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Abstract: Land cover data are important basic data for earth system science and other fields. Multi-
source remote sensing images have become the main data source for land cover classification. There
are still many uncertainties in the scale effect of image spatial resolution on land cover classification.
Since it is difficult to obtain multiple spatial resolution remote sensing images of the same area at
the same time, the main current method to study the scale effect of land cover classification is to use
the same image resampled to different resolutions, however errors in the resampling process lead to
uncertainty in the accuracy of land cover classification. To study the land cover classification scale
effect of different spatial resolutions of multi-source remote sensing data, we selected 1 m and 4 m of
GF-2, 6 m of SPOT-6, 10 m of Sentinel-2, and 30 m of Landsat-8 multi-sensor data, and explored the
scale effect of image spatial resolution on land cover classification from two aspects of mixed image
element decomposition and spatial heterogeneity. For the study area, we compared the classification
obtained from GF-2, SPOT-6, Sentinel-2, and Landsat-8 images at different spatial resolutions based
on GBDT and RF. The results show that (1) GF-2 and SPOT-6 had the best classification results, and
the optimal scale based on this classification accuracy was 4-6 m; (2) the optimal scale based on linear
decomposition depended on the study area; (3) the optimal scale of land cover was related to spatial
heterogeneity, i.e., the more fragmented and complex was the space, the smaller the scale needed; and
(4) the resampled images were not sensitive to scale and increased the uncertainty of the classification.
These findings have implications for land cover classification and optimal scale selection, scale effects,
and landscape ecology uncertainty studies.

Keywords: land cover; scale effect; uncertainty; spatial heterogeneity

1. Introduction

Remote sensing provides data on a large scale and around the clock for use in various
industries. Land cover classification data obtained by remote sensing are essential data
for studying surface processes and for climate model simulations [1-4]. In recent decades,
with the development of space science and multi-platform remote sensing, multi-sensor
and multi-angle technologies, the spatial resolution, spectral resolution, and temporal
resolution of remote sensing images have been improving. Spatial resolution is one of the
basic characteristics of remote sensing images, and the scale effect in remote sensing is a
key research problem. Woodcock [5] considered that spatial resolution should be similar
to the scale of observation. Multi-source satellite remote sensing images have become the
basic data source for regional, national, and global mapping. Studies have shown that land
cover mapping is influenced by the spatial resolution of remote sensing images, which has
an obvious spatial scale effect [6-8]. The scale effect of the information acquired by remote
sensing is the key to obtaining optimal scale land cover mapping based on the optimal
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resolution for a particular study area. Han et al. [9] used the method of information entropy
to solve the average entropy of category differentiability of image data at each scale and
calculate the optimal scale. They showed that the optimal scale has a relationship with the
spatial distribution characteristics of the features. Treitz [10] used the variance function
to calculate the optimal spatial resolution based on the theory of spatial autocorrelation
analysis of spatial statistics and concluded that the optimal scale was related to the ground
scene and sensor parameters. Dongping Ming et al. [11] proposed an improved local
variance method based on the variable window and variable resolution to determine the
optimal resolution using local variance as a measure. Their results are not applicable to a
large range of complex environments. Feng et al. [12] used a Triangular Prism Method and
Double Blanket Method to determine the resolution of images with three fractal dimensions,
and the results had uncertainties. Ming et al. [13] studied the optimal spatial resolution
of different features in remote sensing images by using the improved method of average
local variance and concluded that variance increases with increasingly complex feature
information. The above studies are based on the optimal spatial resolution calculated
by geostatistical and classical statistical methods, and there is a large uncertainty in the
research conclusions. Research on the scale effect of remote sensing images still lacks clear
conclusions.

Generally speaking, features have inherent scales, and the expression at the inherent
scale is the most realistic representation of the features [1,14]. However, it is difficult
to obtain images with different spatial resolutions from multiple satellites covering the
same area due to weather conditions, cloud cover, sensor performance, satellite transit
times, and other factors, so most current studies of scale effects often use the same image
resampled to obtain data with different spatial resolutions [6,15-22]. However, due to
the existence of spatial heterogeneity, resampling can cause distortion of features and
loss of spectral information, and the resampled images are different from the real satellite
images at a specific spatial scale. Therefore, the results of these studies are still somewhat
questionable [23,24].

Markham and Townshend [25] argued that remote sensing classification accuracy
is mainly influenced by two factors. The first factor is the image elements at the edge
between categories in the classification results, i.e., the hybrid image elements. When
the spatial resolution of the image increases, the number of hybrid image elements at
the edge between different ground feature categories decreases, and the classification
accuracy increases. The second factor is spatial heterogeneity. When the spatial resolution
increases, the variability of spectral features within the same feature category increases,
which causes the inter-category separability to decrease, thus leading to a decrease in
classification accuracy. On the surface, the accuracy effects of spatial resolution variation in
relation to mixed image elements and spatial heterogeneity are contradictory. However,
the variation in classification accuracy ultimately still depends on the relative relationship
between the spatial resolution of the image and the size of the target within the scene.
For larger homogeneous targets, the reduction in spatial resolution only increases the
number of hybrid pixels at the edges but does not cause a change of spectral variability
between pixels within the target, so the classification accuracy is reduced. In contrast,
for targets with large spectral-spatial heterogeneity, the reduction in spatial resolution
increases the number of hybrid pixels at the edges, but the smoothing effect of the reduced
spatial resolution may improve the accuracy of the final classification results, which may
reduce the intra-class spectral variation and increase the distinguishability between classes.
Woodcock and Strahler [5] argued that the net effect of these two conflicting factors is
a function of the environment of the image scene. Therefore, it is necessary to analyze
the effect of spatial resolution variation on land cover classification accuracy based on
multi-source remote sensing data in terms of both mixed image element decomposition
and spatial heterogeneity and to study the optimal scale effect of land cover classification
at different spatial resolutions from multi-source remote sensing data.



Sensors 2023, 23, 6136

30f21

In this study, we selected 1 m and 4 m data from GF-2 satellite, 6 m data from SPOT-6,
10 m data from Sentinel-2, and 30 m data from Landsat-8 OLI to quantitatively investigate
the relationship between land cover classification results and different spatial resolution
from multiple satellite remote sensing data, and explore how the classification accuracy
varies with spatial resolution, and to investigate whether the resampled remote sensing
data have any influence on the scale analysis comparing with real remote image data, and
which scale can most accurately represent the ground truth distribution characteristics of
land cover. The results can provide a reference for selecting the optimal scale for land cover
classification and a basis for scale conversion.

2. Study Area and Data Pre-Processing
2.1. Overview of the Study Area

The Huangshui River is an important first-class tributary of the upper reaches of the
Yellow River, and the Huangshui basin is located in the northeast of Qinghai province,
between 36°02'-37°28' N, 100°42/~103°04' E (Figure 1). The basin area covers 16,120 km?.
The main cities in the basin include Xining City and Haidong City, the main population-
gathering areas in Qinghai province. The land cover is greatly affected by human activities,
with diverse feature types and fragmented feature patches. Xining is the capital city, as
well as the political, economic, transportation, and cultural center of Qinghai province. Its
administrative area includes four districts and three counties (Huangyuan County, Datong
County, and Huanzhong County). Haidong City includes two municipal districts (Ledu
District and Pingan District), as well as Minhe Hui and Tu Mutual Autonomous County.
The topography of the whole watershed is undulating and diverse, dominated by hills and
medium-high mountains. Two typical areas in two important cities in the Huangshui basin
were selected for our study. One area is located in Duoba New Area of Xining, which is a
key development and construction area of Xining with a complex topography and typical
land cover type; and another area is located in the Ping’an District of Haidong, which is
an important transportation hub of the Qinghai-Tibet Plateau and the main foreign port
of Qinghai Province. Xining Caojiabao International Airport is located in this area. The
topography is relatively flat, and the land cover type is typical.
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Figure 1. Location map of the study area.



Sensors 2023, 23, 6136

4 0f 21

2.2. Data Sources

The satellite images used in this study are from Chinese GF-2, French SPOT-6, ESA
Sentinel-2, and U.S. Landsat-8. Among them, GF-2 is the first batch of satellites launched
by the major project of China’s high-resolution earth observation system. It is the civil
remote sensing satellite with the highest spatial resolution and the largest observation
width developed by China. It is equipped with two high-resolution 1 m panchromatic
and 4 m multi-spectral cameras. SPOT-6 was successfully launched by the French Space
Center on 22 September 2012. It has an orbital altitude of 695 km and a spatial resolution
of 6 m. It records images in multi-spectral blue, green, red, and near-infrared bands and
1.5 m panchromatic bands with a standard image coverage of 60 km x 60 km. Sentinel-2A
is the second satellite of the European Space Agency of the European Union’s Copernicus
Earth Observation Program. It was launched on 23 June 2015 for the Global Monitoring
for Environment and Security program. Sentinel-2A carries a multi-spectral imager with
13 spectral bands, a strip width of 290 km, and a revisit period of 10 days. Landsat-8 is a U.S.
Landsat program that was successfully launched on 11 February 2013. Landsat-8 carries the
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI Land Imager includes
nine bands with a spatial resolution of 30 m. The satellite sensors and their parameters are
listed in Table 1 below.

Table 1. Satellite sensors and their parameters.

. Spatical g
Satellite Sensor Country Resolution (m) Wave Band Wavelength Coverage (um)  Acquisition Data
. 0.45~0.52/0.52~0.59
GF2 China L 0.63~0.69/0.77~0.89 21 July 2017

0.455~0.525/0.530~0.590
SPOT-6 France 6 Refﬁ;&fﬁ?gred 0.625~0.695,/0.760~0.890 19 July 2017
. ’ 0.440~0.538/0.537~0.582
Sentinel-2A ESA 10 (R, G, B, NIR) 0.646~0.684/0.760~0.890 27 July 2017
Landsat-8 America 30 0450-0.515/0.525~0.600 11 September 2017

0.630~0.680/0.845~0.885

3. Research Methodology

The flow chart in Figure 2 shows the mapping and analysis methods applied in this
study. Land use/cover classification and analysis of scale effects are the main steps involved.
The following sections describe the analysis scheme and several relevant steps in this study
in detail.

3.1. Ensemble Classification Methods

Ensemble learning (EL) classification methods based on multiple classifiers have been
shown to be some of the most effective methods for remote sensing image classification [26-28].
EL trains various base classifiers separately and then combines them with related combina-
tion methods (e.g., bagging, augmentation, or voting) to produce the final classification
results. Bagging ensemble methods use the same training algorithm to train several subsets,
and each classifier randomly selects the training data, which means that different subsets of
the same sample can be selected [29]. Then, the output of each classifier is used for voting
decisions. The random forest (RF) algorithm is based on the bagging ensemble method,
with a small adjustment so that the correlation between individual trees is reduced [30].
The Boosting ensemble method is an improvement on RE. The classification principle is to
iteratively train a series of weak classifiers. Higher weighted attention is used to correctly
classify in the next learning round, and the final result is determined by the maximum
number of votes classified by the weak classifier [31]. The gradient boosting decision tree
(GBDT), an algorithm among boosting ensemble methods, has been proved to be one of the
most effective algorithms. It is known for its excellent performance, and recent results in
many research areas have shown that it outperforms various other classifiers [32-34]. In
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this paper, we study the application of the EL method to investigate the spatially optimal

scale of land cover.
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Figure 2. Flow chart map of land cover mapping and analysis methods.

3.1.1. RF

RF belongs to the classification and prediction method that integrates a set of classifi-
cation and regression tree (CART) decision trees. RF is the most representative bagging
ensemble learning algorithm that combines bagging ensemble learning and random sub-
space methods to reduce overfitting [35]. In the classification process, data sets with
different subsamples are randomly selected. Several decision trees are trained using dif-
ferent feature subsamples, and the results of the subsample decision trees are voted on to
output the final classification results. RF input data does not require magnitude processing
and can automatically handle missing values. It is one of the most commonly used machine

learning algorithms.
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3.1.2. GBDT

GBDT is a Boosting ensemble machine learning method that combines multiple de-
cision trees. GBDT is a residual model in the direction of gradient descent. It is based
on the process of upgrading weak classifiers to strong classifiers. Each iteration reduces
the residuals of the last iteration and constantly adjusts the weights of misclassified sam-
ples to improve the accuracy of classification. GBDT can fit the true distribution of data
and has a strong generalization ability. GBDT has good overall performance due to the
complementary strengths of the weak classifiers [36,37].

3.2. Linear Decomposition Method

The lower the spatial resolution of an image, the higher the probability that an image
element contains two or more features. In ensemble learning classification, the mixed image
elements are assigned to the category with the highest probability. If each hybrid image
element can be decomposed and the percentage of overlay-type components to the image
element can be solved, the uncertainty of classification results can be quantified, resulting
in multiple hybrid image element decomposition models. The same idea can be used to
calculate the percentage of various features in an image element for the classified results
of low-resolution images, and the classification uncertainty of low-resolution images can
be evaluated.

The principle of the hybrid image decomposition model is to decompose each hybrid
image element and solve for the percentage of the overlay-type components in the decom-
posed image elements. The hybrid image decomposition model allows the uncertainty
of classification results to be quantified. For the classified results, the same method can
be used to evaluate the classification uncertainty of low-resolution images by calculating
the percentage of each feature type in each image element of the low-resolution image
classification results.

In this study, the area corresponding to the image element size of 1 m x 1 m after
the fusion of 1 m panchromatic and 4 m multi-spectral images of GF-2 image is used as
a sliding window. The land cover types contained in each window and the percentage
of each type are counted on the classification results of 4 m of GF-2, 6 m of SPOT-6, 10 m
of Sentinel-2, and 30 m of Landsat-8, respectively. The classification results of GF-2-4 m,
SPOT-6, Sentinel-2, and Landsat-8 are only one category of cultivated land, forest land,
grassland, water, built-up land, and bare land, while the GF-2 classification results of 1 m
after fusion are a linear combination of each category expressed as:

a1 X Ceultivateland & 82 X Cforestland + A3 X Cglassland + A4 X Cupaterland A5 X Chyilt—upland + 6 X Chareland = 1 1)

where ay + a; +az + ay + as + ag = 1 and aq, ay, az, ag, as, a¢ € [0,1]

where 4, is the classification results of different scale images (4 m of GF-2, 6 m of SPOT-6,
10 m of Sentinel-2, and 30 m of Landsat-8) correspond to the percentage of each land
cover type in GF-2 classification results of 1 m, Ccultivateland, € forestlands Cglasslands Cwaterlands
Chuilt—uplands Cbareland Tepresent the land cover types: cultivated land, forest land, grassland,
water, built-up land, and bareland, respectively. The value of c is 1 or 0. If there is one of
the six land cover types, c is 1; if there is no one of the six land cover types, c is 0.

3.3. Spatial Heterogeneity Method

Spatial heterogeneity refers to the heterogeneity and complexity of the spatial distri-
bution of ecological processes and patterns [38]. Spatial heterogeneity can generally be
understood as the sum of spatial patchiness and gradient. Spatial pattern, heterogeneity,
and patchiness are characteristics dependent on scale. We can define landscape indices
to quantitatively describe landscape characteristics, landscape pattern information, and
spatial heterogeneity, reflecting the structural composition characteristics and spatial config-
uration relationships of the landscape [39]. To analyze the spatial heterogeneity of different
study areas, five landscape indices, namely area-weighted mean patch area (AREA_AM),
largest patch index (LPI), aggregation index (Al), splitting index (SPLIT), landscape shape
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index (LSI), were selected at the landscape level in terms of area, shape, aggregation, and
distribution.

AREA_AM is the area-weighted average patch area, calculated by the following
formula:

AREA_AM == )

Y. wjj
i=1

where 4;; represents the area of a patch of a landscape element, w;; is the weight size.
LPI is the proportion of the largest patch in a patch type occupying the entire landscape
area, in the range 0 < LPI < 100, calculated by the following formula:

axaij

LPIm
A

x 100% 3)

where a;; represents the area of a patch of a landscape element, and A is the total area of all
landscapes.

Al is the aggregation index, which reflects the spatial configuration characteristics of
landscape elements. The smaller A, the higher the dispersion of the landscape. Conversely,
the lower the dispersion of the landscape, the calculation formula is as follows:

Al = 8 % 100% )
maxgj;
where g;; is the number of adjacencies between different plaque types.

SPLIT is the landscape separation degree, which refers to the separation degree of in-
dividual distribution of different numbers of patches in a certain landscape type, calculated
as follows:

Dij 0
SPLIT = — x 100% 5)
where Dj; is the distance index of landscape type, A;; is the area index of landscape type.

LSI is the landscape shape index, reflecting the complexity of the overall landscape
shape. The closer LSI is to 1, the simpler the overall landscape shape. The larger LSI is, the
more complex. The calculation formula is as follows:

Lsr = 228 ©)

VA

where E is the total length of all patch boundaries in the landscape, A is the total area of
the landscape.

4. Results and Analysis
4.1. Classification Results and Accuracy Analysis

In our study, the classification input features are 1 m and 4 m for GF-2, 6 m for SPOT-6,
10 m for Sentinel-2, and 30 m for Landsat-8 in the red, green, blue, and near-infrared bands,
respectively. The classification samples are actual land cover type samples acquired by
handheld GPS in the field, of which 80% are training samples, and 20% are validation
samples. The classification parameters are set the same for different resolutions in the same
classification method. In order to reduce the influence of other factors, the scale effects of
the classification results are explored with the same inputs, the same samples, and the same
parameter settings.

The classification results based on RF and GBDT, two ensemble methods to classify
land cover in two respective study areas, are shown in Figures 3 and 4. The classification
results were evaluated using the producer’s accuracy, user’s accuracy, fl-score, overall
accuracy, and Kappa coefficient, as shown in Figures 5-7 and Table 2.
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Figure 3. RF and GBDT land cover classification maps for Region A.
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Table 2. Classification of overall accuracy and Kappa coefficient of the two classification methods.

Region Satellite RF GBDT
Sensor OA (%) Kappa OA (%) Kappa

GF-2 (1 m) 88.03 0.85 88.43 0.86

GF-2 (4 m) 89.50 0.87 90.29 0.88

A SPOT-6 91.56 0.89 92.19 0.90
Sentinel-2A 89.73 0.87 91.85 0.89

Landsat-8 84.54 0.80 87.01 0.84

GF-2 (1 m) 86.53 0.83 88.83 0.86

GF-2 (4 m) 91.01 0.89 92.81 0.91

B SPOT-6 90.57 0.90 92.05 0.90
Sentinel-2A 91.17 0.89 90.39 0.88

Landsat-8 85.57 0.82 86.96 0.83

The comprehensive analysis of the classification results of the five different spatial
resolution images shows that higher spatial resolution of the images allows for better
extraction features with smaller areas or sizes. For instance, small features such as reservoir
pits are difficult to be extracted on images of 10 m and 30 m resolution but can be extracted
on high-resolution images such as 1m and 4 m images of GF-2. Cultivated land is extracted
more completely and clearly outlined on mesoscale 6 m and 10 m images, while the area
of cultivated land extracted on 30 m upper images is large. The classification results are
better for the small-scale resolution of feature types with larger areas and single features;
for instance, grassland is better classified on 10 m and 30 m images with less pepper and
better consistency.

It can be seen from Table 2 that the spatial resolution of the images largely affects
the classification results of the images. For the five resolution images included in this
study, the overall accuracy exceeds 84.54%. As a whole, the classification accuracy is
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consistent with related studies [40,41]. The effect of different classification methods on
the same spatial resolution is not very significant. The classification accuracy varies by
about 6% with a change of spatial resolution from 1-30 m, while the accuracy of different
classification methods of the same resolution varies by about 1%, indicating that land cover
classification accuracy is closely related to the spatial resolution of remote sensing images.
The classification accuracy of GBDT is higher than that of RF, which indicates that the effect
of boosting ensemble classification is better than that of bagging ensemble classification.
The classification accuracy of the two ensemble classification methods was the highest at
the spatial resolution of 4 m and 6 m and decreased when the image resolution exceeded or
was smaller than 4 m. In terms of classification accuracy analyses, the optimal spatial scale
of land cover for both study areas is 4-6 m, which is consistent with related studies [11,42].

The overall producer’s accuracy of GBDT is higher than that of RF. Among them,
the average producer’s accuracy of GF-2 (4 m) in Region A was the highest; the average
producer’s accuracy of SPOT-6 and Sentinel-2 was higher in Region B (Figure 5). The
producer’s accuracy of water area is generally higher, and the producer’s accuracy of bare
land is generally lower. The extreme differences between the maximum and minimum
values of the producer’s accuracies of different land cover types on Sentinel-2 are larger,
specifically: the extreme differences are larger in Region A than in Region B. This indicates
that the distribution of the producer’s accuracies of different land cover types in Region B
is more concentrated than that in Region A, and the uncertainties of different feature types
in Region A are higher.

The user’s accuracy of GBDT is generally higher than that of RE. Among them, the
average user’s accuracy of GF-2 (4 m) in Region A is the highest; the average user’s accuracy
of SPOT-6 and Sentinel-2 is higher in Region B (Figure 6). The user’s accuracy of forest
land in Region A is generally higher; the user’s accuracy of unutilized land in Region B is
lower. The larger extreme difference between Region A and Region B indicates that the
distribution of user accuracy for different land cover types in Region B is more concentrated
than that in Region A. The uncertainty of different feature types in Region A is higher.

The fl-score is the average of producer accuracy and user accuracy. The average
f1-score accuracy of GF-2 (4 m) in Region A is the highest; the average f1-score accuracy
of SPOT-6 and Sentinel-2 is higher in Region B; the fl-score of Landsat-8 is lower in both
areas (Figure 7). Based on the classification accuracy, it can be concluded that the spatial
resolution dependence of the watershed on the image is low, while the dependence on
woodland and cropland is high. The accuracy of GF-2 (4 m) is better in Region A, and
the accuracy of SPOT-6 and Sentinel-2 is better in Region B. Therefore, the uncertainty
of Region A is higher than that of Region B, and the optimal scale accuracy of Region B
corresponds to a lower spatial resolution than the optimal scale accuracy of Region A.

4.2. Optimal Scale Analysis Based on Linear Decomposition

Based on the linear decomposition method, the 1 m classification results of GF-2 fusion
were used as a reference for Landsat-8, Sentinel-2, and SPOT-6 classification results. The
fitted equations and related parameters were established using the curve fitting method
and are summarized in Table 3. The coefficients of determination are greater than 0.85
(p < 0.01) in both study areas. The fitted curves are shown in Figure 8.

Table 3. Fitting model and related parameters.

Region Fitting Equation R? p

A y = 0.4397 +0.5906 x 1073 x x — 0.6393 x 10~% x x? 0.911 0.002
B y = 0.5088 + 7.5814 x 1073 x x — 0.2888 x 1073 x x? 0.877 0.005
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Figure 8. Upper scale fit of Region A and Region B.

The scale effect of the fitted curves based on the linear decomposition method in
Region A and Region B shows that the mean value of the decomposition tends to increase
and then decrease as the scale increases (Figure 8). The optimal classification scale of Region
Ais 5 m, and the optimal scale of Region B is 13 m. The optimal scale of decomposition is
different for different study areas, mainly because of the different distribution patterns of
topographic and geomorphological complexity and land cover types in the two areas, and
therefore the spatial heterogeneity is different. Region A has a more complex topography
and more fragmented patches. Region B is located in Xining Caojiabao Airport, with
relatively flat topography and regular feature patches, boundaries, and shapes. Therefore,
the optimal land cover scale of Region B is larger than that of Region A. That is, the spatial
resolution of remote sensing images used for the classification of Region B is larger than
that of Region A.

To compare the scale effect of image resampling on land cover, resampling was per-
formed based on the same scene image. To compare data sources and maintain maximum
spectral information, the sampling method chosen used the nearest neighbor sampling
method with the least information loss. This has less impact on the amount of image
information and is especially suitable for resampling before classification [43]. Therefore,
the GF-1 fused 1 m image was resampled into 4, 6, 10, and 30 m by the nearest neighbor
sampling method. The results of the linear decomposition based on resampling are shown
in Figure 9.
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Figure 9. Linear decomposition after resampling on Region A and Region B.

It can be seen that the linear decomposition result based on the classification after
resampling is not sensitive to the scale (Figure 9). The linear decomposition gradually
decreases as the scale rises. The linear decomposition value and scale of the classification
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after resampling do not show a trend of first increasing and then decreasing, probably
because resampling introduces errors.

4.3. Spatial Heterogeneity Analysis

Land cover classification of remote sensing images is mainly influenced by two factors:
mixed image elements and spatial heterogeneity. Mixed image element decomposition
shows that the choice of the optimal scale for land cover classification is related to the study
area. The more complex the study area, the higher the resolution or the larger the scale of
the image for classification. To analyze the spatial heterogeneity of different study areas,
five landscape indices, namely AREA_AM, LPI, Al, SPLIT, and LSI, were selected from
the aspects of the area, shape, aggregation, and distribution at the landscape level. The
landscape indices values were calculated based on the landscape pattern analysis software
Fragstats4.2. The calculation results in two areas based on two classification methods are
shown in Table 4.

Table 4. Landscape index values based on RF and GBDT in Region A and Region B.

Region Satellite RF GBDT
Sensor AREA_AM LPI Al SPLIT LSI AREA_AM LPI Al SPLIT LSI

GF-2 (1 m) 361.93 12.39 88.03 23.47 552.93 331.02 11.64 81.82 25.66 839.41

GF-2 (4 m) 605.55 12.30 81.13 30.32 321.02 599.21 12.06 77.11 30.63 388.99

A SPOT-6 693.96 10.93 84.47 26.50 176.83 761.20 12.36 79.38 24.15 234.33
Sentinel-2A 1488.94 16.36 83.58 12.33 112.55 1012.56 12.61 76.69 18.13 159.15
Landsat-8 951.74 17.39 64.86 19.28 80.50 694.40 9.27 62.58 26.42 85.63

GF-2 (1 m) 533.92 15.88 89.60 13.86 534.97 531.19 15.92 83.43 13.93 713.88

GF-2 (4 m) 1352.46 22.29 89.78 9.41 145.59 1412.41 23.34 86.78 9.01 187.78

B SPOT-6 1421.05 24.66 87.88 8.96 115.28 1626.08 23.48 83.92 9.34 152.53
Sentinel-2A 1660.92 27.40 85.12 7.67 85.21 1586.00 26.46 80.11 8.03 113.43
Landsat-8 1401.22 23.92 75.64 9.09 47.02 1314.06 23.48 72.47 9.50 52.94

From the above tables, the average patch area of Region B is larger than that of
Region A. The maximum patch area of Region B is twice as large as that of Region A.
The proportion of the largest patches to the landscape area in Region B is larger than that
in Region A, the aggregation is better, and the shape is more regular. Region A is more
spatially heterogeneous than Region B. Therefore, the classification of land cover types in
Region B corresponds to a larger scale, consistent with the results of linear decomposition.

According to our results, the optimal classification result is not necessarily the optimal
land cover scale. The classification results are the expression of macroscopic feature
patterns, and factors such as shape, patchiness, and aggregation separability associated
with feature characteristics determine the optimal scale of land cover. The more fragmented
and complex the features are, the smaller the optimal land cover scale needs to be to finely
represent the feature distribution.

5. Discussion
5.1. Discussion of Classification Methods

RF and GBDT are the most popular bagging and boosting ensemble methods based on
decision trees. In our study, the GBDT model outperforms the RF model due to the different
ensemble of trees in the ensemble methods. RF uses bagging (bootstrap resampling)
method to construct different training sets and determines the final classification result
using the maximum number of votes for the results of different datasets. GBDT uses
gradient boosting to create a tree based on the residuals of the previously created tree. Both
RF and GBDT have advantages, such as dealing with nonlinearities and limiting overfitting.
Dietterich [44] compared bagging and boosting ensembles and found that the noise in
the boosting dataset is less than that in the bagging dataset, which means that boosting
is sensitive to the noise in the data. The signal-to-noise ratios of data at different scales
are different, but in this study, RF and GBDT are better in GF-2, SPOT-6, Sentinel-2, and
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Landsat-8 classifications. The ensemble classifier has complementary advantages over a
single classifier and can improve classification accuracy, in accordance with Feng et al. [45].

Yang et al. [46] used three methods, ISODATA, MLC, and SVM,, to classify land cover
in the Poyang Lake region, a region with strong spatial heterogeneity during the dry period.
Their results indicate that different land cover classification methods may lead to different
classification results for the same remote sensing data. In the same geographical area, the
classification results may be different when using the same classification methods for land
cover classification of remote sensing data with different resolutions. Even if the same
classification method is used to classify land cover data with different resolutions in the
same geographical area, the classification results may be different. By contrast, in our study,
the classification results from RF and GBDT show more consistent results on different
remote sensing data, and both SPOT-6 and GF-2 (4 m) have higher classification accuracy
in two different areas. Therefore, the advantages of the ensemble method are better for
multi-scale data usability.

5.2. Uncertainty Analysis of Classification

Determining the optimal classification system is the premise and foundation of land
cover classification. A suitable classification system should consider both the actual situa-
tion of the study area and the spectral and spatial resolution of image data. At present, the
national land use/cover classification system for remote sensing monitoring gives six major
categories: cultivated land, forest land, grassland, water area, urban and rural industrial
and mining residential construction land, and bare land. Our study areas are located in
a high altitude, hilly, middle, and high mountainous terrain area and consider only six
major categories of land cover classification. A more detailed classification may cause more
complicated linear decomposition and spatial heterogeneity. Therefore, the conclusions
drawn in this paper are applicable to the six major categories of land cover classification,
and more detailed land classification may require further study.

From the analysis of classification accuracy after resampling, the overall classification
accuracy of real images with different resolutions and the f1-score of each category after
resampling in study Region A and Region B are shown in Figure 10. From the figure, it
can be seen that the overall classification accuracy and consistency between each category
are not very good. The consistency in study Region B is better than that in study Region A.
The greater the regional heterogeneity, the greater the effect on the images after resampling.
Combining the analysis of Region A and Region B, the consistency was higher on urban
and rural industrial and mining residential construction land and forest land, and the
uncertainty was larger in other categories, which is basically similar to the findings of Xu
et al. [47]. It further indicates that resampling increases the uncertainty of the classification.

A-RF Overall accuracy
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I ‘
/82
0
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Figure 10. Cont.
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Figure 10. Scale fit after resampling in regions A and B.

5.3. Uncertainty Analysis Based on Linear Model

The statistics of feature categories in Region A and Region B for the two ensemble
learning classification methods are shown in Figures 11-14. The table refers to the mean
and standard deviation of the image elements of each category on the SPOT-6, Sentinel-2,
and Landsat-8 classification images. This is similar to the misclassification cost (MCC)
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introduced by Defries et al. [48] for land cover classification accuracy evaluation, where the
degree of misclassification is different between categories.

According to the statistical results of regions A and B based on the linear decomposi-
tion method, it can be seen that with the decrease in spatial resolution, the mean results of
different ground object types decrease, indicating that the decrease in spatial resolution
increases the number of mixed pixels, the spatial heterogeneity, and the spatial uncertainty.

cultivated land

forest land

glassland
= 0. 5000

water | (), 4579

I~ 0. 4000

built-up land
0. 3000

bareland

0. 2000

average value 0. 4490 0. 4361 0. 4000

4 6 10 30

Figure 11. Class mean statistics of classification results at different scales for Region A.
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water | (. 3520 0. 3546 0. 3852 0. 3034

built_up o - 0' 3240 0' 3166 -

bareland 0.3178 0. 3526 0. 3543 0. 3200

= 0.3000
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deviation

4 6 10 30

Figure 12. Category standard deviation statistics of classification results at different scales for
Region A.
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Figure 13. Class mean statistics of classification results at different scales for Region B.
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Figure 14. Category standard deviation statistics of classification results at different scales for
Region B.

In the two study areas, the proportions of cropland, grassland, urban and rural
industrial and mining residential construction land, and bare land are larger, and their
consistency of classification results on SPOT-6, Sentinel-2, and Landsat-8 images is higher.
There is less uncertainty in the attribution of image categories for these four features. The
mean value of water is lower because the areas under water are smaller and distributed in
strips, corresponding to a smaller scale. The mean value of GF-2 (4 m) is the largest in both
study areas, 0.5957 and 0.6945, indicating 40% uncertainty in Region A and 30% uncertainty
in Region B. The mean standard deviation is around 0.3, indicating fewer fluctuations and
more reliable mean decomposition.
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6. Conclusions

In this paper, we explored the scale effect of land cover classification from mixed
image element decomposition and spatial heterogeneity using multi-source and multi-scale
satellite remote sensing data and came to the following conclusions:

(1) GF-2, SPOT-6, Sentinel-2, and Landsat-8 images with different spatial resolutions
based on GBDT and RF were used for classification studies, and GF-2 and SPOT-6
had the best classification results. Therefore, the optimal scale based on classification
accuracy is 4—6 m.

(2) The optimal scale based on linear decomposition is related to the study area, and the
optimal scale is different for different study areas.

(3) The optimal scale of land cover classification is related to spatial heterogeneity. The
more fragmented and complex the space, the smaller the scale needed.

(4) Images based on resampling do not reflect the characteristics of the actual scale images
well, are insensitive to scale effects and increase the uncertainty of the classification.

(5) The best classification result is not necessarily the optimal land cover scale. The
classification result is only a representation of the macroscopic feature pattern. Fac-
tors such as shape, patchiness, and aggregation separability associated with feature
characteristics determine the optimal land cover scale.
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