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Abstract: Due to its low stiffness, the boring bar used in deep-hole-boring is prone to violent vibration
during the cutting process. It is often inaccurate and inefficient to judge the vibration state of the
boring bar through artificial experience. To detect the change of the vibration state of the boring bar
over time, guide the adjustment of the processing parameters, and avoid wastage of the workpiece
and the loss of equipment, it is particularly important to intelligently monitor the vibration state of
the boring bar during processing. In this paper, the boring bar is taken as the research object, and
an intelligent monitoring technology of the boring bar’s vibration state based on deep learning is
proposed. Based on grouping convolution, channel shuffle, and BiLSTM, a shuffle-BiLSTM NET
model is constructed, which is both lightweight and has a high classification accuracy. The boring
experiment platform is built, and 192 groups of cutting experiments are carried out. The three-way
acceleration and sound pressure signals are collected, and the signals are processed by smoothed
pseudo-Wigner–Ville distribution. The original signals are transformed into a 256 × 256 × 3 matrix
obtained by a two-dimensional time–frequency spectrum diagram. The matrix is input into the
model to recognize the boring bar’s vibration state. The final classification accuracy is 91.2%. A
variety of typical deep learning models are introduced for performance comparison, which proves
the superiority of the models and methods used in this paper.

Keywords: boring bar vibration; condition monitoring; deep learning; signal processing

1. Introduction

The intelligence of cutting is of great significance to the intelligence of the whole
manufacturing industry [1]. Intelligent monitoring in machining is a key technical link to
realize intelligent manufacturing. Intelligent condition monitoring can realize real-time
perception of the state of the equipment in the processing process, guide the adjustment
of processing parameters, optimize the product quality, and give a timely warning when
the equipment life is insufficient or failure occurs. In the field of mechanical processing,
hole processing accounts for one-third of the total, and deep-hole processing accounts for
more than half of the hole processing [2]. Due to the particularity of the deep-hole parts
structure, a boring bar with a large aspect ratio is generally needed for processing. This
kind of boring bar is generally weak in rigidity, and it can easily violently vibrate or even
chatter during processing. In the cutting process, the occurrence of vibration and chatter
will affect the surface quality of the machined surface, accelerate tool wear, and even cause
chatter marks on the surface of the workpiece and damage the workpiece and tools [3]. In
deep-hole machining, it is generally difficult to directly observe the vibration state of the
boring bar, so the state monitoring technology combined with deep learning can play a
key role in vibration monitoring. Timely detection of the change of the vibration state of
the boring bar can help guide the adjustment of processing parameters and improve the
quality and efficiency of deep-hole processing.
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Artificial intelligence technology is an important tool to realize the intelligence of cut-
ting processing, and deep learning is an important part of artificial intelligence technology.
Deep learning is derived from machine learning. Through the ability of adaptive feature
extraction and learning of multi-layer neural networks, the recognition, classification, and
regression of data or images are realized. In recent years, with the advancement of com-
puter technology, deep learning has also rapidly developed and is widely used in the field
of machining [4]. In order to give full play to the ability of deep learning to adaptively
extract features, some scholars choose to input the original signal of the sensor into the deep
learning model. Li et al. [5] input the vibration and sound signals in the boring process into
LSTM to realize the state recognition of deep-hole-boring tool bluntness and tool breakage.
Liu et al. [6] used the PHM2010 dataset as the training data, used the parallel residual
network to adaptively extract the internal features of the multi-dimensional sensor signal,
used the stacked bidirectional long short-term memory network to extract the time series
features in the signal, and then established an effective mapping with the tool wear value,
and a deep learning model with high accuracy was successfully constructed. He et al. [7]
constructed a long short-term memory neural network, and input the force, vibration,
and acoustic emission signals in the milling process into the network model. Finally, an
effective mapping between data and tool wear values was established, which proved the
effectiveness and feasibility of the network. Xu et al. [8] designed a deep neural network
that combines one-dimensional dilated convolution kernels with residual blocks and used
this model to predict the wear of tap tools.

Although deep learning can adaptively extract data features, in many cases, the
features extracted by the model itself do not fully reflect the characteristics of the data.
Therefore, more researchers consider using the data processed by mathematical methods as
the input of the deep learning model for training. Zhou et al. [9] decomposed the spindle
torque signal by EMD and input the feature matrix composed of process parameters
and workpiece information into the LSTM model to realize the prediction of the tool life.
Chen et al. [10] combined CNN with a deep bidirectional gated recurrent unit neural
network, collected the milling acceleration signal, input the signal into the neural network
after wavelet threshold denoising, and introduced the attention mechanism to adaptively
perceive the network weight associated with the wear state, so as to realize real-time
and accurate prediction of the tool wear state. Li et al. [11] collected the spindle current
signal of the machine tool, used compressed sensing to compress the frequency domain
characteristics of the signal, and input the data into the stacked sparse auto-encoder
network for training, which successfully realized the recognition of the wear state of the
milling cutter.

Considering that deep learning is widely used in the field of image recognition, in
order to make better use of the ability of the convolution kernel in the deep learning model
to extract image features, some scholars also process data into images as the input of the
model. Ren et al. [12] proposed the method of the spectral principal energy vector to
combine eigenvalues into a 64 × 64 feature map, an 8-layer CNN network was designed
to predict the bearing life, and the smoothing technique was used to solve the problem
of discontinuous prediction results. Wen et al. [13] improved the LeNet-5 model by using
the motor-bearing dataset, the self-priming centrifugal pump dataset, and the axial piston
hydraulic pump dataset, and converted the original signal into a two-dimensional image as
data input to verify the fault identification accuracy of the model. Liu et al. [14] proposed
a milling chatter monitoring method based on unlabeled dynamic signals. It uses the
unsupervised clustering algorithm, does not need to add labels to the data, satisfies any
processing parameters and processing environments, has strong stability, and can effectively
identify chatter. Pagani et al. [15] processed RGB and HSV channel images of chips as input
data to predict tool wear, and the method was used in stable processing scenarios.

It can be seen from the above literature that data processing and deep learning tech-
nology have been widely used in the field of cutting. Scholars in various countries have
conducted in-depth research on the identification and monitoring of the tool life and equip-
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ment status. However, there are few research results on real-time intelligent monitoring of
boring bar vibration by deep learning. To accurately and real-time monitor the vibration
state of the boring bar during machining, a monitoring method of the boring bar vibration
state based on Wigner–Ville distribution and the shuffle-BiLSTM network is proposed by
combining data time–frequency analysis technology with deep learning image recognition
ability. Based on SPWVD, the time–frequency domain features are extracted from the
collected signal and used as the input of the model, which solves the problem that the
features extracted from the signal by the deep learning model cannot fully reflect the data
characteristics. The shuffle unit is used in combination with BiLSTM. The memory ability
of the network is enhanced, and the recognition accuracy is effectively improved through
the BiLSTM structure. The training time of the model is shortened, and the real-time
monitoring is improved by use of the shuffling unit, with the characteristics of lightweight
and high speed. Through the experimental analysis, it is proven that the model runs fast
and has a high recognition accuracy, and it has good research and application value.

2. Related Work
2.1. Time–Frequency Domain Feature Extraction of Sensor Signal Based on SPWVD
2.1.1. Wigner–Ville Distribution

The general linear time–frequency analysis method is not intuitive enough to describe
the signal characteristics, such as STFT. When calculating, it is necessary to add a window
to the signal, and if a higher resolution of the frequency transform is required, the required
window function length will be longer [16]. According to the uncertainty principle, the
window function cannot increase or decrease the time and frequency resolutions at the
same time. If one of the two increases, the other will decrease [17]. In this case, the
trade-off between time and frequency cannot be well-achieved. Therefore, the quadratic
time–frequency representation is introduced. Since no window function is added, it avoids
the defects of linear time–frequency representation and is a more intuitive time–frequency
representation method.

The Wigner–Ville distribution (WVD) can represent the energy of the original signal
in both the time domain and the frequency domain. It is a time–frequency analysis method
with practical physical significance. Let the original real signal be s(t), then, Hilbert
transform is applied to the signal, and its analytical signal a(t) is obtained, as shown in
Formula (1):

a(t) = H[s(t)] = h(t) ∗ s(t) =
∫ ∞

−∞
s(τ)h(t − τ)dτ =

1
π

∫ ∞

−∞

s(τ)
t − τ

dτ (1)

where h(t) = 1
πt .

WVD is a kind of time–frequency distribution of Cohen’s class, and its formula is:

C(t, f ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
a(u +

τ

2
)a(u − τ

2
)ϕ(τ, v)e−j2π(tv+τ f−uv)dudvdτ (2)

where φ(τ, v) is the kernel function. When the kernel function φ(τ, v) = 1, Formula (2)
becomes:

Wa(t, f ) =
∫ ∞

−∞
a(u +

τ

2
)a(u − τ

2
)e−j2πτ f dτ (3)

Formula (3) is the Wigner–Ville distribution.

2.1.2. Smoothed Pseudo-Wigner–Ville Distribution

When the WVD is applied to multi-component signals, different signal components
are prone to cross-action in the calculation. This phenomenon will lead to blurred signal
characteristics and seriously affect the analysis results. Therefore, a method is needed to
effectively suppress the cross terms.
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The influence of cross terms on the analysis results can be effectively reduced by
adding kernel functions to the WVD. A typical algorithm for this method is the smoothed
pseudo-Wigner–Ville distribution (SPWVD), as shown in Formula (4):

SPWa(t, f ) =
∫ ∞

−∞
a(t − u +

τ

2
)a(t − u − τ

2
)g(u)h(τ)e−j2πτ f dτ (4)

where g(u)h(τ) is the added kernel function, g(u) is the time domain window function,
h(τ) is the frequency domain window function, and g(0) = h(0) = 1.

2.2. Convolutional Neural Network

The convolutional neural network is mainly composed of a convolution layer, a
pooling layer, and a fully connected layer, which is essentially a feature extractor of the
input signal. The input signal of the network is generally a multi-layer matrix. The signal
features are extracted through the convolutional layer, and the pooling layer reduces the
number of model parameters. Finally, the fully connected layer realizes the mapping from
the feature layer to the output and realizes the function of classification.

2.2.1. Convolution Layer

The convolution layer is the core of the convolutional neural network. Assuming the
convolution kernel of I × J in the convolution layer is k and the weight in the convolution
kernel is ωi,j, then, the calculation formula of the convolution layer is:

f l =
i=I,j=J

∑
i=0,j=0

ωi,j ∗ Fl−1 + b (5)

In the formula, f is an element in the new feature matrix, l is the number of feature
layers, Fl−1 is the previous feature matrix or input matrix, and b is the bias.

Let the size of the output matrix after the convolution calculation be W × H × D; then,
the size of the output matrix can be calculated by the Formulas (6)–(8):

W =
W0 − Filter + 2P

S
+ 1 (6)

H =
H0 − Filter + 2P

S
+ 1 (7)

D = N (8)

where W0 and H0 are the input matrix size, Filter is the convolution kernel size, P is the
number of filled zeros, S is the convolution kernel sliding step size, and N is the number
of convolution kernels. When the convolution kernel slides to the boundary of the input
matrix, some elements will not be calculated, so the feature matrix is filled by zero filling.
The number of zero filling, P, is:

P =
Filter − S

2
(9)

2.2.2. Pooling Layer

The feature layer obtained by the convolution layer usually has a large amount of data
and cannot be directly used for classification. Therefore, it is necessary to down-sample
through the pooling layer to effectively reduce the number of network parameters and
control the overfitting to a certain extent. The expressions when using the maximum and
average pooling operations are shown in Formulas (10) and (11):

f l = max(pl−1) (10)
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f l = mean(pl−1) (11)

where p is the pooling layer filter.
The pooling layer usually uses a 2 × 2 size filter to slide on the feature layer in a step

of 2, and the maximum value in each sliding window is retained to form a new feature
layer for the next operation. The size of the characteristic matrix after pooling is shown as
follows in (12)–(14):

W =
W0 − Filter

S
+ 1 (12)

H =
H0 − Filter

S
+ 1 (13)

D = D0 (14)

It can be seen from the above formula that there is no zero-padding operation in the
pooling layer, and the depth of the feature layer is unchanged before and after the pooling
operation.

2.2.3. Fully Connected Layer

After feature extraction, multiple features need to be connected for the classification.
The fully connected layer is a plurality of W × H × D convolution kernels, and the size
is completely the same as the previous feature layer, turning the feature layer into one-
dimensional data. The dimension of the data entirely depends on the number of categories.
After the calculation of the fully connected layer is completed, the output is sent to the
SoftMax classifier to complete the classification. The expression of the SoftMax classifier is:

Si =
eai

J
∑

j=1
eaj

(15)

where ai represents the i-th data of the output of the fully connected layer, J represents the to-
tal output of the fully connected layer, and Si represents the possibility of the corresponding
category.

2.3. Activation Function: Leaky RelU

Different from the most commonly used RelU activation function, an activation func-
tion called Leaky RelU is introduced in the model, which is expressed as follows [18]:

y =

{
x
αx

,
,
x > 0
x ≤ 0

(16)

where α is a constant close to 0. When the input is positive, it is equivalent to the RelU
activation function, and the input remains unchanged. When the input is negative, because
a is a given small constant, some values of the negative axis are retained, so that the
information of the negative axis is not lost, and the gradient can propagate normally.

3. Proposed Shuffle-BiLSTM Model

According to the functional characteristics of group convolution and channel shuffle,
combined with the BiLSTM structure, this paper constructed the Shuffle-BiLSTM network.
Its network architecture is shown in Figure 1.
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Figure 1. Structure of the network.

The network model is mainly composed of three parts: the shuffle unit module,
BiLSTM module, and the vibration state monitoring module. Firstly, the 2D time–frequency
spectrum of the three-way acceleration signal and the sound pressure signal extracted by
SPWVD was adjusted to 0–255 grayscale images. A 256 × 256 × 3 matrix was formed
by these images to realize the fusion of the two sensor signals in time–frequency domain
features. Next, after the initial convolution pool and other operations, the shuffle unit was
entered. The shuffle unit is mainly composed of the above group convolution and the
channel shuffle, plus the necessary data batch normalization, pooling, and leaky RelU layers,
and it imitates the residual network to increase the short-circuit mechanism, which avoids
the gradient explosion problem in the training process, to a certain extent. Considering
that the group convolution operation will reduce the accuracy of the network, multiple
sets of shuffling units were added to increase the network depth. Then, after the shuffle
unit, a BiLSTM layer was added to further extract the time series features of the data and
adaptively filter the corresponding types of implicit features in the data. Finally, the learned
features were fed back to the classification layer, composed of the fully connected layer and
the SoftMax classifier, to identify and output the vibration state of the boring bar.

3.1. Shuffle Unit

The shuffle structure was originally a lightweight network structure model proposed
by Xiangyu Zhang et al. [19]. This structure greatly reduced the parameters of the deep
learning model by introducing group convolution and channel shuffle, and effectively
improved the calculation speed and accuracy of the model.
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3.1.1. Group Convolution

According to the above content, the convolution kernel in the ordinary convolution
layer will output all the information of the feature layer to the next feature layer through the
convolution operation, as shown in Figure 2a. The parameter quantity in the convolution
operation is:

Q = Filter × N × D0 (17)

where D0 is the number of layers of the input matrix, that is, the depth of the input layer.
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convolution.

The grouping convolution is different from the ordinary convolution layer. It groups
the input layer and then uses different group convolutions for the calculation. The corre-
sponding group convolution kernel is only convoluted with the corresponding input layer,
as shown in Figure 2b. The parameters of group convolution are:

QG = Filter × N × D0

G
(18)

where G is the number of groups. From the Formula (17), Formula (18) can be seen as:
QG = Q

G . The operation of group convolution can greatly reduce the number of parameters
and improve the calculation speed of the model.

3.1.2. Channel Shuffle

Although the computational cost can be significantly reduced by grouping convolution,
this method makes the output of each group only come from a part of the input layer,
as shown in Figure 3. Obviously, groups are isolated from each other, and there is no
information flow, which will reduce the learning ability of the model.

To solve the problem of grouping convolution, the channel shuffle method was in-
troduced. After the channel shuffle method was applied to the grouping convolution
operation, the channels of each group were further grouped according to the total number
of groups, and then mixed with each other to ensure that each large group can have the
characteristics of the other groups and be used as the input layer of the next convolution
operation. The specific implementation method is shown in Figure 4. Let the number of
feature layer groupings be G and the total depth be D. After combining them into (G, D), it
was transposed and re-leveled to achieve channel shuffling. It can be seen from the diagram
that the mixed channel after channel mixing avoided the separation and isolation between
the above channels, to a certain extent.
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3.2. Bidirectional Long Short-Term Memory Network

Long short-term memory (LSTM) recognizes, stores, and forgets features through the
‘gate’ mechanism. LSTM can use this memory-like feature to filter and save the implicit
features of the input data, identify and save the features associated with the current state,
discard redundant features, and repeatedly update the memory as the data are continuously
input.

LSTM has three gate functions, namely the input gate, forgetting gate, and the output
gate. The forgetting gate determines which memory information needs to be modified and
passed to the next step. The input gate is responsible for integrating the previous memory
and the new input, and the output gate will pass the filtered memory information down.
The mathematical expression is as follows [20]:

Ft = σ(W f [ht−1, xi] + b f
It = σ(Wi[ht−1, xi] + bi)
c̃t = tanh(Wc[ht−1, xt] + bc)
ct = ft · ct−1 + It · c̃
σt = σ(Wu[st−1, xt] + bu)
ht = ot · tanh(ci)

(19)

where It, Ft, ot, and ct, respectively, represent the corresponding input gate, forgetting
gate, output gate, and cell unit state at time t. W f , Wi, Wc, and Wu are the weights of each
door. b f , bi, bc, and bu are the offsets of the respective doors. σ(·) stands for the sigmoid
activation function, xt is the input information at time t, and ht−1 and ht are the hidden
layer information at time t − 1 and t, respectively. ct−1 is the cell state information at the
time t − 1 and c̃t is the candidate cell state.
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Since the feature transfer of LSTM has a direction, a single transfer direction may not
be able to fully extract the implicit features in the data. Therefore, bidirectional long short-
term memory (BiLSTM) was introduced, and the data feature sequence was bidirectionally
extracted and combined by the combination of forward LSTM and backward LSTM to
better capture the data sequence features and achieve accurate classification of the state.

The overall structure of BiLSTM is shown in Figure 5.
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ting gate, output gate, and cell unit state at time t. fW , iW, cW, and uW  are the weights 

of each door. fb , ib , cb , and ub  are the offsets of the respective doors. ( )σ ⋅
 stands 

for the sigmoid activation function, tx  is the input information at time t, and 1th −  and 

th  are the hidden layer information at time 1t −  and t, respectively. 1tc −  is the cell 

state information at the time 1t −  and tc  is the candidate cell state. 
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3.3. Vibration State Monitoring Module

The vibration state monitoring module is responsible for outputting the vibration state
of the monitored boring bar, which is mainly composed of a full connection layer and a
classifier, as shown in Figure 1. The full connection layer performed weighted regression
on the advanced features learned from the shuffling unit module and the BiLSTM module,
and finally connected the classifier to identify the three vibration states of the boring bar
and output the corresponding labels.

4. Experiment
4.1. Experimental Device and Data Acquisition

To establish the boring experiment dataset and provide enough data for the intelligent
perception of the boring bar vibration state for training, boring experiments are needed.
The experiment changed the boring cutting speed, feed rate, cutting depth, and boring bar
overhang. The acceleration sensor was installed at the front end of the boring bar to collect
the acceleration signal during the cutting process, the sound sensor was used to collect the
noise pressure of the machining noise, and the surface roughness and image were recorded.
The CNC lathe used in the experiment was the CKA6150 (Shenyang Machine Tool Group
Co., Ltd., Shenyang, China), the cutting workpiece was 45 steel, the outer diameter was
180 mm, the inner diameter was 140 mm, the total length was 200 mm, the diameter of
the boring bar was 60 mm, and the maximum overhang length was 600 mm. The blade
model was CCMT060604, and the workpiece rotated during cutting, the boring bar feeds,
there was no cutting fluid, and the maximum feed depth was 30 mm. The data acquisition
hardware used the NI PXIE-1092 (National Instruments (NI) Inc., Shanghai, China) data
acquisition box, integrated PXIE-4492 vibration and sound acquisition modules, and the
software used the LabVIEW (National Instruments (NI) Inc.) data acquisition system.
Through the trial cutting experiment, the collected signals were analyzed, and it was found
that the highest frequency of the vibration signal and the sound pressure signal was not
higher than 10 KHz. Under the premise of computer memory and computing resources,
according to the Shannon sampling theorem, the sampling frequency was set to 40 kHz.
The diagram and photos of the experimental site are shown in Figure 6, and Figure 7 shows
the data acquisition interface.
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The NI PXIE-1092 data acquisition box was used for the experimental data acquisition.
The chassis was equipped with a high-bandwidth backplane and 82 W power supply and
cooling functions. It provides timing and synchronization options, a built-in constant
temperature crystal oscillator, and supports PXIE modules. The acquisition box integrates
PXIE-4492 vibration and sound acquisition modules, supports a maximum sampling
frequency of 204.8 kS/S, and is equipped with a SHB4X-8BNC connection cable. The type
of acceleration sensor used was the Donghua Test 1A314E IEPE (Jiangsu Donghua Testing
Technology Co., Ltd., Taizhou, China), with a maximum range of 50 g. The sound sensor
was the CRY SOUND CRY333 (CRY SOUND, Hangzhou, China) free-field measurement
microphone, which includes a CRY507 IEPE (CRY SOUND) preamplifier with a maximum
range of 146 dB.

The detailed cutting parameters and the overhang of the boring bar are shown in
Table 1. A total of 192 sets of cutting experiments were carried out.



Sensors 2023, 23, 6123 11 of 17

Table 1. Experimental parameters.

No. Cutting Speed
(m/min)

Feed Rate
(mm/r)

Cutting Depth
(mm) Overhang (mm)

1 100 0.1 0.1 420
2 200 0.2 0.2 480
3 300 0.3 0.3 540
4 400 0.4 0.4 -

4.2. Feature Extraction
4.2.1. Signal Denoising

Considering the influence of the experimental environment, the collected signal con-
tained noise, which will seriously affect the data analysis, resulting in a low model moni-
toring accuracy. Therefore, under the premise of ensuring the characteristics of the original
signal, multiple sets of wavelet packet threshold denoising were performed on the original
signal. The noise reduction process is shown in Figure 8.
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Figure 8. Wavelet threshold denoising.

Through research, it was found that for acceleration signals, the signal SNR using
the unbiased likelihood estimation threshold, the hard threshold function, the coif5 basis
function, and three-layer wavelet decomposition was the highest, at 8.13, and the RMSE
was the lowest, at 1.30. This parameter had the best noise reduction effect and is most
suitable for acceleration signals. For the acoustic emission signal, when the unbiased
likelihood estimation threshold, the hard threshold function, and the coif5 basis function
were selected, the SNR of the signal was the highest, at 11.1, and the RMSE was the lowest,
at 0.01. Considering that increasing the number of decomposition layers increases the
amount of calculation, the least three-layer wavelet decomposition was selected among the
three decomposition layers with similar noise reduction effects.

4.2.2. SPWVD Feature Extraction

The acceleration and sound pressure signal with the best noise reduction effect were
selected as the target data, and SPWVD was used to obtain the three-dimensional time–
frequency spectrum of the signal. Due to the limitation of space, the cutting speed was
200 m/min, the feed speed was 0.2 mm/rot, and the extension was 540 mm. When the
cutting depth increased from 0.1 mm to 0.4 mm, the time–frequency spectrum of the
calculated tangential acceleration signal was as shown in Figure 9.

The time–frequency relationship of the signal can be roughly seen from the 3D time–
frequency spectrum. In order to more intuitively express this relationship, the 3D image was
projected downward along the z-axis (amplitude) direction to obtain a 2D time–frequency
spectrum, as shown in Figure 10.

This kind of time–frequency spectrum can reflect the frequency domain distribution
of signal components in time series, and it is an effective signal time–frequency analysis
method. However, the analysis of this image is difficult to directly quantify by humans,
such as time domain and frequency domain features, and the readability is poor. Therefore,
it can be identified and analyzed by deep learning algorithms that are good at image
recognition. The image was transformed into a three-channel 0–255 gray value matrix,
which can be identified by a deep learning model.
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Figure 9. Vibration acceleration signal 3D time–frequency spectrum diagram. (a) ap = 0.1 mm,
(b) ap = 0.2 mm, (c) ap = 0.3 mm, and (d) ap = 0.4 mm.
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4.3. Model Training and Comparison Experiment Settings
4.3.1. Model Training

A total of 192 cutting experiments were randomly grouped, 70% of the data (135 groups)
was used to train the model, and 30% (57 groups) was used to test the model.

To obtain a higher monitoring accuracy, a set of optimal model training parameters
were selected through the experimental methods. The minibatch size was set to 64, maxe-
pochs to 1000, initial learn rate to 0.1, each iteration was performed 100 times, the learning
rate multiplication coefficient was 0.1, and using SGDM optimization, the momentum
was 0.9.

The final recognition accuracy of the training set was used as the training effect
standard.

4.3.2. Comparison Experiment Settings

To verify the accuracy and superiority of the shuffle-BiLSTM model proposed in this
study, five classic deep network models: convolutional neural network (CNN), Shuffle
NET, Res NET, Dense NET, and Inception NET, were selected. On the premise of using
the same dataset, five models were trained for comparison, and the model used in this
paper was trained using a single vibration signal. The performance was compared with
the models and methods used in this paper. The training and test methods of the above
models were the same as those used in this paper.

4.4. Results’ Analysis and Discussion
4.4.1. Experimental Result Analysis

Figure 11 shows the training and test results of the proposed model. Figure 12 shows
the training and test results of the comparison model. Table 2 is the performance parameter
table of the proposed model and the comparison model.
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As shown in Figure 11a, after 756 iterations, the model training accuracy reached 100%,
indicating that all groups in the training set were able to achieve correct classification.

Only using the training set training model to improve the training accuracy cannot
complete the construction of the model. It is also necessary to input the test set into the
model and continuously adjust the model parameters to make the test accuracy high
enough. The remaining 57 sets of experimental data were input into the model as a test
set for testing. The confusion matrix of the test results is shown in Figure 11b. Among
them, 24 groups of the 26 groups of the stable cutting state were accurately identified,
with an accuracy rate of 92.3%, 13 groups of the 14 groups of the transition state were
accurately identified, with an accuracy rate of 92.9%, 15 groups of the 17 groups of the
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violent vibration were accurately identified, with an accuracy rate of 88.2%, and the overall
classification accuracy was 91.2%. The ‘0’ label in the graph indicates a stable cutting state,
the ‘1’ label indicates a transition state, and the ‘2’ label indicates a violent vibration state.
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(j) Dense NET, (k) Inception NET, and (l) single signal.
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Table 2. Model performance comparison.

Model Name Iteration
Times

Test Accuracy Network Layers
Number

Parameters
NumberStable Transition Violent Overall

Shuffle-BiLSTM NET 756 92.3% 92.9% 88.2% 91.2% 176 1.9 M
CNN 650 84.8% 54.5% 92.3% 80.7% 14 0.8 M

Shuffle NET 250 83.3% 100% 84.6% 86.0% 172 1.4 M
Res NET 430 100% 75% 77.8% 89.5% 71 11.7 M

Dense NET 170 93.8% 85.7% 94.4% 93.0% 708 20.0 M
Inception NET 90 96.9% 88.9% 87.5% 93.0% 315 23.9 M
Single signal 445 86.7% 75.0% 84.2% 84.2% 176 1.9 M

In the above model, the original convolutional neural network structure was the
simplest: the number of network layers was only 14, the number of parameters was only
0.8 M, the amount of calculation was the least, and the recognition speed was the fastest.
However, due to its depth limitation, the ability to extract the implicit information in the
data was insufficient, and the learning speed was slower than the model and the Shuffle
NET. After 650 training iterations, it finally converged.

Shuffle NET is the basic version of the network used in this paper. The network uses a
large number of group convolution kernels, which significantly reduces the complexity of
the network. Even if the number of network layers reached 172, the number of parameters
was only 1.4 M, and the calculation amount was very small. After 250 training iterations,
the convergence was completed, and the learning ability was excellent. However, due to
the influence of group convolution on the accuracy of the model, the test accuracy was
slightly lower, which was 86.0%.

Res NET, Dense NET, and Inception NET are all more complex deep learning networks.
By observing the test accuracy of these three networks it can be found that their test accuracy
was ideal. The overall test accuracy of Dense NET and Inception NET exceeded the network
model used in this article. Res NET was limited by the network depth, and the overall
classification accuracy was slightly lower than the other two models, but the parameter
quantity was only half of the other two models. Although the test results of the three
networks were good, they all had more than 10 M parameters. Dense NET and Inception
NET even reached 20 M, which is 10 times the proposed model. Due to its complex
network structure and more internal feature layers, convergence can be achieved with
fewer iterations, but the higher number of parameters makes the calculation time of the
network model very long and the recognition speed slow.

When using this model to sense the vibration state of a single-signal input, the speed
of network extraction and learning features was accelerated due to the reduction of input
data, and convergence was achieved after 445 iterations. However, due to the limitation of
only one input signal, the final classification accuracy was not high, which also shows the
effectiveness of the multi-signal fusion input method used in this paper.

4.4.2. Discussion

Based on the performance comparison of several network models, the shuffle-BiLSTM
NET used in this paper has a lightweight network depth, low computational complexity,
and enough recognition accuracy to meet the requirements. The comprehensive perfor-
mance was the best, which is suitable for production and processing scenarios.

The good comprehensive performance of shuffle-BiLSTM NET may come from the
following aspects. The method of extracting local features by group convolution reduced
the calculation amount of the model and the operation time. A channel shuffling layer
was added under the convolution layer to realize cross-extraction and learning of features,
which avoided the limitations brought by local feature extraction of group convolution.
The BiLSTM structure was added to enhance the network’s memory ability, so that the
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network had a better recognition ability for similar states. Although the training time of
the network increased, the recognition accuracy effectively improved.

According to Table 2, the shuffle-BiLSTM network proposed in this study had a small
amount of calculation, a fast running speed, and the monitoring accuracy could also meet
the monitoring requirements, and the comprehensive performance was optimal. However,
compared with large-scale deep models, such as Dense NET and Inception NET (long
running time), its monitoring accuracy was slightly lower. Compared with the ordinary
CNN model, shuffle-BiLSTM had a higher monitoring accuracy, but the running time was
slightly longer.

5. Conclusions and Future Works

In the process of deep-hole-boring, the vibration state of the boring bar is difficult to
monitor. To solve this problem, this study proposed an intelligent monitoring technology
of the boring bar’s vibration state based on data acquisition, signal processing, and deep
learning technology. Applying the proposed technology to the boring monitoring system,
the vibration state of the boring bar can be perceived in real-time. Operators can adjust the
processing parameters according to the perception results to improve the efficiency and
accuracy of processing. Through a large number of experimental studies and comparison
with some traditional depth models, the effectiveness and superiority of the model were
verified. The main conclusions are as follows:

(1) The secondary time–frequency representation method with the kernel function
(SPWVD) was used to process the experimental data. The original data were transformed
into a two-dimensional time–frequency spectrum, and this was identified by the deep
network model. The deeper features were extracted, and the effective classification of the
vibration state was realized.

(2) The group convolution method was used to extract some features of the input
layer, and the group convolution layer was rearranged by channel shuffling. This reduced
the amount of calculation, shortened the calculation time of the model, and improved the
real-time monitoring, while avoiding the cognitive limitations of the model. BiLSTM was
used to extract and screen the data memory characteristics, which enhanced the memory
ability of the network and realized the accurate classification of the boring bar’s vibration
state.

(3) The cutting experiments of different vibration states of the boring bar were de-
signed, and 192 groups of cutting experiments were carried out by changing different
experimental parameters. The vibration and sound pressure data in the experiment were
collected and used as the original data of the vibration state perception. The deep network
model was trained and tested, and the test classification accuracy of the model used in this
paper was 91.2% when the parameter quantity was only 1.9 M. A variety of typical deep
network models and a single-signal input model were added for performance comparison
testing. The test results showed the advantages of the models and methods used in this
paper.

This study provides a better choice for civil and military enterprises involved in
deep-hole-boring. To better guide industrial production, in the future research work,
the following potential research directions can be further explored: how to accurately
identify the vibration state of the boring bar under variable working conditions and design
an appropriate deep transfer learning model to deal with small samples or incomplete
datasets.
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