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Abstract: Using a novel mathematical tool called the Te-gram, researchers analyzed the energy
distribution of frequency components in the scale–frequency plane. Through this analysis, a fre-
quency band of approximately 12 Hz is identified, which can be isolated without distorting its
constituent frequencies. This band, along with others, remained inseparable through conventional
time–frequency analysis methods. The Te-gram successfully addresses this knowledge gap, provid-
ing multi-sensitivity in the frequency domain and effectively attenuating cross-term energy. The
Daubechies 45 wavelet function was employed due to its exceptional 150 dB attenuation in the
rejection band. The validation process encompassed three stages: pre-, during-, and post-seismic
activity. The utilized signal corresponds to the 19 September 2017 earthquake, occurring between the
states of Morelos and Puebla, Mexico. The results showcased the impressive ability of the Te-gram to
surpass expectations in terms of sensitivity and energy distribution within the frequency domain.
The Te-gram outperformed the procedures documented in the existing literature. On the other
hand, the results show a frequency band between 0.7 Hz and 1.75 Hz, which is named the planet
Earth noise.

Keywords: dyadic frequency spectrum; scale–frequency; seismic–acoustic signal; Te-gram;
Te transform

1. Introduction

This article presents, through a new mathematical tool called the Te-gram, a high-
resolution dyadic spectrogram. The authors developed this method and named it
Te-gram to emphasize its nature as a special type of spectrogram. A spectrogram is
a three-dimensional graph that represents the time variation of the energy of the fre-
quency content of a signal. This graph is calculated by analyzing the spectrum within
time windows.

This mathematical tool allows the analysis of stochastic signals, as in the case of
seismic–acoustic signals [1–3]. The Te-gram presents a significant advantage compared to
the procedures described in the literature. It enables the analysis of energy distribution
in a scale–frequency plane using the dyadic frequency spectrum approach. Its benefits
include cross-term attenuation, isolation of frequency components, and a multi-sensitive
frequency spectrum [4]. Until now, no procedure has been reported that incorporates all
these advantages, which makes the Te-gram the main novelty presented in this study.

Nowadays, natural-time analysis and time–frequency analysis are widely used for the
study of non-stationary stochastic processes. This is because a significant improvement in
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signal quality is achieved by using natural-time analysis in the time–frequency domain.
This technique reduces the uncertainty associated with extracting information from the
signal, as shown in previous studies [5,6]. By applying time–frequency analysis, greater
precision and clarity in data interpretation are obtained. A prominent example of this is the
analysis of seismic–acoustic signals [7–10]. This type of signal exhibits the aforementioned
characteristics and has been extensively investigated using time–frequency analysis [11–13].
The study of these acoustic signals is of great interest due to the valuable information they
provide about geological structures [7,14,15].

This work proposes a novel mathematical tool by studying an earthquake through its
frequency components instead of being limited only to its magnitude. The main objective of
this application is to establish a relationship between the natural vibration frequencies of the
structures affected by the earthquake. Additionally, it aims to correlate these frequencies
with the frequency components present in the seismic–acoustic signal. Through this
approach, it is sought to obtain a deeper understanding of the structural response to
seismic events.

The frequency components of a seism are of great interest due to their potential to
cause significant damage to the structural health of constructions under seismic vibrations.
Furthermore, these frequency components also pose a risk to the well-being and safety
of living beings [16]. These problems derive from the dynamic relationship between the
natural vibration frequency of a structure and the frequency components present in the
spectrum of seismic waves [17–19]. When these frequencies equalize, the structure goes
into resonance, resulting in a considerable increase in deformations and accelerations.
Consequently, the structural elements suffer significant stress, which can eventually cause
fatigue and deterioration of the structure.

For such reasons, among the researchers, there is a great interest in the precise and
effective analysis of the vibrations generated in a seism. The goal is to reveal the character-
istics of seismic–acoustic signals through their spectral composition. Among the papers
reported in the last few years, the following can be found.

In a study led by researchers in [20], time–frequency analysis was used by employing
the spectrogram of seismic signals. The objective of this analysis was to estimate the
development of avalanches and frontal velocities. The results were significant, as they
effectively predicted avalanches and accurately measured frontal velocities. The authors
of [7] conducted research focused on the time–frequency analysis of seismic signals. They
employed frequency concentration and time concentration techniques based on the Short-
Time Fourier Transform (STFT) in their analysis. These researchers suggest that obtaining a
high-quality, time–frequency representation is crucial for revealing local information about
seismic signals. This approach enables the description of geological structures based on the
analysis of seismic data. In [21], a method is proposed that is aimed at the instantaneous
seismic safety of stratified rock slides. In this investigation, the authors use the Hilbert–
Huang Transform to extract the characteristics of the seismic signal. The work reported
by [22] is aimed at improving the resolution of seismic signals through the secondary
time–frequency spectrum based on the S Transform (ST).

The authors in [23–25] present a time–frequency analysis of seismic data using a
three-parameter ST. These researchers suggest that the Short-Time Fourier Transform (ST)
has a low temporal resolution at low frequencies. This limitation hampers the effective
extraction of features in the analysis of seismic signals. The main objective of their work
was to optimize the time–frequency resolution through modifications in the ST. In [26],
a technique based on sparse Bayesian learning is shown to achieve high time–frequency
resolution in the analysis of seismic signals. These researchers state that their approach
involves using the Ricker wavelet to decompose the seismic signal. Subsequently, they
apply the Wigner–Ville distribution as part of their analysis.

The main drawback of the proposal presented by these authors is its dependence
on learning, which requires a considerably large volume of data and is difficult to obtain.
On the other hand, the study carried out by [27] presents an alternative approach based
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on the high-order synchronized compression transformation. This alternative method
offers remarkable precision in capturing the instantaneous frequency component of seismic
signals. These researchers claim to employ a higher-order approximation for amplitude
and phase in their analysis. They aim to maximize the concentration of energy in the
time–frequency representation of the seismic signals.

In [28], they propose a technique based on the general time-synchronized Chirplet
Transform. These researchers suggest that this method allows for obtaining information
about frequency-modulated signals. In the research of [29], they present a proposal focused
on the detection of seismic signals. Their approach combines time–frequency representation
techniques with convolutional neural networks for improved detection accuracy. These
authors use the STFT in their proposal. In the investigation presented in [30], the authors
conduct a time–frequency analysis of seismic data. They utilize the non-stationary Prony
method as the basis for their analysis. These researchers propose calculating the spectrum
of the input signal using the Hilbert Transform.

Despite the advances achieved by the scientific community, the work reported so
far does not focus on improving the sensitivity of the frequency spectrum. The main
drawback of these methods lies in their signal analysis approach based on a time–frequency
representation. This perspective limits the ability to obtain a dyadic frequency spectrum
to improve spectral sensitivity, attenuate cross-terms, and isolate frequency components.
Furthermore, it is not possible to obtain a multi-sensitive frequency spectrum, which makes
it impossible to maximize spectral purity.

On the other hand, the work shown in [31] states that different kernel functions have
been studied. However, the selection of the best kernel function that solves the problems
raised becomes an issue that has not yet been resolved. This paper addresses the previously
mentioned issues and aims to bridge the gap in previous works. It achieves this by
utilizing a Te kernel as reported in [10], which enables the generation of a scale–frequency
representation of the seismic signal under analysis.

The rest of the manuscript is organized as follows. Section 2, entitled “Theoretical
background”, presents information on the scientific literature. Section 3, entitled “High-
Resolution Dyadic Spectrogram”, presents the main contribution to knowledge for the
scale–frequency analysis. Section 4, entitled “Sources of the data used”, shows how in the
literature the national seismological system acquired the data. Section 5, entitled “Validation
of the Te-gram”, corresponds to the results and discussion obtained after analysis of the
result. Finally, Section 6 shows the main conclusions of the work.

2. Theoretical Background

For the Te-gram definition in Section 3, it is necessary to start from the definition of
the Te Transform given by the authors in [4,32]. It is also required for the analysis of the
seismic signal that will be developed in Section 5.

2.1. Heisenberg Time–Frequency Box

A Heisenberg time–frequency box is a dictionary of waveforms used in linear trans-
forms to correlate it with the signal being analyzed. This correlation allows the study
of the frequency components present in a stochastic process with a certain resolution.
Therefore, the time–frequency resolution is determined with the Heisenberg uncertainty
principle [33,34].

If we have a dictionary D = {θγ}γ∈Γ where θ γ ∈ L1(R) ∩ L2(R)∀R and ‖θγ‖ = 1,
then Equation (1) defines the area of θγ [4,33].

σtimeσf requency ≥
1
2

(1)

where
γ is a multi-index parameter,
σtime defines the time resolution, and
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σf requency defines the frequency resolution.
The use of a Heisenberg box in signal analysis, which contains frequency components,

offers a key advantage. It enables the study of these components at different resolutions,
facilitating the isolation and analysis of individual frequencies. Figure 1 shows the repre-
sentation of a Heisenberg time–frequency box for θtn ,wn∀n ∈ Z+.
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Figure 1 tn and wn define the time-frequency location. From Figure 1 and Equation (1),
it can be observed that, to maintain the area of the Heisenberg box, compensation is
required. This means that, if the Heisenberg box contracts in the frequency axis achieving
high resolution, it expands in the time axis resulting in low resolution.

2.2. Energy Density

The energy density allows us to know how the energy of a signal is distributed in the
frequency domain [35,36].

If we have a kernel φ(t) centered at t = 0, and it is a Heisenberg time–frequency box,
then Equation (2) defines the energy density of a signal [35].

SF[ f (t)](µ, ηγ) =

∣∣∣∣∣∣
∞∫
−∞

f (t)φ∗µ,ηγ
(t)dt

∣∣∣∣∣∣
2

(2)

where
SF[ f (t)](µ, ηγ) is the energy density of f (t),
µ and ηγ are the time and frequency parameters for the Heisenberg box,

respectively, and
γ is a multi-index parameter.

2.3. Spectrogram

The spectrogram is a mathematical tool widely used in the analysis of time–frequency
signals [37–41]. This tool allows us to calculate the energy density of a signal [35]. The
authors of [35] define the spectrogram as shown in Equation (3).

Ps f (µ, ω) =

∣∣∣∣∣∣
∞∫
−∞

f (t)wµ(t)e−iωtdt

∣∣∣∣∣∣
2

(3)

where
Ps f (µ, ω) is the spectrogram of f (t), and
wµ(t) is a window-shifted µ.
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2.4. Te Transform

The Te Transform defined by [4,32] is a mathematical tool that allows for obtaining a
dyadic frequency spectrum. Its main advantage is that it allows the isolation of spurious
frequency components.

If f (t) ∈ L1(R)∀t ∈ R, then the Te Transform is defined by [4,32] as shown in
Equation (4).

f̂DTe[ f (t)](µ, ξ, ϑ) =

∞∫
−∞

f (t)g∗µ,ξ,ϑ(t)dt ∀µ, ξ, ϑ ∈ Z+ (4)

where
f̂DTe[ f (t)](µ, ξ, ϑ) are the coefficients of f (t),
gµ,ξ,ϑ(t) = wµ(t)ψµ,ξ(t)ei2πϑt is the Te kernel in L1(R) ∩ L2(R),
ψµ,ξ(t) = 1√

2ξ
ψ
(

t
2ξ − µ

)
is a dyadic wavelet function, and

µ and ξ are the scaling and translation parameters, respectively.

3. High-Resolution Dyadic Spectrogram

In this section, the authors present the main contribution of this manuscript. It
is important to highlight that the mathematical basis of the Te-gram was introduced
in Section 2.

Currently, signal analysis using the spectrogram energy density calculation is one
of the most widely used approaches by the scientific community [42–44]. Despite the
significant progress achieved in various fields of knowledge using the spectrogram, it has
a primary limitation. This limitation pertains to the spectrogram’s inability to perform a
dyadic analysis of the frequency components present in a signal.

To solve this problem, the authors of this work, in Section “Te-Gram Function”, show
a new mathematical tool that does not exist in the state-of-the-art. This tool is the high-
resolution dyadic spectrogram, which the authors call Te-gram. The main advantage of
this tool is that it allows the investigation of the energy density of a signal in the dyadic
frequency spectrum.

Te-Gram Function

This subsection shows the main contribution aimed at obtaining the definition of the
Te-gram through the mathematical basis presented in Section 2.

Te-gram provides an energy spectral density for an analysis signal from a stochastic or
deterministic system, increasing the sensitivity of the frequency spectrum.

Through reference [4], we know that the function gµ,ξ,ϑ(t) of Equation (4) is a Heisen-
berg box. If we replace the function θµ,ηγ(t) of Equation (2) with gµ,ξ,ϑ(t) of Equation (4),
we obtain Equation (5) that defines the Te-gram.

Λ[ f (t)](µ, ξ, ϑ) =
∣∣〈 f , gµ,ξ,ϑ

〉∣∣2 =

∣∣∣∣∣∣
∞∫
−∞

f (t)g∗µ,ξ,ϑ(t)dt

∣∣∣∣∣∣
2

(5)

where
Λ[ f (t)](µ, ξ, ϑ) denotes the Te-gram, and∣∣〈 f , gµ,ξ,ϑ

〉∣∣2 is the energy density of f (t) in the Te domain.

4. Sources of the Data Used

The purpose of this section is to provide information about the type of earthquake and
the source station of the signal for the validation process. This information will be used in
Section 5 for the Te-gram.
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The signal to be analyzed is of the seism that occurred on 19 September 2017 with a
magnitude of 7.1 on the Richter scale. The analysis is performed via the methods reported
in the reviewed literature and the Te-gram. This signal was acquired under the terms of the
Nyquist theorem using a sample frequency of 100 Hz. This seism occurred inside the Cocos
oceanic plate (i.e., interplate seism) between the states of Morelos and Puebla belonging to
the United Mexican States. The 19 September seism caused significant human and material
losses to urban communities, including a large area of Mexico City [45].

Seismic events that occur in the United States of Mexico with epicenters off the Pacific
coast are typically subduction earthquakes. These earthquakes are generated due to the
interaction between the Cocos and North American tectonic plates with the interplate type
being less common in this region. On 19 September 2017, an interplate earthquake occurred
resulting in extensive damage to structures in the state of Morelos, Mexico. The epicenter
of this earthquake was located at coordinates 18.40 N latitude and −98.72 W longitude
with a depth of 57 km. For this reason, the authors of this work decided to use the signal of
this seism for the validation process of the proposed methodology.

The seismic signals used in the analysis are sourced from the Yautepec station (YAIG),
which is part of the wideband network of the National Seismological Service of the United
Mexican States. The seismic signals used come from the Yautepec station (YAIG, belonging
to the wide band network of the National Seismological Service of the United Mexican
States) because it is the closest to the epicenter of the earthquake. In this study, the
HLZ (vertical) component of the three components reported by the seismological station
was used [46].

5. Validation of the Te-Gram

To carry out the validation process, three different scenarios were designed. In the
first scenario, the signal is analyzed before the earthquake occurs. In the second scenario,
the signal is examined throughout the entire duration of the earthquake. Finally, in the
third scenario, the signal after the earthquake is analyzed.

Figure 2 shows the signal of the earthquake to be analyzed in the time domain. On
the other hand, Figure 2a depicts the analyzed signal, accentuating the specific segments
earmarked for the study. Furthermore, Figure 2b shows the zooming of the signal during
the seism.
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Figure 2. Displays the seismic signal in the time domain. (a) The analyzed signal encom-
passes the different temporal moments related to the seism. This covers both the period 
before the seismic event, during the seism itself, and also the period after it. Δ𝑡 represents 
the time of each box. (b) Zooming of the signal during the seism is shown in (a). Source: 
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Figure 2. Displays the seismic signal in the time domain. (a) The analyzed signal encompasses the
different temporal moments related to the seism. This covers both the period before the seismic event,
during the seism itself, and also the period after it. ∆t represents the time of each box. (b) Zooming
of the signal during the seism is shown in (a). Source: Own elaboration.

In the signal processing with the Te-gram, the authors utilized a Daubechies 45 wavelet
function (ψµ,ξ(t)). The reason for choosing this particular wavelet function is its ability to
provide an attenuation close to 150 dB for the rejection band, as reported in [47]. Addition-
ally, a Kaiser-6 window (wµ(t)) was employed [4].

Figures 3–7 show the results obtained after applying the methods reported in the
reviewed literature to the signal shown in Figure 2a. Note how the methods reported in the
literature are based mainly on a time–frequency analysis.
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Figure 3. Results obtained from the spectrogram mathematical tool. (a) Spectrogram before the seism.
Spectrogram throughout the seism. The precise timestamp of the data’s start for analysis is 16:27:08
(HH:MM:SS). (b) The precise timestamp of the data’s start for analysis is 18:00:11 (HH:MM:SS).
(c) Spectrogram after the seism. The precise timestamp of the data’s start for analysis is 18:51:34
(HH:MM:SS). Source: Own elaboration.

Figure 3a–c presents the findings after processing the signal from Figure 2a. To carry
out this processing, the authors used a mathematical tool called spectrogram.

The tool used for processing the seismic signal, as depicted in Figure 2a, was the
Hilbert–Huang Transform. The results of this transformation are presented in Figure 4a
(before the seism), Figure 4b (during the seism), and Figure 4c (after the seism). The results
with the Hilbert–Huang Transform do not show the presence of frequency components
before and after the earthquake. This limitation hinders the analysis of small changes that
may occur before and after the seismic event.

The third validation process was carried out via the S Transform. The results presented
in Figure 5a–c reveal the behavior of the seism before, during, and after, respectively.

Figure 6a (before the seism), Figure 6b (during the seism), and Figure 6c (after the
seism) depict the results after processing the signal shown in Figure 2a. This processing was
performed via the Wigner–Ville distribution. Observe how in Figure 6a a slight variation is
perceived before the seism.
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start for analysis is 18:00:11 (HH: MM: SS). (c) Hilbert–Huang Transform after the seism. The precise
timestamp of the data’s start for analysis is 18:51:34 (HH: MM: SS). Source: Own elaboration.
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MM: SS). Source: Own elaboration.
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Figure 6. Results obtained from the Wigner–Ville distribution mathematical tool. (a) Wigner–Ville
distribution before the seism. The precise timestamp of the data’s start for analysis is 16:27:08 (HH:
MM: SS). (b) Wigner–Ville distribution throughout the seism. The precise timestamp of the data’s
start for analysis is 18:00:11 (HH: MM: SS). (c) Wigner–Ville distribution after the seism. The precise
timestamp of the data’s start for analysis is 18:51:34 (HH: MM: SS). Source: Own elaboration.
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start for analysis is 18:51:34 (HH: MM: SS). Source: Own elaboration.
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Figure 7a (before the seism), Figure 7b (during the seism), and Figure 7c (after the
seism) show the results after processing the signal from Figure 2a. The mathematical tool
used in this processing was the Chirplet Transform. Observe how in Figure 7a a slight
variation is perceived before the seism.

The results obtained with the Te-gram proposed in this work is presented in Figure 8
(see Figure 8a–c). In Figure 8a, it can be observed that the energy of the signal, both
before and after the earthquake, is concentrated at scale 6. This concentration is due to
its association with a frequency band ranging from 0.75 Hz to 1.35 Hz. It is important to
note that this result is not observed in the methods reported in the literature. However,
during the occurrence of the earthquake, as depicted in Figure 8b1, it can be observed that
the energy is concentrated at scale 2. This distinct behavior indicates a frequency band
that varies from 12 Hz to 25 Hz. After analyzing the results, it is evident that the Te-gram
surpasses the methods reported in the state-of-the-art.
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From Figure 8a–c, a frequency band is observed that begins at 12 Hz throughout the
seism. This frequency band is very hard to isolate and observe in the analysis performed with
the mathematical tools reported in the literature (see results in Figures 3b, 4b, 5b, 6b and 7b).

Figure 8a–c reveals a phenomenon of great interest related to the seismic process. In
scale 6, a notable presence of low-frequency vibrations and a high concentration of energy
are observed, which could be the origin of the said process. In the Mexican Pacific, two
conducive conditions converge to generate this phenomenon. First, faults occur as a result
of the discontinuity between the continental plates. Second, the presence of coasts serves as
a boundary between the sea and the continent. In this area, sea waves impact the continent
with low frequency, transferring energy to the mountain ranges located between the plates.

The energy accumulated in these low-frequency vibrations can be equated to the
charge of a capacitor. When a resistance threshold is reached between the irregularities of
the plates, an uncontrolled sliding between them is triggered, generating an earthquake. In
this capacitor model, the accumulated energy exceeds the potential energy accumulated in
the irregularities thus triggering the discharge, that is, the earthquake. The band that we
refer to is 0.75–1.75 Hz, and we called it “planet Earth noise”.

6. Conclusions

This paper presents a new methodology, introducing a new mathematical tool
called Te-gram.
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• This tool allows us to know the spectral density of a signal’s energy in a scale–frequency
plane. This mathematical tool is especially suitable for the study of seismic signals,
which are multi-component, non-stationary, and variable in time.

• The Te-gram offers an effective solution to address these features and provides a
unique perspective in seismic signal analysis.

• The Te-gram, which is based on the Te Transform, enhances spectral sensitivity.
• Additionally, the Te-gram successfully reduces cross-terms, isolates frequency compo-

nents, and yields a multi-sensitive frequency spectrum. This methodology maximizes
spectral purity and has proven to be highly effective for this purpose.

• An important advantage is a demonstration that the variation in the Te kernel provides
a higher sensitivity in the way of knowing the information of the frequency spectrum.
This essential feature enables a better understanding and detailed analysis of signals.
This crucial feature facilitates a better understanding and more detailed analysis of
signals, thereby significantly enhancing the ability to extract precise information from
the frequency spectrum.

• Through this method, it is possible to identify a frequency band between 12 Hz and
24 Hz. This band was not perceptible in the other mathematical tools, as shown in
Figures 3a, 4, 5, 6 and 7c). This identification has facilitated the establishment of a
relationship between the natural frequency vibration of civil structures, typically at
approximately 12 Hz, and the frequency components of the second scale of seismic
signals during an earthquake. The authors of this study consider this finding as the
main cause of the serious damage that occurs in buildings during an earthquake.

This work proved that the Te-gram exhibits greater effectiveness compared to the
methods previously reported in the literature and reviewed by the authors. In future
studies, a theoretical investigation will be conducted to explore the energy conservation
aspects utilizing the Te-gram and the study of Earth noise.
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