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Abstract: This paper presents a novel probabilistic machine learning (PML) framework to estimate the
Brillouin frequency shift (BFS) from both Brillouin gain and phase spectra of a vector Brillouin optical
time-domain analysis (VBOTDA). The PML framework is used to predict the Brillouin frequency
shift (BFS) along the fiber and to assess its predictive uncertainty. We compare the predictions
obtained from the proposed PML model with a conventional curve fitting method and evaluate the
BFS uncertainty and data processing time for both methods. The proposed method is demonstrated
using two BOTDA systems: (i) a BOTDA system with a 10 km sensing fiber and (ii) a vector BOTDA
with a 25 km sensing fiber. The PML framework provides a pathway to enhance the VBOTDA
system performance.

Keywords: optical fiber sensors; data analytics; deep neural networks; distributed fiber sensors;
sensor data

1. Introduction

Brillouin-based distributed fiber-optic sensors have gained tremendous attention over
the past two decades due to their capability of measuring both strain and temperature
over tens of kilometers. A wide range of structural health monitoring applications on large
civil infrastructure (oil and gas pipelines, bridges, and railways), power grids, and border
security have been demonstrated [1,2]. Brillouin optical time-domain analysis (BOTDA) is
based on stimulated Brillouin scattering, where pump pulses and probe continuous waves
(CWs) injected into a fiber from both ends excite acoustic waves to facilitate power coupling
between the two counter-propagating optical waves. The pulsed pump waves generate a
gain or loss for the CW probe waves with downshifted or upshifted frequencies. A Brillouin
gain/loss spectrum (BGS/BLS) can be obtained over the sensing fiber distance by sweeping
frequencies around the Brillouin frequency shift (BFS), which depends on the strain and
temperature of the fiber. Several vector BOTDA (VBOTDA) system configurations have
been proposed to extract both the BGS and Brillouin phase spectrum (BPS) simultaneously.
The BPS is independent of Brillouin gain and is unaffected by nonlocal effects. BPS exhibits
low noise and is therefore a good target for deriving sensor information [3–6]. For instance,
an IQ demodulation algorithm was proposed with heterodyne detection and measured
both the BGS and BPS [7]. A double-frequency phase modulation method was proposed
that provides measurements of both BGS and BPS [8]. Recently, VBOTDA was proposed by
using a vector network analyzer to acquire BGS and BPS [9,10].

The incident pump pulses at a frequency ν0 with a certain pulse width counter-
propagates to a CW probe wave at a frequency ν0 − νB. The input pulses generate a
backscattered Brillouin signal, which is downshifted to the pump signal by the BFS νB
(around 10–11 GHz for silica single-mode fibers). The probe experiences Brillouin am-
plification and Brillouin phase shift when the difference between the input pump and
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probe wave frequency is around the BFS. A suitable signal processing technique must be
employed to evaluate the BFS from the measured BGS/BPS over the fiber length. Several
signal processing techniques have been proposed in the literature to estimate the BFS from
BGS and/or BPS measurements. These techniques can be categorized as either (i) curve
fitting (CF) or (ii) machine learning (ML)-based approaches. The latter approach is in-
creasingly being favored for long-distance BOTDA systems for its capability to process
data in real time. Several studies in the literature have reported that the ML-based models
have provided more accurate BFS predictions than their CF counterparts in scenarios such
as (i) low signal-to-noise ratio and (ii) coarsely resolved BGS/BPS measurements [11,12].
ML techniques can indeed be combined with Brillouin-based distributed fiber sensors to
enhance their performance and to enable advanced signal processing and data analysis.
These advancements open up opportunities for a wide range of intelligent monitoring
applications, including structural health monitoring, environmental monitoring, and smart
infrastructure management. In the literature, several efforts are being made to address
these challenges and to develop robust and efficient ML algorithms that can accelerate
the signal processing speed and handle the complexity and volume of data generated by
distributed fiber sensors.

BOTDA systems are often deployed in harsh environments over long distances and
are prone to several environmental and systemic factors that can increase sensor noise and
can degrade the performance of the sensing system. Several factors reduce the SNR of
a BOTDA system, such as the strength of the backscattered Brillouin signal (typically at
nW), silica fiber double path loss (typically 0.4 dB/kmat 1550 nm), noise sources, and other
nonlinear effects that limit the input power of pumps and probes [13]. Polarization noise,
relative intensity noise (RIN), amplified spontaneous emission (ASE) noise, and thermal
and shot noise are the major noise sources that degrade the SNR [14].

A data processing algorithm based on radial basis function neural networks (RBFNN)
was proposed in [15], for BOTDR sensing. The RBFNN algorithm was shown to accel-
erate data processing compared with the Levenberg–Marquardt nonlinear least-squares
algorithm. A recurrent neural network-based data processing framework was demon-
strated [16] on data collected using a commercial Brillouin-based distributed temperature
sensing system (AP Sensing, N4385B). This approach utilized an autoregressive input
layer often found in time series analysis literature as autoregressive models. A ML-based
algorithm using support vector machines [17] was used to extract BFS from both gain and
phase data collected from a BOTDA sensing system. The proposed algorithm improved
the data processing speed by 100 times compared with the conventional nonlinear least
squares data processing technique. Deep neural networks (DNNs) with autoencoder ar-
chitectures were introduced to extract BFS from BOTDA data [11,18]. A BOTDA sensing
system using a 25 km long large-effective-area fiber (LEAF) sensing fiber coupled with
stacked autoencoder-based data processing framework exhibited capabilities in extracting
both strain and temperature measurements simultaneously [18]. Further, a denoising
autoencoder architecture was shown to both denoise as well as extract temperature from
BOTDA data in [11]. Another ANN-based signal processing framework was developed
using radial basis functions (RBF) [19,20]. This framework utilizes a shallow neural archi-
tecture and requires a much smaller number of parameters compared with deep neural
network architectures.

A major drawback of all the existing BOTDA ML models proposed in the literature is
that they do not predict the confidence intervals (CI) of the predicted parameters. The relia-
bility of the sensor data and the associated ML model can only be assessed by propagating
the measurement noise in the BGS/BPS data to obtain estimates of prediction uncertainties
in strain/temperature. Currently, the ability to predict BFS uncertainty from BGS data has
only been demonstrated for the simple case of quadratic CF-based BGS processing [21].

We propose a novel probabilistic machine learning (PML) framework [22–24] for process-
ing BOTDA data, which preserves the existing advantages of ML models while adding
a new capability of providing simultaneous CI estimates. The core advantage of the pro-
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posed PML framework in this work is the characterization of noise in the data in terms of
confidence intervals. The mean and the standard deviation of peak frequency of BFS at
each location on the fiber are computed by the PML framework. This enables us to obtain
an estimate of the effect of noise in the system at each discrete point on the fiber. First,
the mathematical frameworks of the CF and ML approaches are discussed in Section 2,
in the context of BFS estimation from BGS and/or BPS measurements. Next, the math-
ematical framework of the proposed approach is introduced in Section 3. The model
development and training procedure are outlined in Section 4. The experimental setup
used to generate the data is described in Section 5. The capability of the proposed PML
framework to provide simultaneous predictions of BFS and its CI is demonstrated in
Section 6 from measurements obtained from two custom BOTDA systems, namely (i) BGS
data collected from a 10 km range BOTDA system and (ii) BGS and BPS data collected
from a 25 km range custom VBOTDA system. The performance of the PML approach is
compared with the CF approach because only these two approaches provide estimates of
the parameters and their CIs. Finally, the conclusions and the scope for future work are
summarized in Section 7.

2. Mathematical Background

Firstly, the mathematical notations adopted in this work are introduced. Let D denote
a single BGS and BPS measurement dataset (obtained at a single point along the optical
fiber and resolved at n frequencies):

D ≡ {(νi, gi, φi), ∀i = 1, · · · , n}, (1)

where frequency, gain, and phase are denoted by (νi, gi, φi), respectively. Let the BFS
and Brillouin line width (full width at half maximum (FWHM)) be denoted by νB and w,
respectively. Further, let λ = [λ1 = νB, λ2 = w] denote the vector of parameters of interest.
From here on, a single measurement sample of BGS or BPS will be denoted by an input
matrix X, wherein

X =

[
ν1 · · · νn
g1 · · · gn

]ᵀ
, or X =

[
ν1 · · · νn
φ1 · · · φn

]ᵀ
, or X =

ν1 · · · νn
g1 · · · gn
φ1 · · · φn

ᵀ. (2)

The schematic of the Brillouin gain and phase spectrum is outlined in Figure 1 for illus-
trative purposes. Next, the mathematical backgrounds of curve fitting and machine learning
approaches are briefly discussed below for the case of BGS processing to extract BFS.

Figure 1. Schematic of Brillouin gain and phase spectrum.

2.1. Curve Fitting Approach

Curve fitting approaches model the BGS as a smooth parametric function (Lorentzian,
Gaussian, and pseudo-Voigt) depending on the parameters of the incident pump light [25,26].
The BGS profile usually has a Lorentzian shape if the pump light pulse width is larger
than 10 ns [27], and a Lorentzian fit is often adopted for long-distance BOTDA applications.
The BGS profile resembles a Gaussian shape for short incident pulse widths (<10 ns) due to
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the Doppler broadening effect. The most commonly utilized BGS functions in the literature
are given in Table 1.

Table 1. Commonly used BGS [28].

Gain Spectrum Function Parameters
fc(ν; λ) λ

Lorentzian fc(ν; λ) =
g0

1 + 4ξ2 , ξ =
(ν− νB)

w λ ≡ [g0, νB, w]

Gaussian fc(ν; λ) = g0 exp
[
−4 ln 2ξ2

]
, ξ =

(ν− νB)

w
λ ≡ [g0, νB, w]

Pseudo-Voigt fc(ν; λ) = g0

[
p

1 + 4ξ2 + (1− p) exp
(
−4 ln 2ξ2

)]
λ ≡ [p, g0, νB, w]

The BGS measurements are modeled by choosing a suitable BGS function fc(·; λ) with
parameters λ and adding measurement noise as given below:

gi = fc(νi; λ) + εi, (3)

where εi denotes the measurement error. The parameters λ are estimated from the dataset
D by using a nonlinear regression based optimization framework:

λ̂ = argmin
λ

1
n

n

∑
i=1

(εi)
2 = argmin

λ

1
n

n

∑
i=1

(gi − fc(νi; λ))2. (4)

Linear curve fitting using measurements around the zero de-phase frequency region
is commonly used to estimate BFS from BPS measurements [9].

The BFS uncertainty from BGS data has only been demonstrated for the simple case
of a quadratic BGS profile [21]. However, for other BGS spectra (e.g., Lorentzian, Gaus-
sian etc.), the CIs of the parameter estimates λ̂ can be estimated using the asymptotic
Gaussian distribution of the corresponding least-squares estimator [29]. This asymptotic
distribution can be computed from the covariance estimates of the measurement errors (εi
in Equation (3)).

2.2. Machine Learning Approach

Machine-learning-based BOTDA data processing algorithms that have been proposed
in the literature construct a direct vectorial functional mapping fd(·; Θ) between the parameters
λ and the BGS dataset X:

λ = fd(X; Θ) + e, (5)

where Θ denotes the parameters of the ML model and e denotes the prediction error.
The training of the ML model requires an annotated dataset containing BGS measurements
corresponding to different parameters λ. The ML model parameters are obtained using a
suitable optimization framework:

Θ̂ = argmin
Θ

1
N

N

∑
i=1
‖ei‖2 = argmin

λ

1
N

N

∑
i=1
‖λi − fd(Xi; Θ)‖2, (6)
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where
{(

λj, Xj
)
, j = 1, · · · , N

}
denotes the training dataset of N BGS measurements and

‖·‖ denotes the Euclidean norm. Upon training, the parameter estimates λ̂ for a given BGS
(X) can be computed directly using

λ̂ = fd
(
X; Θ̂

)
. (7)

Several ML models have been proposed in the literature for the purpose of BFS
extraction, including support vector machines [17], principal component regression [30],
and artificial neural networks [20,31]. Recent studies in the literature have increasingly
advocated for the use of deep neural networks [12,32] with varying architectures such as
(i) stacked and denoising autoencoders [11,18], and convolutional neural networks [33,34]
to extract BFS from BGS/BPS measurements for low signal-to-noise ratio, long range, and
dynamic sensing scenarios.

2.3. Comparison of Curve Fitting vs. Machine Learning for BFS Extraction

• Data Processing Time: The computational advantage of the ML approach over the CF
approach is evident when comparing the schematics of both approaches, as shown
in Figure 2. The CF approach requires repeating the optimization iterations for each
BGS, while the ML approach can predict the BFS and FWHM directly from the BGS
measurements using Equation (7), once the ML model is trained offline.

• Interpretability: However, the CF approach is more interpretable since the function fc
can be chosen based on the underlying optical physics knowledge. On the other hand,
no such reasoning exists to construct fd in the ML approach and several different ML
models have been proposed in the literature.

• Robustness: A key feature of a robust signal processing algorithm is its ability to
accurately quantify the confidence/uncertainty in predictions. As mentioned ear-
lier, curve fitting approaches use regression to estimate parameters and can yield
CIs of the parameter estimates. However, the ML approach (Equation (5)) can not
be used directly to estimate the CIs since the term e does not represent the sensor
measurement error. Instead, e in Equation (5) should be interpreted as prediction error
with an unknown probability distribution due to the nonlinear nature of fd. Subse-
quently, the ML approach provides BFS estimates without providing a measure of
uncertainty/confidence (i.e., confidence intervals or error bars) of the BFS predictions.
With the increasing adoption of deep neural networks for BOTDA processing, it is
even more crucial that the BFS be estimated along with its confidence level, in order to
avoid over-fitting.

Figure 2. Schematic of (a) curve-fitting and (b) ML approach to the estimation of BFS and FWHM
from BOTDA measurements.
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3. Proposed Probabilistic Machine-Learning-Based BFS Extraction

Firstly, the BFS (νB) and FWHM (w) are modeled as statistically independent Gaussian
random variables:

λ ≡
[

νB
w

]
= µλ(X) + Σλ(X)n, n =

[
n1
n2

]
n1, n2 ∼ N (0, 1) (8)

where the random variables n1, n2 are independent and identically distributed normal/
Gaussian random variables. The representation in Equation (8) is often referred to as a
reparameterization trick in the ML literature and is used in several deep learning architectures
such as variational autoencoders [35]. The probabilistic model given by Equation (8)
provides a pathway to achieve two objectives simultaneously:

1. Mean vector µλ directly predicts the means of BFS (νB) and FWHM (w) from BGS/BPS
measurements X using a suitable ML model

2. Standard deviation matrix Σλ quantifies the uncertainty in estimates of BFS (νB) and
FWHM (w) due to the noise in underlying measurements X

Subsequently, Equation (8) can be expanded as follows:

µλ(X) =
[

µνB(X)
µw(X)

]
, Σλ(X) =

[
σνB(X) 0

0 σw(X)

]
(9)

where means of BFS and FWHM are denoted by µλ = (µνB , µw) and standard deviations of
BFS and FWHM are represented in the matrix Σλ with diagonal elements (σνB , σw). When
measurement noise in BGS/BPS data X is minimal, we expect the standard deviations to
diminish proportionally (σνB → 0, σw → 0) and the means to converge to their respective
true values (µνB → νB, µw → w). In a realistic scenario, wherein there is considerable mea-
surement noise in the Brillouin spectra, we expect the mean values to give the best estimate
of the parameter values. At the same time, the standard deviations can be utilized to
estimate the level of confidence that could be assigned to the estimated values. Substituting
Equation (9) in Equation (8), we obtain

λ ≡
[

νB
w

]
=

[
µνB(X) + σνB(X)n1
µw(X) + σw(X)n2

]
. (10)

The means and standard deviations (henceforth denoted as Λ) are modeled as func-
tions of BGS and/or BPS measurements, using a suitable ML model:

Λ ≡
[
µνB µw σνB σw

]ᵀ
= fd(X; Θ). (11)

wherein the parameters of the ML model are denoted by Θ. Using Equation (11) in
Equation (10), it can be realized that the parameters of interest λ are represented using a
probabilistic machine learning (PML) model.

The proposed procedure to estimate the PML model parameters Θ is depicted in
Figure 3. We utilize an offline training framework to train the PML model. A syn-
thetic/simulated training dataset is obtained by using Lorentzian BGS and/or BPS curves
for various BFS, FWHM parameters, and noise levels. Let

{(
λj, Xj

)
, j = 1, · · · , N

}
denotes

the training dataset of N BGS/BPS measurements corresponding to various values of BFS,
FWHM, and noise values. It should be noted that each Xj is a matrix of n frequencies and
corresponding gain and/or phase values, as given in Equation (2). The PML parameters
cannot be estimated using deterministic loss functions as employed by CF (Equation (4))
and ML approaches (Equation (6)). This work proposes the use of the probabilistic objective
function known as the log-likelihood function:

Θ̂ = argmax
Θ

1
N

N

∑
i=1

log[p(λi; Λ = fd(Xi; Θ))] (12)
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where p(λi|Λ) denotes the joint probability density function of BFS and FWHM for a
given set of parameters Λ. From Equation (11), we can write the joint Gaussian probability
density function as follows:

p(λ) ≡ p(νB, w) =
1

2π
det(Σλ)

−0.5 exp
(
−1

2
(λ− µλ)

ᵀΣ−1
λ (λ− µλ)

)
. (13)

By maximizing the log-likelihood function, we obtain a joint probability distribution
that maximizes the probability of λi for a given Xi. Using Equation (13) in Equation (12),
we obtain a least-squares objective function:

Θ̂ = argmax
Θ

−1
2N

N

∑
i=1

[
2 log(2π) + log σνB + log σw +

(
νBi − µνB

σνB

)2
+

(
wi − µw

σw

)2
]

(14)

Upon training by maximizing Equation (14), the estimates of the means and standard
deviations of BFS and FWHM can be computed by evaluating the PML model as depicted
in Figure 3:

Λ̂ ≡
[
µ̂νB µ̂w σ̂νB σ̂w

]ᵀ
= fd

(
X; Θ̂

)
. (15)

The point estimates and 100(1− α)% CI estimates of BFS and FWHM can be computed
from Equation (15) as follows:

λ̂ =
[
µ̂νB µ̂w

]ᵀ (16)

µ̂νB − sασ̂νB ≤ νB ≤ µ̂νB + sασ̂νB (17)

µ̂w − sασ̂w ≤ w ≤ µ̂w + sασ̂w (18)

where sα = Φ
(
1− α

2
)

is the statistic computed from a standard normal cumulative distri-
bution function Φ.

Figure 3. Schematic of PML approach to the estimation of BFS and FWHM with confidence intervals
from BOTDA measurements.

This probabilistic framework has computational benefits in comparison with other
PML approaches [22] such as dropout [36], bootstrapping [37] and weight randomiza-
tion [38]. The PML approach has several advantages over CF and ML approaches, as
listed below:

1. Robustness: The PML approach prevents overfitting that arises when using ML and
DNN models to represent fd.



Sensors 2023, 23, 6064 8 of 15

2. Flexibility: It is compatible with the various ML models (e.g., neural networks [39]
and support vector regression [40]).

3. Speed: It inherits the computational advantages of the ML approach and enables fast
processing of BOTDA data with simultaneous assessment of prediction uncertainties.

4. PML Model Development and Training

A deep neural network (DNN) with a combination of convolutional and dense layers
is chosen to represent fd in Equation (11). It is evident from Equations (10) and (11)
that the outputs of the DNN are the means and standard deviations of BFS and FWHM.
Consequently, the DNN will henceforth be known as a probabilistic deep neural network
(PDNN). The PDNN was programmed in Python and the code is available in Code 1 [41].
This PML framework can be easily implemented with another ML or DNN model with
minor modifications in the code.

4.1. PML Model Training

This work utilizes a simulated dataset of BGS and BPS measurements corresponding
to a uniform grid of BFS, FWHM, and noise values. All of the parameters are sampled from
uniform probability distributions

(
y ∼ U (yl , yu), p(y) = 1

yu−yl
, ∀yl ≤ y ≤ yu

)
between

lower and upper bounds, as given below:

s ∼ U
(

1
18

,
1
5

)
, νB ∼ U (10, 50)MHz, w ∼ U (5, 50)MHz (19)

It should be noted that in addition to varying the BFS and FWHM values in a uniform
grid, we also vary noise amplitude levels. The variation of BFS and FWHM is essential to
predict the mean vector µλ, and the variation of noise amplitude is essential to predict Σλ.

We generate the training dataset by first choosing a vector of frequency values to
compute BGS and/or BPS: ν1, · · · , νK and training sample size N. We have considered a
large training sample size of N = 50,000.
For j = 1 · · ·N:

1. Uniformly sample s, νB, and w from the bounds in Equation (19) to obtain
(

sj, νB j, wj

)
2. Simulate gain and phase values for each of the n frequencies and for

(
νB j, wj

)
using a

suitable spectrum model.

gj(νi) = g
(

νi; νB j, wj

)
, ∀i = 1 · · ·K (20)

φj(νi) = φ
(

νi; νB j, wj

)
, ∀i = 1 · · ·K (21)

This work has chosen Lorentzian BGS and BPS [7] (Equations (22) and (23)) given by
the following:

g(ν; νB, w) = g0
w2

4(ν− νB)
2 + w2

(22)

φ(ν; νB, w) = g0
2w(ν− νB)

4(ν− νB)
2 + w2

(23)

where g0 is the Brillouin gain amplitude, w is the Brillouin linewidth or FWHM, and
νB is the BFS.
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3. Sample e ∼ N (0, 1) and add Gaussian noise corresponding to the noise amplitude sj
to obtain training dataset sample Xj

Xj =

 ν1 · · · νK
gj(ν1) + sje · · · gj(νK) + sje
φj(ν1) + sje · · · φj(νK) + sje

ᵀ (24)

4.2. PML Model Architecture

The PDNN architecture is depicted in Figure 4. It has a combination of convolutional
and dense layers. The input layer consists of two channels. The first 1D convolutional layer
(Conv1D) has a kernel size of 15 and (Rectified Linear Unit) ReLU activation. The second
Conv1D has a kernel size of 5, and both MaxPool1D layers have kernel size = 3. The dense
layer has 32 units, with ReLU and L2 regularization.

Figure 4. PML model architecture.

The PDNN is trained over this dataset using a training/validation split of 70/30.
Further, a learning rate schedule and early stopping criterion are implemented to automate
the model training.

5. Experimental Setup

The experimental setup of the vector Brillouin optical time domain analysis (VBOTDA)
system is illustrated in Figure 5. In [10], we demonstrated a VBOTDA system, where a
vector network analyzer was used to extract both the amplitude and phase spectrum of the
Brillouin interaction over the sensing fiber.

Figure 5. Experimental setup of VBOTDA system. DFB-laser: distributed feedback-laser, PC: po-
larization controller, MZM: Mach–Zehnder modulator, EDFA: Erbium-doped fiber amplifier, ASE:
amplified spontaneous emission, PS: polarization scrambler, CIR: circulator, PD: photo-detector).
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A distributed feedback (DFB) laser with a wavelength of 1550 nm was used as a
laser source. The laser output signal was split into two branches using a 50/50 3 dB
fiber coupler. One branch was for generating input pump pulses and the other branch
was for the probe signal to make stimulated Brillouin operation over the fiber distance.
A Mach–Zehnder modulator (MZM-1) was used to modulate the optical pulses using a
pulse generator. The pulse peak-to-peak amplitude set at 4 Vpp, and the pulse width
was set at 10 ns, corresponding to 1 m spatial resolution, whereas the pulse repetition
frequency was 4 kHz, which has enough round-trip time to travel the full length of the
fiber. In order to compensate the high lossy operation of MZM modulators, a polarization
controller (PC) was employed at the input of each MZM to alter the polarization state
of the signal and to reach maximum optical power after both MZMs. The output signal
was then amplified using an erbium-doped fiber amplifier (EDFA-1). A narrow band-pass
filter bandwidth: 0.8 nm was employed to reduce the amplified spontaneous emission
(ASE) noise originating from the EDFA. To avoid polarization noise due to the intense
polarization sensitivity of the stimulated Brillouin scattering mechanism, a high-speed
polarization scrambler (PS) was used to reduce the polarization dependence of Brillouin
spectra. The second MZM (MZM-2) was modulated with a frequency close to the BFS of
the sensing fiber ( 10.82 GHz) via an external RF synthesizer. The signal was amplified
by EDFA-2 and then sent to an isolator, which allows signal transmission in one direction.
The input pump peak power (20 dBm) and the counter-propagating probe power (6 dBm)
were sent to the fiber under test. The stimulated Brillouin signal from the circulator (CIR)
port 3 was amplified using EDFA-3 and sent to ASE filter-3 to remove the ASE noise.
Thereafter, the signal was detected using a photodetector (PD, bandwidth: 125 MHz) and
analyzed with a vector network analyzer. In order to obtain the BGS spectra over the fiber
distance, the RF synthesizer frequencies were swept around fiber under test BFS, which
were 10.78 GHz to 10.9 GHz with a frequency step of 1 MHz. The RF synthesizer and pulse
generator were synchronized with the vector network analyzer. For the fiber under test,
we used two different lengths of sensing fibers, 10 km and 25 km, and obtained 3D BGS
specta over the sensing fiber distance at various trace averages. The sensing fiber was kept
at room temperature and under strain-free condition throughout all the measurements.

6. Results and Discussions

The PML framework is illustrated to process data using (i) a custom BOTDA system
(BGS data) with a 10 km long sensing fiber with trace averages of 10 and 100 indepen-
dently [42] and (ii) a custom VBOTDA system (BGS, and BPS data) with a 25 km range
with 1000 trace averages. The results for both cases are presented and analyzed below:

6.1. Custom BOTDA System Using 10 km Long Sensing Fiber

The three-dimensional BGS was constructed with a sweep frequency step of 1 MHz
with different trace averages of 10 and 100. The resultant BGS spectra are illustrated in
Figure 6. The mean µ̂νB and standard deviations σ̂νB of the BFS along the 10 km fiber length
obtained from the two datasets are plotted in Figure 7. The two datasets are obtained for
various trace averages (10 traces for Figure 7a,b and 100 traces for Figure 7c,d). It should
be noted that the first few tens of meters have high standard deviations due to the dead
zones [43] in Figure 7. As the fiber distance increases, the standard deviations escalate
due to fiber attenuation, resulting in diminishing signal-to-noise ratio. It is also clear
from Figure 7b,d that the PDNN’s BFS uncertainty estimates reflect the well-documented
phenomenon [9] that BFS uncertainty reduces with an increase in the number of traces.
The proposed approach with confidence interval outputs at every location on the fiber
quantitatively estimates the performance metrics of the fiber optic sensor. This information
can be used to mitigate any defects and to enhance the performance of the fiber optic sensor
along the length of the pipeline.
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Figure 6. Measured 3D BGS spectra using (a) 10 trace averages and (b) 100 trace averages.

Figure 7. PDNN estimates of mean (a,c) and standard deviations (Std. Dev) (b,d) from two 10 km
BOTDA datasets. (a,b) PDNN estimates from BGS data averaged over 10 traces. (c,d) PDNN estimates
from BGS data averaged over 100 traces.

6.2. Custom VBOTDA System Using 25 km Long Sensing Fiber

The BGS and BPS obtained over the fiber length are available as Dataset 1 [44] and
Dataset 2 [45] respectively. Both are plotted in Figure 8.
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Figure 8. Measured 3D (a) BGS and (b) BPS over 25 km fiber.

The mean BFS (computed with respect to 10.8 GHz) is predicted using the PDNN
model over the entire fiber length from the BGS and BPS spectra and is plotted with ±3σνB

(99.7%) confidence intervals in Figure 9a,c. These predictions are compared with a least-
squares (LS) Lorentzian curve fitting model, as shown in Figure 9b,d. FWHM predictions
from both models are shown in Figure 10.

Figure 9. Comparison of BFS extracted using PDNN (a,c) and LS fit (b,d) from BGS or BPS measure-
ments. The unit of confidence interval σl is MHz.

Figure 10. FWHM predictions using (a) PDNN and (b) LS fit from BGS data. The unit of confidence
interval σl is MHz.

The mean BFS predictions from PDNN (for BGS and BPS) are in excellent agreement
with those from LS fits. The PDNN processes 4500 spectra in 1.1 s (for both BGS and
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BPS), while the CF approach takes 13.9 s and 18.5 s, respectively. The total computational
speedup achieved with the PDNN approach is around 30 times more compared with the
curve fitting approach. This quantum of speedup enables us to process the data in real
time in the field as we collect sensor data all along the pipeline. Clearly, the PDNN model
greatly reduces the data processing time. Furthermore, the BPS-based predictions exhibit
lesser spatial uncertainty compared with that of BGS-based predictions.

7. Conclusions

We proposed and demonstrated a novel robust signal processing framework using
PML to estimate the BFS from BOTDA systems. The PML is capable of processing BGS and
BPS spectra in real time. Further, unlike ML models, which do not propagate uncertainties,
our proposed PML model can provide estimates of predictive uncertainties. We compared
the predictions obtained from the proposed PML with the conventional CF model and
evaluated the BFS uncertainty and data processing time for both methods. The proposed
PML model offers greater tolerance to measurement noise found in real-time strain and
temperature extraction for a longer sensing range. Hence, the PML framework can be
used to build a robust signal processing system and provides a pathway to enhance the
VBOTDA system performance. Future advancements in ML techniques integrated with
BOTDA sensor technology will continue to drive the evolution of distributed fiber optic
sensors, enabling even more sophisticated and intelligent sensing capabilities. We plan to
incorporate efficient data denoising techniques within the proposed PML framework in the
future.
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