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Abstract: The Internet of vehicles (IoV) is an Internet-of-things-based network in the area of trans-
portation. It comprises sensors, network communication, automation control, and data processing
and enables connectivity between vehicles and other objects. This study performed main path
analysis (MPA) to investigate the trajectory of research regarding the IoV. Studies were extracted
from the Web of Science database, and citation networks among these studies were generated. MPA
revealed that research in this field has mainly covered media access control, vehicle-to-vehicle chan-
nels, device-to-device communications, layers, non-orthogonal multiple access, and sixth-generation
communications. Cluster analysis and data mining revealed that the main research topics related to
the IoV included wireless channels, communication protocols, vehicular ad hoc networks, security
and privacy, resource allocation and optimization, autonomous cruise control, deep learning, and
edge computing. By using data mining and statistical analysis, we identified emerging research
topics related to the IoV, namely blockchains, deep learning, edge computing, cloud computing,
vehicular dynamics, and fifth- and sixth-generation mobile communications. These topics are likely
to help drive innovation and the further development of IoV technologies and contribute to smart
transportation, smart cities, and other applications. On the basis of the present results, this paper
offers several predictions regarding the future of research regarding the IoV.
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1. Introduction

The Internet of vehicles (IoV) is an Internet of things (IoT)-based network in the area
of transportation that involves sensors, network communication, data processing, and au-
tomation control. The IoV enables real-time information exchange among vehicles, drivers,
pedestrians, and road infrastructure through vehicle-to-everything (V2X) communication
and thus facilitates the convergence of mobile communication technology, information sys-
tems, and intelligent transportation [1]. Understanding of the applicability of the IoV differs
among fields. Automobile manufacturers primarily consider the IoV to be a tool for the in-
formatization and intelligentization of automobiles, providers of intelligent transportation
system (ITS) solutions consider the IoV to be a tool for facilitating the intelligentization of
transportation-related technology, and Internet companies consider the IoV to be a mobile
information terminal that offers opportunities for business innovation. The Internet has
become an increasingly prevalent feature in industrial operations. In addition, vehicles are
likely to be more frequently used as open platforms for the integration of various domains,
and the IoV is likely to be a core aspect of this process [2].

The IoV was first developed through vehicular ad hoc networks (VANETs). VANETs
are used in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications
to ensure road safety, facilitate navigation, and provide services. VANETs are a crucial
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component of ITSs. Current IoV networks include more forms of communication than
do VANETs; for example, they include vehicle-to-pedestrian (V2P), vehicle-to-network,
vehicle-to-grid (V2G), and vehicle-to-sensor (V2S) communication [3,4]. The IoV has
led to ubiquitous V2X connectivity, with “X” potentially representing vehicles, roads,
infrastructure, people, the cloud, or the Internet [5]. The emergence of fifth-generation (5G)
and sixth-generation (6G) technologies, artificial intelligence, intelligent driving systems,
big data, and cloud computing have enabled the IoV to transform vehicles into intelligent
entities, and thus the IoV has strong industry potential [6].

Given the current data-driven age, the IoV was built using IoT infrastructure, equip-
ment, and technology. The amount of information generated in the IoT network is continu-
ously increasing, and this phenomenon has led to new challenges related to the efficient
management and extraction of data in the network. Therefore, the reexamination and
application of large-scale adjustments to the efficiency, complexity, interface, dynamics,
robustness, and interactive aspects of the IoT are essential; the traditional IoT framework is
no longer sufficient to meet current demands. The present study systematically analyzed
the development of next-generation IoT technology [7]. Specifically, we created a systematic
catalogue of the most recent developments in the field of IoT technology and presented a
comprehensive overview of IoT technology with consideration of big data, data science,
network science, and connection technology. In addition, we proposed a system for IoT
classification based on the medium access control (MAC) and radio duty cycle layers of
the IoT architecture. The MAC layer is responsible for coordinating and connecting IoT
devices, and duty cycling is a fundamental process for wireless networks and an essential
means of saving energy, which is crucial if nodes must operate continuously for several
days at a time [8]. Furthermore, in the current study, we focused on the conceptualization,
key concepts, growth, and most recent trends of the IoT and discussed the importance
of integrating big data, data science, and network science within the IoT. Additionally,
we conducted in-depth analyses of the challenges associated with IoT networks, such
as the construction of IoT frameworks, verification of data sources, and integration of
cloud computing and edge computing into IoT networks to broaden the scope of the IoT’s
applications. These challenges must be addressed through technological advancements in
IoT systems before the IoV can be further developed.

Data from a preliminary study published by multiple automotive sales tracking
companies, including LMC Automotive and EV-Volumes.com, revealed that approximately
10.5 million battery electric vehicles and plug-in hybrid electric vehicles were sold in 2022,
constituting a 55% increase from the previous year. The data published in that study
indicated that, overall, exponential growth had occurred in the electric vehicle industry
and that this growth spurred the rapid development of IoV applications. In the current
study, we explored how the IoV can improve the safety and efficiency of vehicles, advance
automobile technology, protect the environment, and improve consumer quality of life.
This paper proposes that the IoV could be used to address the following core issues: First,
the IoV could improve traffic safety by enabling the establishment of V2V communication,
making it possible for vehicles to share information regarding their speeds and locations
relative to other vehicles. Such information sharing could then provide automatic responses
that, in turn, could prevent traffic accidents. Second, the IoV could enhance traffic efficiency
by facilitating V2V coordination, which would help to prevent traffic jams, enhance road-
use efficiency, and enable the optimization of intelligent traffic signal settings. Third, the
IoV is a key component of autonomous driving technology. By connecting to the IoV
network, autonomous vehicles can obtain data regarding traffic conditions to improve the
safety and efficiency of their autonomous driving. In addition, the IoV could be used to
optimize vehicle paths and speeds in order to reduce unnecessary energy consumption and
carbon emissions and thus alleviate the effects of vehicle use on global warming and climate
change. Finally, the development of the IoV drives the development of new, innovative
services and commercial models, such as shared transportation, unmanned vehicle use,
and intelligent logistics models. These models may lead to new opportunities to improve
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human quality of life. Therefore, research regarding the IoV is potentially valuable and is
thus worthy of continued investment and pursuit.

The current study was conducted as follows: First, main path analysis (MPA) was
conducted to map the knowledge structure of IoV research. Next, cluster analysis was
performed to select seven main clusters, which were identified as emerging topics for
further analysis based on studies regarding the IoV published between 1993 and 2023.
Accordingly, this paper provides suggestions regarding emerging topics. Our findings
regarding these emerging topics may offer new perspectives on and new possibilities for
the future development of the IoV.

1.1. Definition of the IoV

Contreras et al. [9] indicated that the IoV involves the seamless integration of IoT tech-
nology into in-vehicle communication systems and the combination of VANETs and the IoT.
Alam et al. [10] defined the IoV as an integrated application system combining ITSs and the
IoT to enable intelligent transportation and to connect vehicles to infrastructure as a means
of creating vehicle–road networks that can provide seamless intelligent transportation
services. Jiacheng et al. [11] described the IoV as a system of smart vehicles equipped with
advanced sensors, controllers, actuators, and other devices in which communication and
networking technology is employed for environmental sensing, intelligent decision making,
and control. Hartenstein et al. [12] defined the IoV as an open, integrated, manageable,
and reliable system that involves coordination among humans, vehicles, other machines,
and the environment; that study also indicated that in the IoV, advanced information
communication and processing technology is used to identify, process, and transmit static
and dynamic information among humans, vehicles, communication networks, and road
infrastructural devices and that the IoV therefore enables connectivity among humans,
vehicles, and the environment.

This paper defines the IoV as an IoT network of transportation that involves sensors,
wireless communication technology, satellite positioning systems, big data processing,
and cloud computing. The IoV can be used to achieve intelligent management because it
processes static and dynamic data related to vehicles, drivers, pedestrians, power grids,
and road infrastructure and transmits these data to backend platforms. These data are
subsequently analyzed, with the results used to enhance vehicle safety, manage traffic,
control vehicles, facilitate vehicle diagnostics, and help drivers.

1.2. Architecture of the IoV

No consensus has yet been reached in academia regarding the structure of the archi-
tecture of the IoV. Nanjie [13] indicated that the architecture of the IoV is similar to that of
the IoT; that is, the IoV comprises sensing layers (client), network layers (connection), and
application layers (cloud). Studies have proposed IoV architectures with between three and
seven layers (Table 1). The IoV is used for V2V communication and in vehicle-to-terminal
service networks. It constitutes a complex system involving dynamic movement in addi-
tion to interaction among humans, vehicles, and the environment. In addition, the IoV
relies on software for computation, deep learning, and communication and thus requires a
strong architecture. Li et al. [14] proposed an architecture comprising four layers—namely
a physical layer, a network layer, a middleware layer, and an application layer—for the
IoV. The physical layer enables communication between vehicles and infrastructure and
comprises hardware, sensors, and communication equipment. The network layer involves
communication protocols and the infrastructure of the network and enables data trans-
mission between vehicles and infrastructural devices. The middleware layer involves
services and protocols that ensure compatibility among processes such as data manage-
ment, data processing, and data sharing. Finally, the application layer involves practical
applications and services, such as traffic management, navigation, and remote vehicle
control. Table 1 presents a summary of the literature regarding the potential architectures
of the IoV [1,2,5,9,13–30].
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Table 1. Summary of the literature regarding IoV architectures (adapted from [31]).

Author Layers Year Name of Layers Communication
Links Models

Nanjie [13] 3 2011 (1) Client, (2) Connection, (3) Cloud V2V, V2R, V2P, V2I
Li et al. [14] 4 2012 (1) Sensing, (2) Network, (3) Data, (4) Application V2V, V2I

Sherazi et al. [15] 3 2019 (1) Client, (2) Connection, (3) Cloud V2I
Bonomi [16] 4 2014 (1) Services, (2) Operation, (3) Infrastructure, (4) End points V2V, V2I

He et al. [17] 4 2016 (1) Cloud computing, (2) SDN control
(3) Fog computing, (4) Infrastructure V2V, V2I

Kaiwartya et al. [1] 5 2016 (1) Perception, (2) Coordination, (3) Artificial intelligence,
(4) Application, (5) Business

V2I, V2V, V2S,
V2P, V2R

Contreras-Castillo
et al. [18] 7 2016

(1) User interaction layer, (2) Data acquisition layer, (3) Data
filtering and pre-processing layer, (4) Communication
layer, (5) Control and management layer, (6) Business layer,
(7) Security layer

V2S, V2P, V2V, V2I,
V2R, R2R

Wang et al. [19] 3 2017 (1) Physical, (2) Control, (3) Application V2I, V2V, V2S,
V2P, V2R

Wan et al. [20] 3 2017 (1) Vehicle, (2) Location, (3) Cloud V2V, V2R

Gandotra et al. [21] 3 2017 (1) D2D area network, (2) Network management,
(3) D2D applications

(D2D-B), (D2D-C),
direct D2D

(D2D-D), (D2D-N).

Yang et al. [2] 4 2017
(1) Vehicle network environment sensing and control
(2) Network access and transport, (3) Coordination
computing control, (4) Application

V2V, V2I

Nahri et al. [22] 3 2018 (1) IoV, (2) Fog, (3) Cloud V2I, V2V

Contreras-Castillo
et al. [9] 7 2018

(1) Vehicle interface, (2) Data acquisition, (3) Data filtering
and preprocessing, (4) Communication, (5) Control and
management, (6) Processing, (7) Security

V2V, V2I, V2P, V2S,
V2R, V2D

Li-minn et al. [5] 7 2018
(1) Identification, (2) Physical objects, (3) Inter-intra
devices, (4) Communication, (5) Cloud services,
(6) Multimedia and big data computation, (7) Application

V2V, V2R, V2X,
V2G, V2S, V2I, V2B,

V2H, V2P, V2D,
D2D

Kai Liu et al. [23] 4 2019 (1) Cloud computing, (2) SDN control, (3) Fog computing,
(4) Infrastructure I2V, V2V

Ji et al. [24] 4 2020 (1) Cloud platform, (2) Edge, (3) Data acquisition,
(4) Security authentication V2V, V2I, V2R, V2P

Li et al. [25] 5 2020 (1) Physical, (2) Data link, (3) Network, (4) Perception,
(5) Application V2V, V2R

ICAISC-2020 [26] 5 2020 (1) Business, (2) Application, (3) Artificial intelligence,
(4) Coordination, (5) Perception V2R, V2I, V2X

Nassar and Yilmaz [27] 3 2021 (1) Deep reinforcement learning, (2) Infrastructure
network, (3) Management V2X, V2I, V2R

Gao et al. [28] 3 2022 (1) Clients, (2) Endorsement and commitment peers,
(3) Ordering services V2X, V2R

Wang et al. [29] 4 2023 (1) Terminal, (2) Network, (3) Platform, (4) Service V2X

Mao et al. [30] 4 2023 (1) Data plane, (2) Lower control plane, (3) Upper control
plane, (4) Application plane V2R, V2I, V2X

1.3. Applications of the IoV

The development of wireless communication and information technologies has led to
the development of numerous applications of the IoV across multiple fields [1,32–38]. This
subsection presents examples of such applications.

Safe Driving and Traffic Control: The IoV has enabled V2V communication and
coordination, which has improved the safety of driving. Information sharing through the
IoV has led to safer, more efficient, and more intelligent driving. Collision prevention
systems integrated with the IoV can sense risks and warn drivers. In addition, in the
event of a collision, the system automatically sends the location information of the vehicles
involved and other data to emergency response teams, leading to faster rescue times, which
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in turn can help save lives. Finally, during traffic jams or after accidents, the IoV can be used
to obtain real-time road condition and traffic data and thus facilitate the implementation of
traffic control measures.

Convenient Services: The IoV provides drivers and passengers with real-time traffic
information, weather updates, parking information, and navigation services, all of which
enable drivers to avoid congestion or heavy traffic due to accidents. In addition, the IoV
enables a driver to remotely lock and unlock their vehicle’s doors, start and stop their
vehicle’s engine, and adjust their vehicle’s air conditioning, all of which save them time
and make driving more comfortable and enjoyable.

Diagnostic and Remote Telematics: The IoV provides vehicle owners and technicians
with access to remote diagnostic services. Technicians can understand and provide trou-
bleshooting assistance for problems from remote locations, and sensors and real-time data
collection enables technicians to monitor vehicle performance and identify problems, which
saves time and reduces maintenance and repair costs. Finally, through 5G and wireless
technology, vehicle owners and fleet managers can monitor vehicle performance, plan
routes, and monitor driving behaviors to ensure vehicle safety, optimize vehicle utilization,
and reduce fuel consumption.

Insurance: The IoV can be used to collect information regarding a vehicle’s speed,
braking performance, and acceleration; such information can be used to assess driver
risk and determine insurance premiums. In addition, insurance companies can use such
information when people file claims and when companies need to process these claims;
specifically, real-time data regarding the accident for which a claim is being filed can be
sent to a company for assessment. In this way, the IoV can help create a streamlined
insurance experience.

Infotainment: The IoV enables the use of various services for drivers and passengers.
For example, the IoV can enable passengers to access music and video streaming services
and make video calls through a high-speed data connection. In addition, because it collects
and analyzes users’ preferences and habits, the IoV can provide data that enable content and
services to be tailored to individual users’ needs and that therefore offer users customized
experiences and make driving more enjoyable.

Self-Driving: Self-driving technology has gradually matured in recent years, and
artificial intelligence and deep learning are crucial components of such technology. Self-
driving technology can prevent traffic accidents due to drivers’ mistakes because the large
amounts of data generated during self-driving improve the capability of deep-learning-
based self-driving. In addition, advancements in hardware have rendered deep learning
algorithms better able to process data in real time, which has improved environmental
sensing, decision-making, and control abilities. In summary, integration of the IoV into
self-driving technology systems can provide drivers with information regarding the envi-
ronment, other vehicles, speed, and driving routes in real time, which in turn can improve
driving safety.

2. Materials and Methods
2.1. Data Source

This study analyzed data retrieved from the Web of Science (WOS) academic database.
The WOS database was established in 1997 by US-based company Thomson Reuters and
provides research and citation data across numerous disciplines, including the natural
sciences, engineering, medicine, agriculture, the humanities, and the social sciences.

2.2. MPA

Path citation analysis is a key research tool for bibliometric study. Such analysis is used
to explore the relationships between source works and cited works by analyzing the citation
relationships among research articles, authors, and journals. Analysis of citation behaviors
in the literature can assist researchers in understanding the associations among studies,
the citation characteristics of each discipline and domain, and the academic background
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of each author [39]. Citation analysis mainly involves the quantification of literature and
the use of statistics, algorithms, and comparisons to analyze the quantified literature and
the citation patterns in the literature. The results of such analysis reveal developmental
trends, characteristics of literature use, the relevance of studies, and possible future trends
within a domain [40,41]. We employed citation analysis as our main research approach
and combined it with MPA and cluster analysis. First, citation analysis was performed
to investigate the development in the academic knowledge regarding the IoV and the
developmental trends of IoV technologies. A citation network was constructed to compile
information regarding the development and evolution of IoV technologies up to the date
that this paper was composed. Subsequently, the complex network structure of the citation
network was digitized. MPA was performed, with an algorithm used to obtain the traversal
counts of each link. Finally, key links with high traversal counts were connected to establish
the main path of knowledge flow in each domain.

MPA was developed by Garfield et al. [42], who used it to investigate the development
of research on DNA through analysis of the literature citation network for that field of study.
Building on the work of Garfield et al., Hummon and Doreian [43] proposed a weighted
calculation method, which laid the foundation for MPA. The weighted calculation method
comprises two steps, namely information flow calculation and path tracing. Information
flow is determined using algorithms that calculate the importance of citation relationships
in the literature and assign weights to each connection in the network. The algorithms
that are commonly used for weighted calculation include search path count (SPC), search
path link count (SPLC), and search path node pair (SPNP). The main path is constructed
by calculating path weights. SPC, the simplest algorithm, counts the number of times a
particular link is traversed along all possible paths from all sources to all sinks. In SPLC,
the number of times a link is traversed along all possible paths from all ancestors of a tail
node (including itself) to all sinks is calculated. In SPNP, the number of times a link is
traversed along all possible paths from all ancestors of a tail node (including itself) to all
descendants of the head node is calculated [44].

On the basis of the suggestions of Liu and Lu [45], the present study combined global
MPA and key-route MPA and empirically determined that SPLC outperformed SPC and
SPNP and enhanced MPA. When weight is calculated in SPLC, all ancestor nodes of a
tail node are considered to be starting points for each link in a network. The number of
possible paths from the starting points that contain a given link and the number of possible
paths from the descendants of a head node to all sink nodes are calculated. The product
of the two numbers is the SPLC value for the link; a higher SPLC value indicates greater
information flow through the link and that the link has a more pronounced effect on a field.
SPLC is used to calculate the total number of possible paths from sources and nodes to
tail nodes and the number of possible paths from tail nodes to sinks. The product of these
numbers of possible paths then yields the weight for all links. For example, for the C–D
link, the nodes A, B, and C occur before the tail node, and three potential paths include
the link (i.e., A–C–D, B–C–D, and C–D). In addition, three paths from tail node D to sink
nodes E, G, and H are possible (i.e., D–E, D–F–G, and D–F–H). Multiplying the numbers of
potential paths (3 ancestor paths × 3 sink paths) yields 9 (Figure 1). Figure 2 is the results
from the SPLC algorithm in determining the main path.
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Figure 2. The results of SPLC algorithm final main path.

We used the MPA program developed by the Da Vincier Lab of National Taiwan
University of Science and Technology to calculate main paths and cluster groups for the
articles identified on the WOS database. We then used the MPA software (Release 465) and
the Pajek program to evaluate the network links and visualize the network paths, with
thicker paths indicating higher importance in the literature and the direction of the arrows
indicating the direction of knowledge diffusion.

2.3. Edge-Betweenness Clustering

Newman and Girvan [46] employed cluster analysis to categorize similar studies
within a citation network. When two articles cite the same study and are cited by the
same group of studies, the two articles are likely to be discussing similar topics. Studies
regarding the same topic form a group, or a “cluster”, within a citation network. The
present study employed edge-betweenness clustering to analyze groups of studies by
gradually removing important links within the citation network that we constructed. This
process was completed using the following steps:

1. We calculated edge-betweenness values, which represent the number of shortest
paths between nodes within a network that include a given link and pass through a
given edge.

2. We removed the link with the highest edge-betweenness value in the citation network.
3. We repeated Steps 1 and 2 if a cluster was separated from the citation network and

then calculated the cluster’s modality. If no new clusters were separated, these steps
were repeated until all links in the network were removed.

4. We selected the clustering result with the highest modularity value. By completing
edge-betweenness clustering, we obtained a sequence of link removal steps, with
a cluster potentially being identified each time the steps were repeated. After the
edge-betweenness clustering was completed, the cluster with the highest modularity
value was selected.

3. Results
3.1. Data Statistics

We extracted academic studies from the WOS database. “Internet of Vehicles”, “In-
ternet of Vehicle”, “vehicle to everything”, “V2X”, and other search terms related to the
IoV were used to perform the search. An initial search of the WOS database yielded
8446 studies. After non-English articles were excluded, 8087 articles remained. After MPA
was completed, 7519 studies remained, indicating that the constructed citation network
had 93% precision (network size/number of papers = 7519/8087 = 0.93). The cumulative
number of IoV papers on WOS database is presented in Figure 3. The number of studies
available on the WOS database increased each year, indicating that the IoV is a trending
topic that warrants further investigation.
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3.1.1. Influence of Journals

This study used the g-index as an indicator to rank the journals in which the identified
articles were published on the basis of their influence in the field of the IoV. When the
g-index values were the same for two journals, the h-index was used (Table 2). The highest
ranked journal was IEEE Transactions on Vehicular Technology, which had a g-index
score of 123 and had published 700 studies related to the IoV. The number of times this
journal had been cited (24,131) was also high, indicating that the journal has had a strong
influence in IoV research. The second-highest ranked journal, IEEE Transactions on Intelligent
Transportation Systems, had a g-index of 107, had published 554 studies on the IoV, and
had been cited 16,409 times. IEEE Access was ranked third, the IEEE Journal on Selected
Areas in Communications was ranked fourth, and the IEEE Communications Magazine was
ranked fifth.

Table 2. Top 10 most influential journals in IoV field.

Ranking Name g-Index h-Index Total Papers Active Years

1 IEEE Transactions on Vehicular Technology 123 83 700 1997–2022
2 IEEE Transactions on Intelligent Transportation Systems 107 70 554 2006–2022
3 IEEE Access 75 45 574 2015–2022
4 IEEE Journal on Selected Areas in Communications 69 40 72 2007–2022
5 IEEE Communications Magazine 68 37 68 2003–2022
6 IEEE Internet of Things Journal 66 37 244 2014–2022
7 Transportation Research Part C: Emerging Technologies 62 36 107 2005–2022
8 Computer Communications 52 29 98 2007–2022
9 Ad Hoc Networks 49 32 119 2009–2022

10 Vehicular Communications 47 29 175 2014–2022

3.1.2. Influence of Authors

This study also used the g-index as an indicator to identify the 20 authors with articles
listed on the WOS database with the strongest influence on research regarding the IoV.
When two authors’ g-index values were the same, these authors’ h-index scores were used
instead. The 20 most influential authors are listed in Table 3. Notably, because this ranking
was established solely on the basis of the studies listed on the WOS database, influential
authors in this field, including experts and editors who reviewed studies, that were not
listed on the database may have been overlooked.
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Table 3. Top 10 most influential authors in IoV field.

Ranking Name g-Index h-Index Total Papers Active Years

1 Rodrigues, Joel J. P. C. 41 23 45 2011~2022
2 Guizani, Mohsen 39 25 52 2014~2022
3 Shen, Xuemin (Sherman) 37 27 37 2008~2018
4 Ai, Bo 37 18 41 2013~2022
5 Kumar, Neeraj 36 21 52 2013~2022
6 Chen, Chen 31 19 43 2012~2022
7 Calafate, Carlos T. 30 19 30 2010~2021
8 Zhong, Zhangdui 30 16 35 2013~2022
9 Shen, Xuemin 29 23 29 2007~2022
10 Boukerche, Azzedine 29 15 39 2008~2022
11 Gerla, Mario 28 20 28 2009~2019
12 Cano, Juan-Carlos 28 18 28 2010~2020
13 Vinel, Alexey 28 16 28 2011~2022
14 Zeadally, Sherali 27 18 27 2008~2022
15 Manzoni, Pietro 27 17 27 2010~2020
16 Wu, Celimuge 27 17 28 2010~2022
17 Wang, Cheng-Xiang 26 19 26 2009~2022
18 Cheng, Xiang 26 14 26 2009~2022
19 Choo, Kim-Kwang Raymond 25 14 26 2016~2022
20 Zhang, Yan 24 17 24 2010~2022

3.2. Global MPA

This study analyzed 22 academic articles through global MPA, as presented in Figure 4.
In this figure, the green node represents the source node for research in the IoV field,
and the blue node represents the sink node. Each red node represents a paper, and the
nodes are connected by arrows indicating the flow of knowledge, with the thickness of the
connecting links indicating weight and influence. The codes next to the nodes represent the
first authors’ surnames, the first initials of the other authors’ surnames, and the publication
years of the papers represented by the nodes. For example, for code GiYT2022, “Gi” is the
first author’s surname; “Y” and “T” are the first letters of the second and third authors’
surnames, respectively; and 2022 is the year of publication.
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The key research found through global MPA is as follows:

1. Initial research: 2003 Medium Access Control (MAC)

MAC plays a critical role in wireless communication in the IoV and is primarily used to
manage network access on communication interfaces, assign access rights for transmission
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media, and define rules for preventing conflict among devices sharing a single transmission
medium. In the IoV, dedicated short-range communications (DSRC) technology specifically
designed for vehicle communication can be used for wireless-communication-based traffic
management to ensure road safety and prevent traffic congestion. The MAC layer of DSRC
technology manages data transmissions and network access in V2V communication and
ensures accurate and timely data transmission [47].

2. Phase I: V2V Communication (2006–2014)

In the first phase of IoV research, most studies explored V2V communication channels
and wireless communication channels for data transmission between vehicles. These
channels involve the network layer of the IoV architecture. When these channels experience
interference, the quality and reliability of communication may be affected. The quality and
reliability of V2V communication channels can also be affected by the distance between
vehicles, the type of communication technology involved, the surrounding environment,
obstacles, and reflective surfaces [48]. In addition, technology can be used to prevent
interference in V2V communication channels. A key characteristic of V2V channels is their
time variability and lack of stationarity, which can affect the reliability and latency of data
packet transmission [49]. In summary, V2V communication channels play a critical role in
facilitating communication between vehicles and are essential in ensuring that the IoV can
support various applications and services.

3. Phase II: Device-to-Device (D2D) Management (2015–2017)

D2D vehicular communication in the IoV supports direct communication between
devices without the need for signals to pass through a central infrastructure. D2D commu-
nication enables vehicles to exchange information and improves environmental sensing
capability, traffic management, and safety. Key challenges associated with D2D communi-
cation include interference coordination, location-based resource allocation, and adjacent
cooperative transmission scheduling [50]. The main advantages of D2D communication
are higher spectrum efficiency, lower communication latency, lower energy consumption,
and extended wireless coverage.

4. Phase III: Layer Perspective (2017–2018)

The two articles published during this phase of IoV research explored the physical and
network layers of the IoV architecture. The physical layer of the architecture is responsible
for transmitting and receiving signals through communication channels. One published
study related to this layer focused on wireless communication between vehicles, the design
and analysis of communication protocols, modulation and demodulation, encoding and
decoding, multiuser detection, multiantenna technology, and beamforming [51]. The
other article published during this phase investigated V2V and V2I communication at
the network level, network topology, routing protocols, network layer communication
protocols, data transmission, and congestion control [52].

5. Phase IV: Non-Orthogonal Multiple Access (NOMA) (2019–2021)

NOMA technology is an emerging technology used in IoV networks that helps devices
connect to a network and share resources [53]. NOMA is used to assign a different power
level to each user in order to enable sharing in situations where multiple users can use
a single time or spectrum resource. This system improves bandwidth utilization and
prevents interference. For IoV systems, NOMA offers several advantages. For example,
it enables real-time traffic management, V2V communication, and remote vehicle control.
In an IoV network with NOMA, vehicles can exchange information in real time by using
a single communication resource, leading to more efficient traffic management and safer
driving. NOMA can also be used for resource-intensive IoV applications and services and
can improve ITSs [54].
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6. Phase V: 6G Communication (2022)

Numerous studies have conducted conceptual research on 6G mobile wireless systems.
IoV networks are highly dynamic and complex, and users of these networks expect them
to have ultra-low latency, high reliability, and strong data connections, all of which can
be achieved using 6G technology. In addition, the development of 6G technology could
facilitate the creation of ITSs and overcome the limitations of 5G technology [55]; compared
with 5G networks, 6G networks are expected to have higher data transmission rates, lower
latency, and higher reliability and thus will likely be better able to support innovative IoV
applications and services [56].

3.3. Key-Route Main Paths of Reviewed Articles

Because only a single main path is established through global MPA, gaining a com-
prehensive understanding of technological development through such analysis is difficult.
Therefore, in the current study, we also used the key-route main path approach (Figure 5)
to ensure that no influential studies would be overlooked. We identified 31 key studies
regarding the key-route main path. Of these studies, 22 were also identified on the global
main path. In the nine remaining studies, we discovered a topic that had not been re-
searched in the aforementioned literature, namely software-defined networking in the IoV,
which involves the use of software-based network management and control to separate the
control layer from the data layer in an IoV network. Such separation enables dynamic and
programmable network resource management and efficient and flexible communication
between vehicles and infrastructural devices [57].
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3.4. Cluster Analysis

To further explore research regarding the IoV, this study used the MPA program’s
group finder function and edge-betweenness clustering analysis. We identified 20 clusters,
and the top 7 clusters were selected for analysis. These groups, which were ordered on
the basis of the year in which the first study in the group was published, comprised 335,
374, 2110, 1322, 620, 476, and 190 studies. Wordle was used to mine title and keyword data
for each group. The following keywords were obtained for the seven clusters: 1. wireless
channels, 2. networks and control, 3. VANETs, 4. security and privacy, 5. resource allocation
and optimization, 6. traffic control, and 7. computing. We read the key studies in each
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group and assigned the following names to the seven cluster groups: 1. wireless channels,
2. communication protocols, 3. VANETs, 4. security and privacy, 5. resource allocation
and optimization, 6. vehicle autonomous cruise control (ACC), and 7. deep learning and
edge computing.

3.4.1. Cluster 1: Wireless Channels (2002–2022)

Cluster 1 comprised 335 papers, including 18 key papers that were identified on
the global main path (Figure 6); the main topics were RF channel emulation, wireless
system designs based on IEEE 802.11p, non-stationary vehicular channels, V2V propagation
channels, and channel nonstationarity and consistency.
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Wireless channels in the IoV transmit signals; these signals can be affected by signal
strength, multipath propagation, shadowing, and interference. The performance of wireless
channels affects the quality and reliability of the IoV and can be influenced by the frequency
bands that are used, the communication technology that is used, the communication
environment, buildings, obstacles affecting the transmission range, and interference from
devices and signals. Research into and development of reliable and efficient wireless
channel technologies are crucial to the development of the IoV [58]. Wireless channels
in the IoV entail rapidly changing propagation conditions because both the transmitters
and receivers of such channels move and because the scattering environment changes
quickly. One study reported that on European highways, V2V communication occurs at
speeds as high as 400 km/h, which leads to high channel dynamics as vehicles drive past
one another; in addition, advanced decision-directed channel estimation techniques are
required in such situations [59]. In other complex and challenging environments, such as
elevated bridges and tunnels, interference often occurs in wireless channels because of
shadowing, scattering, and delay spreading [60]. Channel technology is directly related to
information exchange and data transmission between facilities and is a vital aspect of the
IoV and its development and application.

3.4.2. Cluster 2: Communication Protocols (2003–2022)

Cluster 2 comprised 374 studies, including 16 key studies identified on the global main
path (Figure 7). The main topics in the Cluster 2 studies were cooperative vehicle safety
systems, access control protocols, DSRC, channel capacity optimization schemes for safety
application, MAC protocols with dynamic interval schemes, and time-division multiple
access (TDMA).
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Numerous regions and institutions have developed communication protocols and
control techniques for the IoV to enable it to support a wide range of applications and
functions, including DSRC, wireless access in vehicular environments, long-term vehicle
evolution, ITSs operating in the 5 GHz frequency band, and cellular V2X [61–65]. The IEEE
established IEEE 802.11p to enable V2V and V2I communication and IEEE 1609 to define
standards related to IoV communication and to ensure the security and reliability of V2V,
V2I, and D2D communication [66,67]. Multichannel MAC protocols, which can be used for
IoV wireless communication, support V2V and V2I communication and enable vehicles
to communicate through multiple wireless channels. In addition, these protocols can be
adjusted to suit different network environments in order to improve network performance
and reliability [68]. The TDMA protocol enables users to share bandwidth resources on
a single wireless channel. In this protocol, communication time is divided into time slots
and allocated to different users. Each user can transmit data during their designated time
slot without interfering with the transmissions of other users. Abbas et al. [69] proposed
a protocol called PDMAC, which overcomes the limitations of the conventional TDMA
protocol. Specifically, the PDMAC protocol prioritizes communication messages to enable
efficient and reliable message propagation with little delay and high coverage.

3.4.3. Cluster 3: VANETs (2004–2022)

Cluster 3 comprised 2110 studies, including 17 that were identified on the global
main path (Figure 8). The main research topics in this cluster were routing and broadcast
protocols, opportunistic data aggregation and forwarding, unified frameworks of clustering
approaches, data dissemination schemes, unmanned aerial vehicle assistance, and machine
learning algorithms in VANETs.

VANETs are vehicular networks that self-organize (i.e., organize without infrastruc-
tural support) through wireless communication and exchange and the sharing of informa-
tion between vehicles [70]. VANETs are an essential part of the IoV and enable connection
between vehicles and facilities. The IoV has a broad range of applications and involves
numerous technologies, communication between vehicles, and the processing and anal-
ysis of infrastructure and traffic data [3]. Wisitpongphan et al. [71] explored solutions to
the broadcast storm problem with respect to the self-organization of vehicular networks
and introduced techniques to suppress the broadcast storm—including the imposition of
node-based constraints and the distribution of control—and methods to combine these tech-
niques to improve the performance of a network. Tonguz et al. [72] proposed a distributed
vehicular broadcast protocol called DV-CAST, which improved safety and communication
between vehicles through multihop broadcasting. The studies included in Cluster 3 of the
present study discuss how the self-organization of vehicular networks can be improved
through the utilization of self-learning techniques, which can increase the efficiency of
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data convergence and forwarding by enabling systems to learn parameters, such as routes
and transmission power. Chatterjee et al. [73] explored machine-learning-based routing
methods, such as reinforcement-learning-based routing and deep-learning-based routing,
and their applications in the self-organization of vehicular networks; that study also inves-
tigated the advantages and disadvantages of routing protocols and provided directions
for future research. Numerous studies have explored and developed control techniques to
improve the reliability, security, and efficiency of VANETs; such research has promoted the
development and application of the IoV.
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3.4.4. Cluster 4: Security and Privacy (2006–2022)

Cluster 4 comprised 1322 studies, including 20 key studies identified on the global
main path (Figure 9). The topics of these studies included security and privacy in vehicu-
lar communications, privacy-preserving authentication schemes, certificateless aggregate
signatures, security models and solutions, and the prevention of attacks.
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Security and privacy protection protocols are a critical element of the IoV. In IoV
communications between vehicles and infrastructure, data must remain secure, and user
privacy must be protected. In addition, intrusions and attacks must be prevented. Several
security and privacy protection protocols have been developed to ensure the credibil-
ity, security, and privacy of sensitive information [74–77]. Some studies have proposed
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cryptography-based authentication protocols to ensure the security of vehicular communi-
cations and to enhance resilience against attacks, such as those involving forgery [78,79].
One solution that has gained attention is pairing-free certificateless identity authentication
schemes that support batch verification; such schemes ensure the efficiency of identity
authentication and data privacy protection and improve a system’s scalability and security.
This solution can be implemented to improve the applicability of the IoV [80,81].

3.4.5. Cluster 5: Resource Allocation and Optimization (2006–2022)

Cluster 5 comprised 620 studies, including 16 key studies identified on the global
main path (Figure 10). The topics of the studies in Cluster 5 included resource-sharing
schemes, D2D resource allocation, a network perspective regarding radio resource alloca-
tion, resource allocation protocols for NOMA, and resource allocation and optimization for
backscatter-enhanced NOMA.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 27 
 

 

 

Figure 10. Analysis of Cluster 5: resource allocation and optimization. 

Resource allocation and optimization in the IoV involves the efficient management 

of network resources, bandwidth, power, and computing resources to support the ex-

change of large amounts of communication data. The probability of outages should be 

minimized, and the outage capacity should be high to ensure that vehicular channels can 

optimally and instantaneously transmit information [82,83]. Studies have proposed 

frameworks for managing resource allocation, optimizing spectrum allocation, and pre-

venting interruption and interference as a means of increasing the efficiency of the IoV 

[84,85]. In addition, numerous studies have noted that the application of NOMA technol-

ogy in multiuser communication systems can facilitate the optimization of communica-

tion infrastructure. Finally, multiobjective optimization of channel quality, power, and re-

liability can improve a system’s overall performance, prevent communication delays, and 

improve the efficiency of communication and energy utilization [54,86,87]. 

3.4.6. Cluster 6: Vehicle ACC (2010–2022) 

Cluster 6 comprised 476 studies, including 14 key studies on the global main path 

(Figure 11). The topics of these studies included cooperative driving, acceleration-based 

connected cruise control, stability for large connected vehicle systems, connected and au-

tomated vehicles, and cooperative ACC (CACC). 

 

Figure 11. Analysis of Cluster 6: vehicle ACC. 

Figure 10. Analysis of Cluster 5: resource allocation and optimization.

Resource allocation and optimization in the IoV involves the efficient management of
network resources, bandwidth, power, and computing resources to support the exchange
of large amounts of communication data. The probability of outages should be minimized,
and the outage capacity should be high to ensure that vehicular channels can optimally
and instantaneously transmit information [82,83]. Studies have proposed frameworks for
managing resource allocation, optimizing spectrum allocation, and preventing interruption
and interference as a means of increasing the efficiency of the IoV [84,85]. In addition,
numerous studies have noted that the application of NOMA technology in multiuser
communication systems can facilitate the optimization of communication infrastructure.
Finally, multiobjective optimization of channel quality, power, and reliability can improve a
system’s overall performance, prevent communication delays, and improve the efficiency
of communication and energy utilization [54,86,87].

3.4.6. Cluster 6: Vehicle ACC (2010–2022)

Cluster 6 comprised 476 studies, including 14 key studies on the global main path
(Figure 11). The topics of these studies included cooperative driving, acceleration-based
connected cruise control, stability for large connected vehicle systems, connected and
automated vehicles, and cooperative ACC (CACC).
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ACC is an intelligent system in which sensors, control systems, and communication
technologies are used to automate driving, increase comfort and safety, prevent accidents
and traffic congestion, and save fuel and energy [88]. The CACC system enables com-
munication and coordination between vehicles to improve driving safety and efficiency.
Specifically, CACC reduces the complexity of a system and developmental costs and offers
interoperability among types and models of vehicles. It also prevents traffic accidents,
improves efficiency, and reduces fuel consumption [89,90]. Researchers have explored the
effects of platoon-based cooperative driving in automated driving systems on traffic flow
and stability, and studies have analyzed models of traffic dynamics and their relationships
with IoV control systems to determine their effects on these systems’ performance and
stability. By adopting the Lighthill–Whitham–Richards model, one study was able to facil-
itate interaction between traffic flow and IoV control systems; this interaction mitigated
the effects of IoV control systems on traffic flow [91]. ACC and cooperative driving are
crucial to the development of IoV technology because they can ensure vehicle safety and
fuel efficiency by improving traffic flow while only minimally affecting the environment.

3.4.7. Cluster 7: Deep Learning and Edge Computing (2013–2022)

Cluster 7 comprised 190 studies, including 10 key studies identified on the global
main path (Figure 12), which covered topics such as data transmission, real-time interactive
systems, deep learning in the edges of vehicles, mobile edge computing, and computation
to offload task scheduling.
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Deep learning and edge computing are two key technologies used in the IoV. Deep
learning algorithms can analyze large amounts of data obtained from sensors and other
sources to improve the efficiency of vehicle communication and data exchange. Edge
computing involves processing data and computations at the network edge, which is
close to the data source, to reduce signal latency, loosen bandwidth requirements, and
improve the performance and efficiency of vehicle communications and data exchange [92].
The earliest study in Cluster 7, which was published in 2013, investigated data tracking
and data transformation problems in the IoV; that study proposed two solutions, namely
area-based tracking and parked-vehicle-assisted tracking [93]. Compressive sensing (CS)
is a highly efficient sampling method that is more efficient than the conventional Nyquist
sampling theorem. CS has been used to monitor driving safety, ensure privacy, detect
vehicles, facilitate communication, evaluate traffic conditions, stream videos, and recognize
objects [94]. Deep reinforcement learning is a machine learning method based on deep
learning and has various applications in the IoV. It can perform complex tasks, such as
predicting traffic flow, planning routes, and guiding autonomous driving [95]. Sensor data
needs to be rapidly processed in the IoV, and thus deep learning and edge computing are
crucial to the development of IoV technology.

4. Discussion
4.1. Research Regarding the IoV

We used the logistic growth model and Loglet Lab 4 to graphically present the research
regarding the IoV. In Figure 13, the dashed lines represent the estimated cumulative number
of papers, and the solid lines and dots represent the actual cumulative number of papers.
In addition, the period, limit, and inflection point were estimated using the algorithm.
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The number of IoV-related papers has increased considerably in recent years; since
2018, the number of IoV-related papers published per year has increased by more than 1000.
According to the results of the Loglet Lab 4 analysis, the inflection point is forecasted to
occur in 2025, and research regarding the IoV is currently, at the time of writing, in a period
of rapid growth. The number of studies regarding the IoV will then likely stabilize in 2038,
during which the maximum number of studies likely to be conducted is 18,000.

4.2. Key Topics and Trajectory of Research Regarding the IoV

In the present study, global MPA revealed that future research regarding the IoV is
likely to cover topics related to all four layers of the IoV architecture, including the topics
of MAC, V2V channels, D2D communications, layers, NOMA, and 6G communications.
Table 4 presents the cluster analysis results, including the main keywords of the seven
clusters and their frequencies, word clouds of the keywords, and the trajectory of research
for each cluster. The topics investigated in the most studies were security and privacy
protection protocols, VANETs, and ACC.
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Table 4. Topics, number of papers, keywords, word clouds, and curves for each cluster.

Research Topic Keywords Word Cloud Article Growth Trend

Cluster 1
Wireless Channels

(2002–2022)

Channels (0.707)
Vehicle-to-Vehicle (0.352)

Model (0.146)
MIMO (0.140)

Modeling (0.098)
Characterization (0.0746)

Sensors 2023, 23, x FOR PEER REVIEW 18 of 27 
 

 

be rapidly processed in the IoV, and thus deep learning and edge computing are crucial 

to the development of IoV technology. 

4. Discussion 

4.1. Research Regarding the IoV 

We used the logistic growth model and Loglet Lab 4 to graphically present the re-

search regarding the IoV. In Figure 13, the dashed lines represent the estimated cumula-

tive number of papers, and the solid lines and dots represent the actual cumulative num-

ber of papers. In addition, the period, limit, and inflection point were estimated using the 

algorithm. 

The number of IoV-related papers has increased considerably in recent years; since 

2018, the number of IoV-related papers published per year has increased by more than 

1000. According to the results of the Loglet Lab 4 analysis, the inflection point is forecasted 

to occur in 2025, and research regarding the IoV is currently, at the time of writing, in a 

period of rapid growth. The number of studies regarding the IoV will then likely stabilize 

in 2038, during which the maximum number of studies likely to be conducted is 18,000. 

 

Figure 13. Trajectory of research regarding the IoV. 

4.2. Key Topics and Trajectory of Research Regarding the IoV 

In the present study, global MPA revealed that future research regarding the IoV is 

likely to cover topics related to all four layers of the IoV architecture, including the topics 

of MAC, V2V channels, D2D communications, layers, NOMA, and 6G communications. 

Table 4 presents the cluster analysis results, including the main keywords of the seven 

clusters and their frequencies, word clouds of the keywords, and the trajectory of research 

for each cluster. The topics investigated in the most studies were security and privacy 

protection protocols, VANETs, and ACC. 

Table 4. Topics, number of papers, keywords, word clouds, and curves for each cluster.  

Research Topic Keywords Word Cloud Article Growth Trend 

Cluster 1 

Wireless Chan-

nels (2002–2022) 

Channels (0.707) 

Vehicle-to-Vehicle 

(0.352) 

Model (0.146) 

MIMO (0.140) 

Modeling (0.098) 

 
 

Sensors 2023, 23, x FOR PEER REVIEW 18 of 27 
 

 

be rapidly processed in the IoV, and thus deep learning and edge computing are crucial 

to the development of IoV technology. 

4. Discussion 

4.1. Research Regarding the IoV 

We used the logistic growth model and Loglet Lab 4 to graphically present the re-

search regarding the IoV. In Figure 13, the dashed lines represent the estimated cumula-

tive number of papers, and the solid lines and dots represent the actual cumulative num-

ber of papers. In addition, the period, limit, and inflection point were estimated using the 

algorithm. 

The number of IoV-related papers has increased considerably in recent years; since 

2018, the number of IoV-related papers published per year has increased by more than 

1000. According to the results of the Loglet Lab 4 analysis, the inflection point is forecasted 

to occur in 2025, and research regarding the IoV is currently, at the time of writing, in a 

period of rapid growth. The number of studies regarding the IoV will then likely stabilize 

in 2038, during which the maximum number of studies likely to be conducted is 18,000. 

 

Figure 13. Trajectory of research regarding the IoV. 

4.2. Key Topics and Trajectory of Research Regarding the IoV 

In the present study, global MPA revealed that future research regarding the IoV is 

likely to cover topics related to all four layers of the IoV architecture, including the topics 

of MAC, V2V channels, D2D communications, layers, NOMA, and 6G communications. 

Table 4 presents the cluster analysis results, including the main keywords of the seven 

clusters and their frequencies, word clouds of the keywords, and the trajectory of research 

for each cluster. The topics investigated in the most studies were security and privacy 

protection protocols, VANETs, and ACC. 

Table 4. Topics, number of papers, keywords, word clouds, and curves for each cluster.  

Research Topic Keywords Word Cloud Article Growth Trend 

Cluster 1 

Wireless Chan-

nels (2002–2022) 

Channels (0.707) 

Vehicle-to-Vehicle 

(0.352) 

Model (0.146) 

MIMO (0.140) 

Modeling (0.098) 

 
 

Cluster 2
Communication

protocols
(2003–2022)

MAC (0.280)
Networks (0.272)
Protocol (0.216)
VANETs (0.171)

Safety (0.168)
Control (0.144)

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Cluster 3
VANETs

(2004–2022)

VANETs (0.262)
Networks (0.231)

Ad (0.227)
hoc (0.227)

networks (0.171)

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Cluster 4
Security and

Privacy Protection
Protocols

(2006–2022)

Security (0.292)
Privacy (0.265)

Authentication (0.262)
Networks (0.181)
VANETs (0.180)

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Cluster 5
Resource allocation
and optimization

(2006–2022)

Communications (0.475)
Networks (0.317)

V2X (0.214)
Resource (0.161)

Allocation (0.148)
5G (0.108)

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Cluster 6
Autonomous

Cruise Control
(ACC) (1994–2022)

Control (0.397)
Connected (0.372)

Traffic (0.223)
Cooperative (0.135)
Automated (0.098)

Communication (0.098)

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Cluster 7
Deep Learning and
Edge Computing

(2013–2022)

Computing (0.468)
Internet (0.421)

Edge (0.284)
Offloading (0.273)
Learning (0.200)

Reinforcement (0.126)
Deep (0.121)

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27 
 

 

Characterization 

(0.0746) 

Cluster 2 

Communication 

protocols (2003–

2022) 

MAC (0.280) 

Networks (0.272) 

Protocol (0.216) 

VANETs (0.171) 

Safety (0.168) 

Control (0.144) 

 

 

Cluster 3 

VANETs  

(2004–2022) 

VANETs (0.262) 

Networks (0.231) 

Ad (0.227) 

hoc (0.227) 

networks (0.171) 

 

 

Cluster 4 

Security and Pri-

vacy Protection 

Protocols (2006–

2022) 

Security (0.292) 

Privacy (0.265) 

Authentication 

(0.262) 

Networks (0.181) 

VANETs (0.180) 
 

 

Cluster 5 

Resource alloca-

tion and optimi-

zation  

(2006–2022) 

Communications 

(0.475) 

Networks (0.317) 

V2X (0.214) 

Resource (0.161) 

Allocation (0.148) 

5G (0.108) 

 

 

Cluster 6 

Autonomous 

Cruise Control 

(ACC) (1994–

2022) 

Control (0.397) 

Connected (0.372) 

Traffic (0.223) 

Cooperative (0.135) 

Automated (0.098) 

Communication 

(0.098) 

 

 

Cluster 7 

Deep Learning 

and Edge Compu-

ting  

(2013–2022) 

Computing (0.468) 

Internet (0.421) 

Edge (0.284) 

Offloading (0.273) 

Learning (0.200) 

Reinforcement 

(0.126) 

Deep (0.121) 

 

 



Sensors 2023, 23, 6120 19 of 26

4.3. Academic Development and Emerging Topics Related to the IoV

Emerging topics were identified using text mining and pivot analysis. We divided the
7519 studies into two groups: one with 3988 studies published between 1993 and 2019 and
one with 3531 studies published between 2020 and 2022. Subsequently, we used text mining
and pivot analysis to identify high-frequency keywords in these groups. In addition, we
performed text mining on the titles and abstracts of the studies to identify the 200 most
frequently occurring keywords. Finally, we conducted a differential analysis to compare
the datasets and identified the following emerging topics: blockchain, deep learning, edge
computing, cloud computing, vehicle dynamics, and 6G mobile communications (Table 5).

Table 5. Emerging topics in the field of IoV.

No. Keywords

Cluster 1
Keyword
Counting

(1993–2019)

Cluster 2
Keyword
Counting

(2020–2022)

Emerging
Topic

1 BLOCKCHAINS 32 261 �
2 ROADS 8 225 �
3 VEHICLE DYNAMICS 9 194 �
4 5G MOBILE COMMUNICATION 39 190 �
5 SAFETY 29 187 �
6 DEEP LEARNING 19 181 �
7 EDGE COMPUTING 23 155 �
8 COMPUTATIONAL MODELING 4 123 �
9 SENSORS 8 122 �

10 CLOUD COMPUTING 29 112 �
11 REINFORCEMENT LEARNING 11 79 �
12 COMPUTER ARCHITECTURE 2 76 �
13 REAL-TIME SYSTEMS 4 71 �
14 6G MOBILE COMMUNICATION 0 58 �

Differential analysis of keywords used in studies published between 2013 and 2019 and keywords used in studies
published between 2020 and 2022. � indicates that a keyword is related to an emerging topic (Cluster 1 < 50 and
Cluster 2 minus Cluster 1 > 50).

1. Blockchain:

Blockchain technology can be used in the IoV to achieve the decentralization and
distribution of data in order to ensure the security and reliability of vehicle communication
and data exchange. Blockchain-based IoV communication systems are secure and reliable
and can solve problems related to trust, authentication, authorization, data sharing, privacy
protection, smart contracts, and decentralization in network communication systems [96].
The advanced encryption techniques of blockchain technology can ensure the authenticity
and integrity of data.

2. Deep learning:

Deep learning involves the use of advanced machine learning algorithms and neural
networks to process and analyze large amounts of data generated through IoV ecosystems
and has been used for vehicle identification, vehicle behavior analysis, vehicle communi-
cation, vehicle safety, real-time traffic management, collision avoidance, and autonomous
driving. Deep learning algorithms can ensure the security and efficiency of communication
and data exchange in IoV networks [97,98].

Cooperative perception has emerged as a means through which vehicle networks
can adapt to ever-changing traffic environments. This technology involves the sharing
and exchange of information between vehicles, such as those that are autonomous and
those with perception capabilities, to coordinate and expand their perceptions of the sur-
rounding environment, which can lead to improved road safety and traffic efficiency. Deep
learning is vital for object detection and identification, data fusion, and the development
of communication and collaboration strategies required for cooperative perception. In
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autonomous vehicles, deep learning, which uses perception data collected from vehicle
perception systems (e.g., radars, LiDAR, and cameras), can be applied in three-dimensional
(3D) LiDAR systems to perform data acquisition and analysis and in Hydro-3D systems to
perform object detection and identification. When an individual is driving in a complex
traffic environment, their ability to accurately distinguish between objects (e.g., pedestrians,
vehicles, and traffic signs) is vital to ensuring that the vehicle is safely operated. Deep
learning can also be applied for data fusion, which involves data from multiple sources
(e.g., different vehicles or perception systems) being combined to obtain a more compre-
hensive perception of the environment. Finally, deep learning algorithms can be applied in
communication and collaboration strategies focused on optimizing the transmission and
sharing of perception data between vehicles to determine when data should be shared as
well as how data received from other vehicles should be processed. These applications of
deep learning can improve the efficacy and efficiency of cooperative perception [99].

3. Edge computing:

Edge computing involves data processing and computation at the edge of a network,
which is near the data source. Edge computing can be implemented to reduce the latency
and bandwidth requirements of IoV applications and thus can improve the performance
and efficiency of automotive communication and data exchange. In addition, edge comput-
ing eliminates the need to transmit all data and computations to centralized data centers
for processing; instead, processing is performed in vehicles or on other devices. Integrating
edge computing into the IoV can lead to improved communication and enhanced data
exchange performance and efficiency [100,101].

4. Cloud computing:

Cloud computing involves supporting data exchange and processing through cloud
services. In-vehicle devices can transmit data to the cloud for processing and analysis,
and subsequently, these data are transmitted back to in-vehicle devices or to other devices
or facilities. Cloud computing can reduce computational and storage requirements for
in-vehicle devices to save on cost and reduce energy consumption [102,103].

5. Vehicle dynamics:

Vehicle dynamics involve a vehicle’s motion and behavior in dynamic environments
and involve V2V communication, cooperative control, perception-based vehicle control,
prediction-based vehicle control, and vehicle control in ITSs. Vehicle dynamic models
can be used to analyze the motion, acceleration, and braking of vehicles under various
driving conditions and various environmental factors. This information can then be used
to develop and optimize IoV applications [104].

Xia et al. proposed an algorithm based on consensus and vehicle kinematic or dynamic
synthesis for sideslip angle estimation and adopted a multisensory framework to increase
the reliability and accuracy of their estimation. They described the importance of the
sideslip angle of vehicles and discussed its role in vehicle stability, trajectory planning, road
condition estimation, and mode switching in autonomous driving systems. In addition,
they used a global navigation satellite system (GNSS) for vehicle sideslip angle estimation.
However, the GNSS had poor estimation accuracy, particularly when horizontal speed was
being measured, and it also had poor reception in tunnels and urban canyons. Therefore,
the applicability of the active safety system was limited. Liu et al. developed a novel
approach to vehicle slip angle estimation, which is crucial to achieving stability and control
in automated vehicles; that study designed a vehicle attitude angle observer and estimation
approach and explored the possibilities of using multiple sensors (e.g., a GNSS and an
inertial measurement unit) for data collection and fusion to enhance the accuracy and
efficiency of VSA estimation. Additionally, they applied the method to an actual driving
scenario to verify its effectiveness [105,106].
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6. Application of 5G and 6G technologies:

Application of 5G and 6G communication technologies can increase the bandwidth
and speed, decrease the latency, increase the reliability, ensure the security and privacy,
and improve the encryption and authentication of the IoV. In addition, the development
of 5G and 6G communication technologies can lead to more efficient, reliable, and secure
communication in the IoV, which in turn can facilitate the development of ITSs and enhance
their applicability [107].

5. Conclusions

The development of innovative IoV technologies has considerably affected the automo-
bile industry. Therefore, developing an in-depth understanding of novel IoV technologies
and their potential applications in the automobile industry can enable researchers and tech-
nicians to improve vehicle driving safety, elevate the overall performance of the automobile
industry, and overcome future challenges. Although numerous studies have investigated
applications of IoV technologies in the automobile industry, to the best of the present
authors’ knowledge, no study had yet employed MPA to investigate this topic. Thus, the
current study used MPA to determine the main knowledge development trajectories of IoV
research. This study reviewed 7521 papers published between 1993 and 2023. The results of
the present MPA can provide researchers and technicians with an overview of the research
on the IoV and applications of IoV technologies in the automobile industry. The present
findings reveal that the knowledge development trajectories in IoV research can be divided
into five phases. In Phase I (2006–2014), studies mainly explored V2V communication
channels and wireless transmission channels for data transmission in the IoV architecture,
and these studies primarily focused on the network layer of the IoV architecture. In Phase II
(2015–2017), studies examined applications of D2D communication technologies in the IoV,
which enable direct communication between devices and do not require a central infrastruc-
ture. In Phase III (2017–2018), two papers delved into the physical and network layers of the
IoV architecture. In Phase IV (2019–2021), studies mainly investigated NOMA, a technology
used in IoV networks that enables devices to simultaneously connect to networks and
share resources. Finally, the studies in Phase V (2022) have indicated that 6G networks are
likely to lead to higher data transmission rates, lower latency, and higher reliability and
can therefore support the development of innovative IoV applications and services.

The present study conducted cluster analysis and identified seven main cluster groups
in the research regarding the IoV, namely wireless channels, networks and control, VANETs,
security and privacy, resource allocation and optimization, traffic control, and computing.
The results revealed that most related studies have focused on technology optimization,
information security, resource allocation, and coordination and collaboration. Additionally,
analyses of influential authors, influential journals, and the growth curve model of research
regarding the IoV were presented using descriptive statistics to reveal the distribution
of published studies and the growth trend of studies regarding the application of IoV
technology in the automobile industry. According to our results, the inflection point of the
literature growth curve will occur in 2025. At the time of writing, research regarding the
IoV is in a period of rapid growth. The number of studies being published on the topic of
the IoV is then expected to stabilize in 2038, during which the maximum number of studies
that is likely to be published is 18,000. Finally, research regarding the IoV is expected to
enter the maturity phase in 2030 and reach saturation in 2035.

This study conducted data mining and pivot analysis to identify emerging topics in
IoV research. The application of blockchain technology in the IoV can ensure security
in vehicle communication and data exchange. In addition, the decentralized database
systems on the blockchain can ensure the safe and reliable transmission and storage of data
and can therefore lower the risk of malicious attacks. Deep learning has been extensively
applied in autonomous driving technology connected to the IoV and can be used to teach
autonomous vehicles how to learn and perceive complex traffic conditions and ensure that
these vehicles can quickly and accurately respond to traffic conditions. The development
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of edge computing and cloud computing technologies has also led to greater innovation in
IoV research. In edge computing, a data processing task is performed near the data source
(i.e., the vehicle) to considerably reduce communication latency and improve the real-time
response capability. Cloud computing, which has considerable storage and processing
capabilities, enables vehicles to share data and learning outcomes and thus accelerates
the overall learning and adjustment speed of the IoV architecture. Research regarding
vehicle dynamics has enabled researchers and technicians to accurately predict vehicle
behaviors, and this improved accuracy has increased traffic system management efficiency.
Advancements in 5G and 6G mobile communication technologies are expected to elevate
V2V and V2I transmission speeds and create new opportunities for the development of
the IoV. The results of research regarding these emerging topics are likely to enable the
identification of new possibilities for the future development of the IoV.
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