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Abstract: Delay tolerant networks (DTNs), are characterized by their difficulty in establishing end-to-
end paths and and large message propagation delays. To control network overhead costs, reduce
message delays, and improve delivery rates in DTNs, it is essential to not only delete messages that
have reached their destination but also to more precisely determine appropriate relay nodes. Based
on the above goals, this paper constructs a multi-copy relay node selection router algorithm based
on Q-lambda reinforcement learning with reference to the idea of community division (QLCR). In
community division, if a node has the highestdegree, it is considered the core node, and nodes with
similar interests and structural properties are divided into a community. Node degree refers to the
number of nodes associated with the node, indicating its importance in the network. Structural
similarity determines the distance between nodes. The selection of relay nodes considers node degree,
interests, and structural similarity. The Q-lambda reinforcement learning algorithm enables each node
to learn from the entire network, setting corresponding reward values based on encountered nodes
meeting the specified conditions. Through iterative processes, the node with the most cumulative
reward value is chosen as the final relay node. Experimental results demonstrate that the proposed
algorithm achieves a high delivery rate while maintaining low network overhead and delay.

Keywords: Q-lambda algorithm; community division; relay node; structural similarity; node degree;
interests

1. Introduction

Since the concept of the DTN (Delay Tolerant Network) was introduced, its application
fields have continuously expanded with the deepening of research; these include traffic net-
works [1], remote area networks [2–4], earthquake emergency rescue networks [5], battlefield
networks [6], etc. These networks can facilitate data transmission in harsh communication
environments.

The main research areas in DTNs include DTN architecture [7], routing design [8],
congestion control [9], security mechanisms [10], mobility models [11], and simulation
platforms [12]. Despite significant changes in the connotation and denotation of DTNs, their
core essence remains unchanged: all nodes in the network utilize opportunistic encounters
for message transmission. Routing design is a hot research topic, as a well-performing
routing algorithm can deliver messages to the destination node in a short time with minimal
overhead. Designing an efficient routing algorithm is a key and challenging problem in
DTN [13].

In Delay tolerant networks, no reliable links exist between source and destination nodes,
and message transmission relies on node mobility [14]. Consequently, routing protocols play
a crucial role in network performance. DTN architecture differs significantly from TCP/IP,
forming a network structure with “store-carry-forward” characteristics [15]. However,
node size and weight are generally small, limiting their storage space and communication
capabilities, and thus constraining the energy efficiency of applications.
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Moreover, network topology changes continuously due to node mobility, resulting in
varying numbers of nodes encountered within communication ranges. Flooding or message
copying for message transmission consumes significant network resources, potentially
causing network congestion. One solution to overcome this limitation is to more precisely
identify corresponding relay nodes within encountered nodes and deliver messages in a
timely manner.

Nodes in DTNs typically refer to people and various mobile devices, with most
mobile devices carried by people, making the network predominantly human-based. Node
mobility enables interaction among people, forming social relations. In contrast to the rapid
changes in node movement speed and network topology, social relationships between
nodes are relatively stable, interdependent, and rule-based [16]. Stable social relationships
form social networks, where people with similar social behaviors create various community
structures. Individuals within the same community structure are closely connected, often
sharing similar interests, hobbies, and behavioral characteristics [17].

DTNs are characterized by unreliable and unstable connections, where nodes may
experience long periods of unreachability, high latency, or unpredictable link disruptions.
This scenario is similar to a wireless sensor network [18]. The selection of relay nodes can
help improve network connectivity and ensure that messages can be delivered through
multi-hop paths, thereby increasing the success rate of message delivery. In DTNs, due to
the instability of network topology and the unreliability of information, it is not possible to
accurately obtain complete network topology and real-time routing information. Therefore,
relay node selection can make routing decisions based on the current network conditions and
local information, enabling effective routing selection. Nodes in DTNs typically have limited
resources such as storage space, bandwidth, and energy. By selecting appropriate relay
nodes, network resources can be efficiently utilized, avoiding resource wastage and energy
consumption, thereby improving overall network performance and efficiency. Message
delivery in DTNs often requires multiple relays to reach the destination, so the selection of
relay nodes directly affects the efficiency and delay of message delivery. Choosing suitable
relay nodes can shorten the message delivery path and reduce transmission delays, thereby
enhancing message delivery efficiency. In conclusion, relay node selection is of significant
importance in DTNs as it improves network connectivity, enables effective routing selection,
optimizes resource utilization and efficiency, and enhances message delivery efficiency.
These factors are crucial for achieving reliable communication in unreliable and high-latency
environments.

In this paper, we propose a DTN routing algorithm based on Q-Lambda reinforcement
learning inspired by community division. The Q-Lambda algorithm is used to determine
the most suitable relay node for message delivery. Additionally, when nodes encounter
each other, they promptly delete successfully delivered messages to save cache space.
Experimental results indicate that our method outperforms traditional approaches.

2. Related Work

The purpose of employing the concept of community division to identify the optimal
relay node is to facilitate timely message transfer, thereby reducing network overhead and
congestion probability [19]. This approach increases the possibility of successful delivery,
achieving a higher message delivery rate than traditional routing algorithms. The Epidemic
Router (ER) algorithm utilizes a flooding method for information transmission, maximizing
the success rate of information transmission and minimizing transmission delay [20]. How-
ever, the excessive number of messages in the network can consume substantial network
resources [21]. To reduce the number of messages in the network, researchers have proposed
routing algorithms that limit the number of message copies, such as Spray And Wait (SAW)
and Prophet Router (PR) algorithms. These classic DTN routing algorithms each have their
own strengths and can be selected according to specific needs in various environments. In
order to avoid blindly forwarding messages to relay nodes, a hybrid of message delivery
probability algorithm (HPR) is proposed in paper [22], which adopts the transmission prob-
ability value of nodes as the basis for forwarding messages. Consequently, messages are
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consistently forwarded in the direction of increasing delivery probability values, helping to
reduce overhead.

Since the social relationships between nodes are stable, interdependent, and follow
certain rules, we propose a method to determine whether a node is suitable as a relay node
according to the degree of interest of each node in different regions, the structural similarity
of nodes, and the degree of nodes. Combined with the Q-Lambda reinforcement learning
algorithm, the optimal relay node selection problem is addressed.

Regardless of whether it is a traditional community division algorithm or a newly
proposed one, the ultimate purpose of community division is to group nodes with the same
interests and hobbies, as well as those with close connections and similar behavioral charac-
teristics, into the same community [23–28]. The community division algorithm proposed
by Niu Dongdong et al. designates the high node degree as the core node of a community
and then divides the remaining nodes into corresponding communities through a similarity
algorithm [29]. The greater the structural similarity of nodes, the higher the probability they
are in the same community, further proving that the relationship between them is stronger.
Community division research can help us better understand complex network relationships.

Since each node maintains a queue with a level of intimacy, it consumes more resources
and increases network overhead. To address this issue, we promptly delete messages that
have reached their destination nodes.

In recent years, DTN routing improvement algorithms have emerged one after another;
with the continuous development of machine learning technology, more possibilities have
been brought to the routing algorithm design of delay tolerant networks [30–34]. In 2013,
Rolla et al. proposed using a multi-agent reinforcement learning algorithm to solve the
message forwarding problem, employing a multi-agent Q-learning algorithm to forward
message copy knowledge to generate the optimal reward node calculated by the distance
function between nodes [35]. Its reward value is related to the distance between nodes.
Utilizing the maximum expected reward value as the best next hop, message forwarding
strategy selection and Q table update are conducted simultaneously. However, this approach
can easily overestimate the reward value of nodes. Q-learning is intended to converge
to an optimal policy by iteratively updating Q values based on a given reward signal.
However, convergence is not guaranteed, and the learning process can be sensitive to
initial conditions and parameter settings. In some cases, Q-learning may become stuck in
suboptimal solutions or exhibit unstable learning behavior. Therefore, this paper introduces
the Q-Lambda algorithm, a classical Q-learning method based on discrete Markov decision
processes, combined with a homeostatic division method for multi-step returns and trace
extraction algorithm, to address the shortcomings of reinforcement learning algorithms with
poor local ability to find the best next hop. We have provided a brief introduction to the
algorithms mentioned above in Table 1.

Table 1. A brief overview of algorithms involved.

Algorithm Involved Main Feature

ER Utilizes a flooding method for information transmission.

SAW Low transmission delay, close to optimal.

PR
Introduces a predictive delivery probability function and uses the
probability value as the selection condition for relay nodes.

HPR HPR algorithm does not select relay nodes, but serves as a
comparison to the algorithm proposed in this article.

QLCR
Refers to the concept of community division to determine
appropriate relay nodes.

This paper proposes a DTN routing method based on Q-Lambda reinforcement learn-
ing, which refers to the concept of community division to determine appropriate relay
nodes. Our contributions are as follows:
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• We designed a Q-Lambda-based reinforcement learning router algorithm, which
references the idea of community partitioning to determine appropriate relay nodes
(QLCR).

• We planned the movement route of nodes and set corresponding points of interest ac-
cording to the actual situation using node degree, interest, and the structural similarity
combination of decision.

• We have carried out simulation experiments on the algorithm, and the experimental
results show that this algorithm is superior to other algorithms.

3. Proposed Method
3.1. System Model

In this article, we simulate a scenario where different types of people move within vari-
ous ranges. The communication range of each node is 5 m, as shown in Figure 1. Only when
two nodes are within each other’s communication range will they establish a connection.
The number of nodes in the map is m, and the set of nodes is M. The information exchange
between nodes is expressed as N2NCi = {1, 2, . . . , m}, i ∈ M. Each N2NC pair has a trans-
mitter and a receiver implementation to send and receive messages. Through this system
model, we can simulate message propagation in delay tolerant networks. The proposed
strategies will be applied in this model to achieve more efficient information delivery.

Figure 1. Node motion map and division of interest area.

In this paper, the entire experimental area is divided into five different areas of interest
(t0–t4) according to their specific functions. The population is divided into different types
(students, residents, teachers, others) and the movement range of different types of people
was limited. Each node records the number of times it reaches each area, and the recorded
times represent the degree of interest in a certain area. When nodes carrying messages
forward messages, those most interested in the same region are selected for forwarding
messages [36]. Some symbols are defined as follows: G = (M, E), where M represents the set
of points and E represents the set of edges; M(v) denotes the set of neighbors of node v and
dv represents the degree of node v. Node degree refers to the number of edges associated
with a node, represented by d. The larger the value of d, the more nodes are connected
to the current node, and the larger the degree of a node, the more important the node is
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within the network [37]. There is a high probability that such a node is in a key position
and the message is forwarded frequently. Therefore, the importance of a node is generally
measured by the size of its degree. Forwarding a message to a node with a high degree
increases the probability that the message will reach its destination. In this paper, the size
of the node degree is used as one of the conditions to determine the relay node.

Ideas were divided by community; the nodes within a community are much denser
than those between communities, which implies that each node and the majority of its
neighbors should belong to the same community. Consequently, if we employ the neighbor-
hood correlation metric to calculate the similarity sim(m, n) between any pair of connected
nodes (m, n), the similarity between nodes within the same community will typically be
much greater than the similarity between nodes situated at the boundaries of different
communities. With this in mind, the similarity calculation formula is as follows [38].

Sim(m, n) =
|N(m) ∩ N(n)|

dm
(1)

It is close to the similarity measure proposed in [39], but this similarity measure is
symmetric. However, in many practical applications, asymmetric similarity measures can
better describe node relationships. For example, m has a large social circle, while n has
very few friends. If m and n are friends, due to n having fewer friends, n will consider m
very important. On the contrary, due to m having many friends, m may consider n less
important. So we have the following formula:

Sim(n, m) =
|N(n) ∩ N(m)|

dn
(2)

Based on this phenomenon, asymmetric similarity is defined as sim(m, n)! = sim(n, m).
Structural similarity is also used as a criterion for selecting a suitable relay node.

The Q-Lambda algorithm is improved on the basis of a reinforcement learning algo-
rithm, introducing memory function. This algorithm iterates over the recorded state actions
repeatedly. We want the system to calculate and return a reward value R. Therefore, it is
necessary to create a Q table to store Q values. Its iterative formula is as follows [40]:

Qt+1(s, a)← lambda× [R + γ×maxs∈AQt+1(si, a)]
+(1− lambda)×Qt(s, a)

(3)

In the above formula, γ is the reward attenuation factor and lambda is the learning
efficiency. A represents the set of all points encountered by node a. It is not difficult to see
that si is the node that has met node a. maxs∈AQt+1(si, a) represents the maximum value in
the Q table of node a. Usually lambda and gamma are fixed. The reward value R is affected
by node degree, structural similarity, and region of interest.

We can consider the Q function as a reader that scans the Q-table, searching for
rows associated with the current message state and columns associated with the message
action. It returns the Q value from the corresponding cell, which represents the expected
future reward (Q-value). The Q(λ) algorithm is employed to determine the most suitable
relay node for forwarding messages. The learning environment for the Q(λ) algorithm
encompasses the entire network, with each node serving as a learning agent that can acquire
knowledge from the current network by delivering messages to the nodes it encounters.

3.2. Calculation of Reward Value

On a DTN, a large number of messages are copied, causing resource shortage and
network congestion. So, we adopt the method of excellent relay node selection to improve
the overall performance of the network. The calculation method for structural similarity
has been introduced in Equations (1) and (2); Degree (Degree A represents the degree of
current node A; Degree B represents the degree of potential relay node B); and Region
Matching (Region A represents the region of greatest interest to current node A; Region B
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represents the region of greatest interest to potential relay node B). In the algorithm, the
reward value is set to the following three conditions:

If (Structural Similarity(A, B) > Threshold and Degree(B) > Degree(A) and Region-
Match(A, B))

R = 3
If (Structural Similarity(A, B) < Threshold and Degree(B) > Degree(A) and Region-

Match(A, B))
R = 2
If (Structural Similarity(A, B) < Threshold and Degree(B) < Degree(A) and Region-

Match(A, B))
R = 1

3.3. Update the Q Value in the Q Table

The Q table updates are presented in Algorithm 1. When two nodes enter the com-
munication range, a connection is established between them, resulting in the acquisition
of the initial state–action pair. Upon subsequent encounters between nodes, an iterative
operation is executed according to Equations (1) and (2), which includes calculating the
structural similarity between the two nodes, comparing the node degrees, and determining
whether their regions of interest are the same.

Algorithm 1 Update the Q table

1: . R: reward value
2: . Lambda: Time attenuation parameter
3: . Q(s, a): Storage node Q value
4: . gamma: Attenuation coefficient
5: . d: Node degree. ad represents the degree of node a, sd represents the degree of node s
6: . S: Node Structural similarity
7: . i: Region of interest. ai represents the region of node a, si represents the region of node s
8: while (connectionsa.isUp) do
9: R← 0

10: if (ad > sd ∧ S < threshold ∧ ai == si) then
11: R← 3
12: end if
13: if (ad > sd ∧ S < threshold ∧ ai == si) then
14: R← 2
15: end if
16: if (ad < sd ∧ S < threshold ∧ ai == si) then
17: R← 1
18: end if
19: Update the Q value in the Q table;
20: if (The update Q value is the Maximum value in the Q table) then
21: Messages transfer;
22: else
23: Do not transfer messages;
24: end if
25: end while

Research on community structure can uncover valuable information and alerts re-
searchers to the accuracy and reliability of the methods employed to detect these substruc-
tures. A significant development in community detection originates from [41], where a
quality measure [42], modularity (G), is proposed by the same author to quantify modular
structures and assess the merits of each community division. When the value after the
partition is larger than the value before the partition, the community partitioning is deemed
satisfactory. Hence, we posit that when two nodes meet and the calculated Q value is larger
than the maximum reward value in the current Q table, the message will be forwarded.
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Figure 2 shows the updating process of Q values in the Q table. In Figure 2a, node A
and node B, respectively, calculate Q values after establishing connections and fill them into
the Q table maintained by them. Since there are no other nodes in the table, the maximum
value in table Q is the current value, and then they will pass messages to each other. In
Figure 2b when nodes A and B meet again, they calculate Q again, overwriting the previous
value. However, the value of B in node A is less than the maximum reward value in the
whole Q table. So, A does not pass messages to B. In node B, node A’s Q value is the largest,
so then node B will pass the message to A.

A B A B

(a) First meet (b) Meet again

Property Value Property Value

B 0.3 A 0.6

Max 0.3 Max 0.6

Property Value Property Value

B 3.2 A 4.2

C 7.2 D 2.2

Max 7.2 Max 4.2

Figure 2. Update process diagram of Q table.

3.4. Node Buffer Management

DTN routing policies can be divided into single-copy and multi-copy policies [43].
While the former consumes fewer resources, it struggles to achieve successful message
transmission. To enhance message delivery rates and reduce transmission delays, multi-copy
policies are typically adopted. This algorithm adopts a first in, first out message transmission
mechanism within a link time. Under a multi-copy strategy, due to factors such as price and
volume, the limited cache space of nodes cannot accommodate the storage requirements
for numerous message copies. Consequently, some message copies are discarded during
transmission and fail to reach the destination node. This leads to a decrease in the overall
network delivery rate. Therefore, devising effective cache management policies, classifying
and evaluating different message copies, and storing and deleting message copies in a
targeted manner are crucial to improving the overall performance of the network.

In a DTN, each node maintains a record of successful message deliveries. Thus, when
two nodes encounter one another, they can delete the messages that have been successfully
delivered. This approach saves storage space, improves message delivery rates, and reduces
network overhead. The buffer management algorithm is demonstrated in Algorithm 2.

Algorithm 2 Manage node cache

1: if (this node’s acklist is not empty) then
2: Encounter node UpdateList();
3: Locate and delete messages;
4: end if
5: if (encounter node’s acklist is not empty) then
6: UpdateList();
7: Locate and delete messages;
8: end if
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4. Results

The simulation of the proposed algorithm was achieved on the basic simulation
platform of the Opportunistic Networking Environment (ONE) in this section. We use the
ONE simulation platform to evaluate several classical algorithms and proposed algorithms
and show the results of their comparison.

1. As the range of campus is smaller than that of the map provided by ONE, the number
of nodes ranges from 30 to 180.

2. The interval for message generation is from 5 s to 35 s.
3. Speed options range from 5 m per second to 20 m per second.
4. The cache is 5 M to 35 M

We recorded the basic performance indicators (delivery rate, message delay, network
overhead, average hops) in the DTN, and the simulation parameters were configured as
shown in Table 2.

Table 2. Simulation configurations.

Parameters Values

Movement model Map-based

Buffer size 5–10 M

Wait time 0–120 s

Maximum speed 20 ms−1

Number of nodes 30–180

Event generators 5–35 s

Transmit range 10 m

Transmit speed 10 Mbps

Group number 10

Message TTL 300 s

The overhead ratio is used to evaluate the effectiveness of message replication in DTNs.
Redundant forwarding of message copies can waste network resources and cause network
congestion. The lower the network overhead, the fewer redundant relay transmissions
occur in the DTN, indicating better network performance.

The message delay is used to evaluate the transmission speed of DTNs. The unit of
message delay is second. The message delay measures the time required for a message
to travel from the source node to the destination node. A lower message delay indicates
faster message transmission in the network, while a higher message delay may suggest
issues such as network congestion or unstable paths. Therefore, message delay is one of
the important metrics for assessing the performance and efficiency of DTNs.

In a DTN, the comparison results of five different routing protocols (QLCR, PR, ER,
HPR, and SAW) are shown in Figures 3–6.

4.1. Analysis of Message Generation Interval

As shown in Figure 3a, the delivery rate of all messages increases as the message
interval grows. This is because the number of messages in the network decreases as the
interval between message generation increases. When the interval is 35, the delivery rate of
the proposed algorithm is 0.9052, which is 8.8% higher than that of the second-ranked SAW
algorithm (0.8250), and 81.8% higher than that of the lowest-performing ER algorithm.
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（a） (b)

(c) (d)

Figure 3. The impact of message generation interval on network performance.

When TTL = 5, the proposed algorithm has a 54% delivery rate, which is also the
highest delivery rate among all algorithms. As can be seen from Figure 3b, the cost of the
proposed algorithm decreases gradually, primarily because messages are deleted in time
to save space. Except for the SAW algorithm, the overhead of other algorithms increases
gradually. As shown in Figure 3c, the message delay of the proposed algorithm is minimal.
The message delay of these algorithms increases as the TTL value grows.

4.2. Node Movement Speed Analysis

As shown in Figure 4a–c, the delivery rate first rises and then falls as the speed
increases, indicating that our proposed algorithm is best suited for medium–low-speed
moving networks.

When the speed is too high, nodes encounter each other more frequently, which leads
to a large number of duplicate messages in the network. As a result, network congestion is
more likely to occur. This is evident in the decline of delivery rates for the other algorithms
when the speed is 20. Rapid node movement can also cause unstable connections between
nodes and potentially reduce the delivery rate.
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(a) (b)

(c) (d)

Figure 4. The impact of node speed on network performance.

4.3. Node Number Analysis

As demonstrated in Figure 5a, the proposed algorithm consistently achieves better
delivery rates under any number of nodes. Apart from the SAW algorithm, the delivery
rates of the other three algorithms decrease as the number of nodes increases.

From Figure 5b, we can see that the number of nodes has minimal impact on the
overhead. Figure 5c shows that as the node count increases, the message delay of the
proposed algorithm gradually decreases, indicating that the proposed algorithm can adapt
to complex networks.

(a) (b)

(c) (d)

Figure 5. Cont.
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(a) (b)

(c) (d)

Figure 5. The impact of node count on network performance.

4.4. Node Cache Analysis

Typically, as the node cache size increases, so does the number of messages stored by
a node. Figure 6a–c reveals that the performance of PR, ER, and HPR algorithms improves
with larger caches. The proposed QLCR algorithm and SAW algorithm have limitations on
the number of message copies, making them adaptable to a wider range of networks.

(a) (b)

(c) (d)

Figure 6. The impact of node buffer on network performance.
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5. Discussion

From the experimental results, it can be seen that using the Q-lambda reinforcement
learning algorithm demonstrates certain advantages over other algorithms in certain sce-
narios. Furthermore, our proposed algorithm achieves higher message delivery rates with
lower latency. This indicates that the Q-lambda algorithm has a certain advantage in
handling tasks with latency requirements. Exploration is a key aspect in reinforcement
learning for discovering potential rewards and optimal strategies. The Q-lambda algorithm
maintains exploratory behavior to better discover and exploit potential rewards in the envi-
ronment. This exploratory characteristic aids in discovering new and superior strategies,
thereby enhancing the delivery rate.

Our proposed QLCR algorithm implements an efficient routing selection method
for network communication. Compared to the SAW algorithm, QLCR outperforms it
in achieving maximum delivery rate while enabling data transmission with the lowest
latency. In Figure 3d, 4d, 5d and 6d despite not having the lowest average hop count,
our algorithm remains within an acceptable range, ensuring efficient and reliable network
communication.

It is important to note that the effectiveness of an algorithm largely depends on the
specific application scenario and task requirements. Although QLCR has shown supe-
rior performance over other algorithms in some experiments, it does not imply that it is
the optimal choice in all situations. In practical applications, it is necessary to consider
the algorithm’s performance, efficiency, and suitability, and select the most appropriate
reinforcement learning algorithm for the specific task.

6. Conclusions

This paper proposes a DTN routing method based on Q-Lambda reinforcement learn-
ing and incorporates the concept of community division to identify suitable relay nodes.
To enhance the overall performance of the network, we implement timely deletion and
delivery of successfully transmitted messages. We compare the QLCR algorithm with
traditional routing algorithms and the HPR algorithm. From Figures 3–6, it is evident
that the proposed algorithm exhibits significant improvements in message delivery rate,
overhead, delay, and other performance metrics. Notably, the QLCR algorithm achieves the
highest delivery rate while maintaining the lowest latency. Although the results indicate
that the QLCR routing algorithm may not have the lowest average hop count, it remains
within an acceptable range when compared to other algorithms. These findings highlight
the effectiveness of the QLCR algorithm in optimizing message delivery performance in
DTNs.

In future research, more in-depth investigations will be conducted on factors that
influence annotation results, such as features and rules, with the aim of identifying features
with greater practical value and resolution rules with stronger resolving power. This will
further enhance the overall performance of the proposed method.
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