 BN
& £
& &

Function Category
AP| Jcu

media/file21.jpg
"Approvals": {

"0rgl": true,
"0rg2 true

},

"Details": {
"chaincod "basic",

"channel
""sequence' 5
ftversion®!: 1.0,
"endorsement_plugil Yescc",
"validation_plugin": "vscc"

mychannel",

media/file26.png
Transaction Results Chaincode Description
supply chain
"TransactionID": "Transaction1”, Platform
"OldOwner”: { hyperledger fabric
"UserlD": "User1”,
"UserName": "selab1",
"UserBalance”": 11000

Signature policy

MAJORITY

} Cc languages

"NewOwner": { .

"UserlD": "User2". Language Asset struct Dependencies

"UserName": "selab2", -

"UserBalance": 4000 {

} "NewOwner" : "User"

. v

n * {

Product™: { "0ldOwner" : "User" . , . " :

"Product!D": "Product1”, fabric-contract-api” : "v2.0.0"

"ProductName": "pusan milk", Product” : "Product "fabric-shim" : "v2.0.0"

"ProductPrice": 1000, go "TransactionDate” : trinaifv-det nistic"

"ManufacturingDate": "2023-02-20 07:01:51.203109 +0000 UTC", "string" "Jfog-ls" ringiiy-deterministics
v1l.0.

"Owner": {

"TransactionID" : "string" . _ ,
"UserlD": "User2", sort-keys-recursive" : "v2.1.2"

"UserName": "selab2", "TransactionPrice" : }
"UserBalance": 4000 "int64"

’ }

h

"TransactionPrice": 1000, App languages

"TransactionDate": "2023-02-20 07:02:32.003659 +0000 UTC" Versions

} beta-v0.1.0

media/file27.jpg
= e

media/file3.jpg
Blockehain Environment

‘Tag and metadata

information
scms
S Gonvact [(m)]..
User i i
S Contacz | (1090) |- Tog Meladata
] JSON | Dispay Smart o
User j—{ 5_Contraets L, Conracsand —| p SO

Downioad win

¥

‘GRUD Smart Contacs, Soarch

Blockchain User

media/file22.png
"Approvals": {
1orgl*: true,
"Org2": true

}l

"Details": {
""chaincode": '"basic",
"channel": "mychannel",
"sequence': "1",
“version”: “1.0%,
"endorsement_plugin": "escc",
"validation_plugin": "vscc"

media/file19.jpg
// ContractB

{

“id": “string",
“owner" : “string",
“model": “string",
“color" : “hex",
“value": “int32",
“ev" : "boolean"

// Real
{
"id": "assetl",

“value": 300,
Yev": true

media/file7.jpg
Ilidll: "aqn

“name": "ContractA",

"author": "Authora",

"uploaded": "2021-04-18",
“description®: “...",

“platform": "Hyperledger Fabric",
"signature_policy": "MAJORITY",
“cc_languages": [...],
“app_languages": [...],
"versions": [...]

media/file28.png
rice transfer

- Expand 6 lines ...

7

8

9

10

11

ProductID string "~ json:"ProductID""
ProductName string "~ json:"ProductName""
ProductPrice int64 ~json:"ProductPrice""
Owner User “json:"Owner""

}

- Expand 31 lines ...

45

46

47

48

49

50

51

productCounter++

var product = Product{ProductID: "Product" +

strconv.Itoa(productCounter),

ProductName: args[0], ProductPrice: price,

Owner: user}

productBytes, errMarshal := json.Marshal(product)

B e

milk transfer

7 ProductID string " json:"ProductID""

8 ProductName string " json:"ProductName""

9 ProductPrJ.c':e 1nt?4 json:"ProductPrJ.c.:e _ Added
10 I + ManufacturingDate string "~ json:"ManufacturingDate I pa rt of
11 Owner User “json:"Owner"" struct
e } “Product”
46 productCounter++
47
48 | + txTimeAsPtr, errTx := t.GetTxTimestampChannel (APIstub)

49 | + if errTx != nil {
SO + return shim.Error("Returning error in
Transaction TimeStamp")
51| + } Added
52 + part of
53 var product = Product{ProductID: "Product" + function
strconv.Itoa(productCounter), "Create-
”
DA + ProductName: args[0], ProductPrice: price, Product
Owner: user}
Replaced
i _ part of
as produokBybes, scafavshal i= json.Marshal(produch) ___ | - function
=2 “Create-
Product”

media/file10.png
= (Create Smart-contract

o
ID
= 5 <+— Smart contract
separator
e
ag
Smart Contract Name
milkTransfer <+— Smart contract
name

Author

selab <+— Smart contract

main owner

Description Smart contract
milk transfer contract for the reuse of rice contract function description

Platform Smart contract
hyperledger fabric main target platform

Signature Policy
MAJORITY <+— Smart contract

validation policy

media/file33.jpg
API VS CLI Performance Test Results

200

175

150

125

100

75

50

Operation Time (ms)

25

min avg max
Function Category

—— API - CreateProduct === CLI - CreateProduct
—— API - CreateUser CLI - CreateUser

—— API - OrderProduct CLI - OrderProduct
—— API- QueryAsset CLI - QueryAsset

—— APl - QueryUsers CLI - QueryUsers

—— APl - QueryProducts === CLI - QueryProducts
—— APl - QueryTransactions ==~ CLI - QueryTransactions

media/file32.png
Apache

CLI command
Jmeter

Apache

~

CLI Transaction Latency

s

and
Repeat

\.

Hyperledger
Fabric Network

f

APl request

JmeterJ

Clone '
and
Repeat

Smart Contract)

s

\.

Transaction

Result

(

Broker J

\.

| Transaction

Result

AP| Transaction Latency

media/file14.png
"id": "string",

"owner" :
"model":
"color" :

"value"

"string",
"string",

"string",
: "int32",

media/file11.jpg
®

[#225— Used programming

language

s com 103 SmartContactSiorage

[¢——— Smart contract

source URL

[¢+— Smart contract
asset structure

[e——— Smart contract

dependency tree

©n0

Oropa oo plon, ok o st

© vwsscunws:

[&——— Smart contract
package(Chaincode) file

media/file6.png
Input search keyword onto
dashboard

l

Transfer keyword to broker
through RESTful API

Input smart contract
information onto dashboard

Request smart contract
through dashboard

l

Transfer above smart
contract information
through RESTful API

M=)
—

Transfer above information
to broker through
RESTful API

Create installation
environment required by
broker

Transfer keyword from
broker to smart contract
management system

Convert the information in
broker to tag

l

Transfer tagging information
to smart contract
management system

Y Y
Y)
Y Y

Transfer search results of
smart contract management
system to broker

Request installation onto
blockchain network through
Blockchain Functions

T on)
~— /S S
R N 2 U

)

Install smart contract to
peer within blockchain
network

Transfer search results from
broker to dashboard

® ®

Add tag into search index

D N A R

)
N
Y
Y
—

media/file36.png
Performance Evaluation
for Average Basis APl and CLI

140-]
120-
100-
80-
60+
40+
20

Operation Time (ms)

Function Category
API [] CLl

media/file15.jpg
“id“: l.strmﬂ'
"“owner" : “string",
"model": "string",
"color" : "hex",
"value": "int32",
n vll : llmM'

nav.xhtml

 sensors-23-06149

 		
 sensors-23-06149

media/file16.png
llidll: listrluﬂ’
"owner" : "string“,
"model": “string",
"color" : "hex",
"value": "int32",
llevll . "mlem-

media/file2.png
-

Smart Contract Manager Delivery Manager
Contract Contract Contract Function
Specification || Registration Evaluation Extraction

Class Information Manager

Metadata Function Interface
T TP cpe ie Method
Specification || Specification || Specification Construction

Specification
Tag

Envnronment

Contract
Metadata

Function

\ Contract

[Jiayer [JModule Eﬂ Resource

media/file20.png
// ContractB // Real

{ {
"id": "string", "id": "assetl",
"owner" : "string", “"owner": “"Tomoko",
"model": "string", "model": "Mercedes",
"color" : "hex", “"color": 2018273,
"value": "int32", "value": 300,
"ev" : "boolean" "ev": true

media/file23.jpg
;[
= @“ Smart Contract search field o0\ o0 4 coenre

> vi

(o} ot el @ yperegeraore wodays ago

o ® [r—r— yostrsay

I T [SS
<comparison check ‘smart contract

Difference Uploaded

media/file5.jpg
t ¢+

Input search keyword onto Input smart contract Request smart contract
dashboard information onto dashboard through dashboard
Transter keyword to broker | TFHeT aBove nformation Transfer sbove smart
rdeipiishpdt to broker through contract information
e h RESTful APL through RESTful API
Transfer keyword from Create istallation

Convert the information i
broker to tag

broker to smart contract environment required by

management system broker
Transfer search results of Transfer tagging information) (~ Requestinstallation onto
smart contract management to smart contract blockchain network through
system to broker management system Blockchain Functions

Thstall smart contract to
Add tag into search index peer within blockchain
network

® ®

Transfer search results from
broker to dashboard

®

media/file24.png
Smart-contracts

=_= ?:;nsfer |‘- Smart Contract search field _ o 0 . creare
;.: [J name_author Core Tag Platform Uploaded

O ;i:;‘l;ansler go hyperledger fabric two days ago

D ‘ :\ei:::ranstef go hyperledger fabric yesterday

]

comparison check
Difference

]

smart contract
Uploaded

Rows per page: 10 ¥ 1-NaN of NaN

media/file29.jpg
Transaction Results

Transaction Resuts

¢ <
“ProductiD”: “Product1” “ProductiD": Product
“ProductNam “Productame”. “pusan mik'.
“ProductPrice”. 1000,
“ManufacturingDater: "2023-02.20 07:01:51.203109 40000 UTC".
“Ownor":{
“UserlD": "Usert”,
“UsorName":“solabt",
“UserBalance’: 10000

“Owner:(
“UserlD": Usert"”.
“UserName":*selabl”,
“UserBalancer: 10000
)

)

e 1o contract changing

media/file1.jpg
Smart Contract Manager

Delivery Manager

Contract Contract Contract Function
Specification || Registration || Evaluation Extraction
Class Information Manager
‘ Tag Metadata Function ';‘;:Q’:;‘:
Specification || Specification || Specification ||| | comaretion
‘ Smart ‘ ‘ Contract ‘ ‘Speciﬁcaﬁon ﬁvironment
Contract Metadata Tog Function

[—Jtayer () Module =5 Resource

media/file31.jpg
CUI Transaction Latency

CLI command

APl request —|

Apache Hyperledger Transaction
Jmeter [Clone | Fabric Network Result
L and J
Repeat
Apache ‘Smart Contract Transaction
Jmeter | Clone Broker Result
\ and
Repeat

API Transaction Latency

media/file25.jpg

media/file12.png
angua REMOVE -
1o 4,| 5 IQ— Used programming

language
Main Source Link
https://github.com/jhi8109/SmartContract-Storage! Smart contract
asset_struct SOU rce U R I-
il

"TransactionID" : string "string”
"01dOwner”™ : string "User”
"NewOwner”™ : string "User” _ Smart ContquT
“"Product” : string "Product”
"TransactionPrice” : string "inté64”

asset structure

"TransactionDate”™ : string "string”

}

Dependencies

=
"fabric-contract-api® : string "v2.0.0" Smart contract
“fabric-shim® : string "v2.0.0"
: dependency tree
@® ADD
chaincodes
Drop a file to upload, or click to select it. ¢ Smart contract

package(Chaincode) file

@ transaction.tar.gz

media/file9.jpg
milkTransfor

slab

milk transfar contract fo the reuse of rce contract

hypertedger fabric

MAJORITY.

Smart contract
separator

Smart contract
name

Smart contract
main owner

Smart contract
function description

Smart contract
main target platform

Smart contract

media/file0.png

media/file8.png
n idll . lllll .

“"name": "ContractA",

“"author": "AuthorA",

"uploaded": "2021-04-18",
“description®: "...",

“platform": "Hyperledger Fabric",
"signature_policy": "MAJORITY",
“"cc_languages": [...],
“"app_languages": [...],
“"versions": [...]

media/file34.png
API VS CLI Performance Test Results

200 -

175"

=
Ul
o

125

100 -

N
U

Operation Time (ms)

N
93]

min avg max

Function Category

—— API| - CreateProduct - == CLI - CreateProduct
-~ API| - CreateUser - == CLI - CreateUser
—— API| - OrderProduct - == CLI| - OrderProduct
—— API - QueryAsset === CLI - QueryAsset
—— API| - QueryUsers - == CLI - QueryUsers
—— API - QueryProducts - == CLI - QueryProducts

APl - QueryTransactions === CLI| - QueryTransactions

media/file17.jpg
~/9/5/g/h/fabric-samples /test-network) main 1171 75 peer chaincode query -C
mychannel -n carB ~c '{"Args":[“GetAllAssets"]}"

(("value":300, "color": 2018273, "1d" Hercedes"
Jev"itrue} /{"value" s +"Brad", "model":

