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Abstract: Smart living, an increasingly prominent concept, entails incorporating sophisticated tech-
nologies in homes and urban environments to elevate the quality of life for citizens. A critical success
factor for smart living services and applications, from energy management to healthcare and trans-
portation, is the efficacy of human action recognition (HAR). HAR, rooted in computer vision, seeks
to identify human actions and activities using visual data and various sensor modalities. This paper
extensively reviews the literature on HAR in smart living services and applications, amalgamating
key contributions and challenges while providing insights into future research directions. The review
delves into the essential aspects of smart living, the state of the art in HAR, and the potential societal
implications of this technology. Moreover, the paper meticulously examines the primary application
sectors in smart living that stand to gain from HAR, such as smart homes, smart healthcare, and smart
cities. By underscoring the significance of the four dimensions of context awareness, data availability,
personalization, and privacy in HAR, this paper offers a comprehensive resource for researchers and
practitioners striving to advance smart living services and applications. The methodology for this
literature review involved conducting targeted Scopus queries to ensure a comprehensive coverage
of relevant publications in the field. Efforts have been made to thoroughly evaluate the existing litera-
ture, identify research gaps, and propose future research directions. The comparative advantages of
this review lie in its comprehensive coverage of the dimensions essential for smart living services
and applications, addressing the limitations of previous reviews and offering valuable insights for
researchers and practitioners in the field.

Keywords: review; human action recognition; smart living; services; applications; context awareness;
data availability; personalization; privacy; sensing technology; machine learning; deep learning; signal
processing; smart home; smart environment; smart city; smart community; ambient assisted living

1. Introduction

Smart living is an innovative lifestyle that leverages technology to improve quality of
life, increase efficiency, and minimize waste. This concept is widely studied by scholars and
researchers, who emphasize its various dimensions such as technology, security, health,
and education [1]. The smart living lifestyle is predicated on the integration of advanced
information and communication technology (ICT), smart sensing technology, ubiquitous
computing, big data analytics, and intelligent decision-making to achieve efficient energy
consumption, better healthcare, and a general improvement of the services offered to the
society towards a high standard of living [2,3].

From a more general perspective, smart living is closely related to the concept of
smart cities, which seeks to enhance citizenship characteristics such as awareness, indepen-
dence, and participation [4]. It aims to transform life and work through ICT, promoting
sustainable economic growth and high quality of life while preserving natural resources
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through participatory governance [5]. Central to this concept is creating benefits for citizens,
considering their welfare and participation [6]. Smart living technologies empower users to
access and analyze information related to their lives, including personal health and living
conditions [3]. As proposed by Giffinger et al. [4], a smart city framework encompasses six
main components: smart economy, smart people, smart governance, smart mobility, smart
environment, and smart living. The integration of stakeholders such as people, machines,
devices, and the environment is crucial for the realization of smart living, which includes
aspects such as smart lighting, smart water, smart traffic, smart parking, smart buildings,
smart industry, location/context-based services, and many others [7].

Although smart living is driven by intelligent networking and immersive information,
it is essential to emphasize the quality of living facilitated by smart technology under
sustainable conditions rather than solely driven by technological innovation [8]. As the
definitions of smart living continue to evolve with advancements in real-time monitoring
systems, it is essential to adapt smart designs and accommodate smart devices, intelligent
technology, and sensors to foster a more sustainable and efficient lifestyle for individuals
and communities [7,9]. In such a technological landscape, HAR is an integral component
of smart living, contributing significantly to relevant applications, including home automa-
tion, healthcare, safety, and security. In fact, by accurately identifying and interpreting
human actions, smart living systems can deliver real-time responses, offering support
and assistance tailored to individual needs. Recognizing human actions is paramount for
effectively implementing any smart living application, making it a critical area of research
and development in pursuing enhanced quality of life and more efficient, sustainable
living environments. From a strictly technological perspective, context awareness, data
availability, personalization, and privacy are vital dimensions interwoven with HAR in
smart living services and applications. Actually, these dimensions are instrumental in
tailoring smart living systems to better cater to individual needs and preferences while
preserving privacy and ensuring the availability of relevant data.

A cornerstone of effective HAR in smart living services and applications is context
awareness, which involves the intelligent perception and interpretation of surrounding
environments and situations [10]. By comprehending the context in which human activ-
ities occur, smart living systems can respond more appropriately and adapt to specific
circumstances. Furthermore, adaptation is intrinsically linked to personalization, allowing
systems to deliver customized experiences and services that cater to each user’s unique
preferences and requirements [11]. Personalization and context awareness work in tandem
to create a seamless, intuitive, and user-centric environment that enhances the overall
quality of life [12].

However, implementing context awareness and personalization necessitates collecting,
processing, and storing vast amounts of personal data, raising privacy concerns. As smart
living services and applications become increasingly intertwined with users’ daily lives,
protecting sensitive information and maintaining user trust is paramount [13]. Thus,
balancing harnessing data for personalization and preserving privacy is essential. To
achieve this equilibrium, advanced privacy-preserving techniques, such as encryption
and anonymization, must ensure that user data remains confidential [14]. Lastly, data
availability plays a crucial role in the effective functioning of HAR in smart living services
and applications. The accessibility and reliability of data are integral to the performance
of these systems, as they rely on the continuous flow of information to make informed
decisions and deliver personalized experiences. Ensuring data availability is particularly
challenging due to the dynamic nature of smart living environments and the necessity to
maintain data consistency across various platforms and devices. Developing robust data
management strategies and infrastructure is critical to successfully implementing HAR in
smart livingsmart living services and applications [15].

This review concentrates on HAR in smart living services and applications by examin-
ing the contemporary state of the art through the lens of the dimensions mentioned above:
context awareness, data availability, personalization, and privacy. This analysis aims to pro-
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vide a comprehensive understanding of the current landscape and identify opportunities
for further research and development in HAR for smart living services and applications
by investigating the existing literature, advancements, and trends. By focusing on these
dimensions, this review seeks to elucidate the challenges and potential solutions associated
with effectively implementing HAR systems in many smart living environments, ultimately
fostering enhanced quality of life and more efficient, sustainable living conditions.

In the previous authors’ work [16], the dimensions of multimodality, real-time pro-
cessing, interoperability, and resource-constrained processing were analyzed from the
perspective of sensing technologies. Composing the dimensions addressed in this review
with those previously analyzed outlines what one can define as the temple of smart liv-
ing. Services and applications form the roof, sensor technologies form the floor, and the
dimensions mentioned above form the pillars, as depicted in Figure 1.

Figure 1. The Temple of Smart Living.

The temple of smart living represents the culmination of technological advancements,
research, and innovation, creating an environment that fosters a higher quality of life,
sustainability, and efficiency. At its core, this temple is supported by pillars representing the
fundamental dimensions of smart living: context awareness, data availability, interoperabil-
ity, multimodality, personalization, privacy, real-time processing, and resource-constrained
processing. Each pillar contributes to the strength and functionality of the temple, enabling
a seamless integration of services, applications, and sensor technologies. This harmonious
combination empowers individuals and communities to lead smarter, more connected lives
where technology is harnessed to optimize every aspect of daily living.

As we delve into the analysis of the dimensions of context awareness, data availability,
personalization, and privacy in the context of HAR for smart living services and applica-
tions, we will explore how these pillars interact and intertwine, forming the foundation
upon which this temple stands. By examining the current state of the art and identifying
potential areas for further research and development, we aim to unlock the full potential of
HAR systems within the realm of smart living. Through this endeavor, we strive to create a
future where technology seamlessly integrates with our lives, enhancing our well-being
and paving the way for a sustainable and efficient society.

It is important to highlight that this review comprehensively examines the dimen-
sions of HAR within the context of smart living services and applications, specifically
emphasizing the utilization of sensors for data collection and analysis. It discusses using
sensor modalities and data from various sensing technologies, such as wearables, cameras,
ambient sensors, WiFi, and radar-based sensors, to capture human actions and behaviors.
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By addressing the challenges, opportunities, and current advancements in HAR, partic-
ularly concerning context awareness, data availability, personalization, and privacy, the
objective of this review is to make a valuable contribution toward the advancement of
sensor technologies and their applications in a range of real-world scenarios, including
smart homes, healthcare, and smart cities.

1.1. Background on HAR in General

HAR is an area of research that focuses on identifying and understanding human
activities through the analysis of data acquired from various sensors.

It has applications in many fields such as intelligent video surveillance [17], customer
attributes, shopping behavior analysis [18], healthcare [19], military [20], and security [21].
Despite its potential, HAR remains a challenging task due to cluttered backgrounds, occlu-
sions, viewpoint variations, and data noise and artifacts. The recognition of human activi-
ties can be approached in two primary ways: using environmental (or ambient) sensors and
wearable sensors [22]. Environmental or ambient sensors are fixed at predetermined points,
while wearable sensors are attached to the user. In the case of environmental/ambient
sensing, smart homes and camera-based systems are examples of HAR. However, these
systems face issues such as privacy, pervasiveness, and complexity [23,24].

Deep learning (DL) models, such as convolutional neural networks (CNNs), have
been shown to yield competitive performance in visual object recognition, human action
recognition, natural language processing, audio classification, and other tasks [25]. CNNs
are a type of deep model that learns a hierarchy of features by building high-level features
from low-level ones. They have been primarily applied on 2D images, but researchers have
started exploring their use for HAR in videos [26].

HAR systems require two main stages: training and testing (evaluation). The training
stage involves collecting time-series data of measured attributes from individuals perform-
ing each activity, splitting the time series into time windows, applying feature extraction,
and generating an activity recognition model using learning methods. During the testing
stage, data is collected during a time window, feature extraction is performed, and the
trained learning model is used to generate a predicted activity label. There are several de-
sign issues in HAR systems, including the selection of attributes and sensors, obtrusiveness,
data collection protocol, recognition performance, energy consumption, processing, and
flexibility [22,23]. Addressing these issues is crucial for the successful implementation of
HAR systems in various real-life applications.

The state-of-the-art HAR systems can be categorized into different groups based on
their learning approach, response time, and the nature of the sensors used. Systems can be
classified as supervised, semi-supervised, online (often referred also as real-time), offline,
and hybrid (combining environmental and wearable sensors). Each of these groups has its
own unique challenges and purposes, and they should be evaluated separately.

Hence, HAR is a rapidly evolving field, driven by advancements in DL models, sensor
technology, and data processing techniques. The application of CNNs and other DL models
to HAR in videos is a promising direction that can potentially improve the performance and
capabilities of HAR systems. However, addressing the various design issues and evaluating
the performance of HAR systems under realistic conditions remain critical challenges that
need to be overcome to fully harness the potential of HAR in various domains.

1.2. Background on HAR in Smart Living Services and Applications

In the context of smart living, HAR refers to identifying and analyzing human activities
and behaviors using various sensors and computing technologies to provide intelligent,
responsive, and personalized services within living environments [27]. These environments
include homes, offices, healthcare facilities, and public spaces. HAR-based applications in
smart living aim to enhance occupants’ quality of life, safety, and well-being by leveraging
technology to automate and adapt to the needs of individuals. The employment of HAR
in smart living has led to a wide array of practical use cases. In elderly care, for example,
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HAR systems can be used to monitor daily activities, detect falls, and assess senior citizens’
health status, enabling timely assistance and improving their quality of life [28]. In smart
homes, HAR can facilitate the automation of appliances and lighting based on occupants’
activities and contribute to energy conservation [29]. In security, HAR can detect and alert
occupants of potential intruders or suspicious activities [30].

Building on the foundations of HAR in smart living, several critical dimensions play
a significant role in ensuring that these systems are truly effective, adaptable, and user-
centric. These dimensions include context awareness, data availability, personalization, and
privacy, all of which contribute to the overall functionality and success of the smart living
experience. Context awareness enables HAR systems to respond intelligently to the varying
needs and preferences of occupants in diverse living environments. By incorporating this
dimension, smart living solutions can better tailor their services, adapting to different
situations and ensuring seamless integration into the daily lives of individuals [31]. On the
other hand, personalization empowers users by providing services specifically customized
to their needs and preferences, providing a more comfortable, convenient, and intuitive
living environment, ultimately enhancing the quality of life for all occupants [32].

Privacy is a vital aspect of smart living, as it helps establish trust and acceptance
among users [33]. Respecting occupants’ privacy by safeguarding their data and ensur-
ing transparency in data collection practices can significantly impact the adoption and
success of HAR systems in various living environments. Privacy concerns and ethical
considerations are important when implementing HAR systems in smart living environ-
ments. Ensuring the proper anonymization of data, gaining consent from occupants, and
providing transparency in data collection and usage is essential for maintaining trust and
user acceptance. Finally, data availability is a crucial dimension that ensures the smooth
functioning of HAR systems by providing access to the necessary information for real-time
decision-making and analysis [34]. A robust data infrastructure enables smart living solu-
tions to function effectively, adapt to changing circumstances, and deliver a truly intelligent
and responsive experience. By incorporating these dimensions into smart living solutions,
we can create an ecosystem where HAR-based applications work in harmony with the
needs and preferences of occupants, ultimately resulting in a more efficient, secure, and
personalized living environment.

A Short Note on the Mining of Action

In academic literature, the meaning of the term “action” may vary depending on
the context and the authors’ perspective. Some scholars employ the terms “action” and
“activity” interchangeably, treating them as synonymous, while others make distinctions
between the two.

For a subset of authors, a more structured meaning is assigned to the term “activity”
than “action”. For instance, they consider the activity of cooking as a complex process
consisting of a sequence of more basic actions. Such actions include pouring water into a
container, turning on the stove, waiting for the water to boil, and pouring the hot water
into a cup. In this view, activities are perceived as interconnected actions contributing to a
specific goal.

On the other hand, some authors ascribe even more basic meanings to the term
“action”. They may classify actions as simple, everyday movements or positions, such
as walking, sitting, or lying down. In this perspective, actions are closely related to the
concept of static or dynamic postures, representing the various states of an individual’s
body during different activities.

In the context of this review paper, the authors have opted to utilize the term “action”
with a broader connotation. The chosen definition encompasses a wide spectrum of
meanings, ranging from high-level activities, which may be influenced by the context,
to more basic static or dynamic postures. This inclusive approach to the term “action”
allows for a comprehensive analysis and discussion in the review, incorporating diverse
perspectives and interpretations from the academic literature.
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This review paper makes several significant contributions to the field of human activity
recognition (HAR) within the context of smart living. The key contributions and challenges
discussed in this work can be summarized as follows:

• Context Awareness: The paper emphasizes the importance of context awareness in
HAR for smart living. It highlights the need for systems to perceive and interpret the
surrounding environments to provide appropriate responses. This dimension enables
intelligent and personalized experiences, enhancing the quality of life for users.

• Data Availability: The continuous flow of information is crucial for informed decision-
making and personalized experiences in smart living. The paper underscores the
significance of data availability in HAR systems, ensuring the smooth functioning
of the systems. It discusses the requirements for selecting datasets that represent
everyday routines and tasks in various settings, considering factors such as data
quality, sensor usage, and duration of recorded activities.

• Personalization: Personalization plays a pivotal role in HAR for smart living tech-
nologies. The paper highlights the benefits of personalized models, which recognize
individual uniqueness and tailor actions accordingly. It presents various approaches to
personalization, such as identifying similarities between a target subject and individu-
als in a training set, personalized models based on CNNs and signal decomposition,
and maintaining the ordering of time steps in sensor-based HAR.

• Privacy: Addressing privacy concerns is essential for the successful implementation
of HAR systems in smart living. The paper discusses the challenges related to sensor
choice, data security, and privacy preservation. It presents privacy-preserving tech-
niques, such as device-free sensing approaches, inaudible frequencies, occlusion of
personal data, and diversity-aware activity recognition frameworks based on federated
meta-learning architecture.

In addition to these key contributions, the paper also discusses the challenges associ-
ated with HAR in smart living. It highlights the need for integration of multiple sensing
technologies, federated learning for HAR, human-centered design principles, low-power
consumption, multi-resident HAR, and ethical considerations and privacy preservation.

The remaining of the paper is structured as follows: Firstly, we explore existing
literature reviews in the field to identify gaps and justify the need for this comprehensive
study. Next, we outline the criteria for selecting relevant literature and explain our search
process. In Section 3, we provide an overview of commonly utilized publicly available
datasets in HAR studies, followed by a discussion on widely employed performance
metrics for evaluating recognition performance in Section 4. Section 5 focuses on recent
research in HAR within smart living, examining aspects such as context awareness, data
availability, personalization, and privacy. In Section 6, we analyze the state-of-the-art
literature on smart living applications and services. Section 7 critically discusses potential
challenges and concerns, offering valuable insights to both researchers and practitioners.
Lastly, in Section 8, we conclude the paper by summarizing our findings and providing
closing considerations for future research and development in HAR within smart living
services and applications.

2. Review of Related Works and Rationale for This Comprehensive Study

Recent progress in DL methods for human activity recognition (HAR) has been sur-
veyed by Sun et al. [22], focusing on single-modality and multimodality methods. The
need for large datasets, effective fusion and co-learning strategies, efficient action analysis,
and unsupervised learning techniques has been emphasized. Saleem et al. [24] present
a comprehensive overview of HAR approaches and trends, proposing a HAR taxonomy
and discussing benchmark datasets. They also identify open challenges for future research,
including high intraclass variations, interclass similarities, background variations, and
multiview challenges.

Challenges and trends in HAR and posture prediction are discussed by Ma et al. [35],
highlighting four main challenges: significant intraclass variation and interclass similarity,
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complex scenarios, long untrimmed sequences, and long-tailed distributions in data. They
review various datasets, methods, and algorithms and discuss recent advancements and
future research directions. Arshad et al. [23] examine the state of HAR literature since
2018, categorizing existing research and identifying areas for future work, including less
explored application domains such as animal activity recognition.

A comprehensive survey of unimodal HAR methods is provided by Singh et al. [36],
classifying techniques based on ML concepts and discussing differences between ML and
DL approaches. Kong and Fu [37] survey techniques in action recognition and prediction
from videos, covering various aspects of existing methods and discussing popular action
datasets and future research directions. Gu et al. [38] present a comprehensive survey
on recent advances and challenges in HAR using DL, examining various DL models and
sensors for HAR and discussing key challenges.

Optimal ML algorithms, techniques, and devices for specific HAR applications are ex-
amined by Kulsoom et al. [39], providing a comprehensive survey of HAR. They conclude
that DL methods have higher performance and accuracy than traditional ML approaches
and highlight future directions, limitations, and opportunities in HAR. Gupta et al. [40]
present a comprehensive review of HAR, focusing on acquisition devices, AI, and appli-
cations, and propose that the growth in HAR devices is synchronized with the artificial
intelligence (AI) framework. They also recommend that researchers expand HAR’s scope
in diverse domains and improve human health and well-being.

Bian et al. [41] present an extensive survey on sensing modalities used in HAR tasks,
categorizing human activities and sensing techniques and discussing future development
trends in HAR-related sensing techniques, such as sensor fusion, smart sensors, and novel
sensors. Ige et al. [42] survey wearable sensor-based HAR systems and unsupervised
learning, discussing the adoption of unsupervised learning in wearable sensor-based HAR
and highlighting future research directions. Najeh et al. [43] explore the challenges and po-
tential solutions in real-time HAR using DL and hardware architectures, analyzing various
DL architectures and hardware architectures and suggesting new research directions for
improving HAR.

After reviewing the literature, it becomes evident that existing survey and review
studies can be broadly categorized into two groups: (1) those providing a comprehen-
sive general overview of the field and (2) those focusing on specific aspects such as ML,
DL, sensing, and computer vision. However, it is essential to note that, to the authors’
knowledge, there is a lack of research specifically targeting smart living while thoroughly
evaluating the existing literature on crucial dimensions essential for smart living from the
perspective of services and applications.

These dimensions are crucial for the effective implementation of HAR systems in
providing smart and personalized services in living environments. The authors carried out
a comprehensive literature analysis, categorizing relevant papers into themes and exploring
the state of the art in HAR for smart living. Thus, this review paper goes beyond previous
general overviews and focuses on the dimensions essential for smart living services and
applications, aiming to offer a comprehensive perspective on the current state of the field.

For this review, an extensive literature analysis was conducted by investigating 511 doc-
uments found through a focused Scopus search. This search was constructed to include
many pertinent papers by incorporating specific keywords related to HAR and smart living.
The search employed the following structure:

TITLE (action OR activity OR activities) AND TITLE (recognition OR classification
OR classifying OR recognize OR classified OR classifier OR detector OR detecting OR
discriminating OR discrimination) AND TITLE-ABS-KEY (“smart home” OR “smart build-
ing” OR “smart environment” OR “smart space” OR “smart living” OR “smart city” OR
“smart cities” OR “assisted living” OR “ambient intelligence” OR “smart ambient”) AND
PUBYEAR > 2019.

The query sought articles featuring titles that incorporated terms associated with
actions or activities and their identification, categorization, or discovery. Additionally,
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the exploration was narrowed to articles containing title/abstract keywords connected
to a range of smart living scenarios, including smart homes, smart buildings, smart envi-
ronments, smart cities, and ambient intelligence, among other examples. The query also
emphasized publications released in 2020 or later, guaranteeing that the analysis considered
the latest developments in the domain. The primary factor for choosing a paper for this
review was its relevance to one or more of the aforementioned key aspects of smart living.
This strategy facilitated the assembly of an extensive and pertinent collection of literature,
laying the groundwork for a well-informed and perceptive assessment of HAR within the
sphere of smart living.

The papers obtained from the above query can be further classified based on the specific
themes they address. In particular, the following, possibly overlapped, categories emerge:

• Context awareness
• Data availability
• Interoperability
• Machine and deep learning
• Multimodality
• Personalization
• Privacy
• Real-time processing
• Resource-constrained processing
• Sensing technologies
• Services and applications

The categories listed above with their respective quantities are represented in Figure 2.
The plot reveals that the most prominent categories are services and applications, machine
and deep learning, and sensing technologies. As said, ML, DL, and sensing have already
received extensive coverage in previous review works.

Figure 2. Distribution of research papers on key topics in smart living. Each bar represents the
quantity of papers focusing on a specific topic. It is important to note that the quantities of papers
may overlap, as individual papers can address multiple topics simultaneously.

Additionally, interoperability, multimodality, real-time processing, resource-constrained
processing, and sensing technologies have been thoroughly analyzed in the previous review
study by the authors [16]. Areas such as “personalization” and “privacy” received less
attention, indicating potential avenues for future research.

This work aims to explore and analyze the concepts of context awareness, data avail-
ability, personalization, and privacy, which have not been given much attention in previous
reviews. Moreover, the focus of this work is on services and applications that cover vari-
ous subjects, as shown in Figure 3. These subjects are crucial in creating a seamless and
intelligent living environment. Here is a brief overview of these aspects:



Sensors 2023, 23, 6040 9 of 45

• Health Status Surveillance: refers to monitoring and assessing an individual’s health-
related aspects such as food intake, lifestyle, well-being, physical activity, sleep, and the
use of technology such as robots or mirrors to support healthcare or anomaly detection.

• Smart Interaction: involves various forms of interactive communication between
humans and computers, including hand gestures, natural interaction, brain–computer
interfaces, and human–computer interaction.

• Ambient Assisted Living (AAL): encompasses technologies and systems designed
to support independent living for older adults or individuals with specific needs,
focusing on activities of daily living, active and healthy living, as well as assistive and
complex human activities.

• Security Surveillance: this relates to using surveillance systems to monitor and detect
suspicious or violent activities, ensuring safety and security in various environments.

• Health Hazard Surveillance: involves the monitoring and identifying potential health
hazards, such as falls, anomalies, or dangerous situations, particularly in settings
such as bathrooms.

• Energy Management: refers to strategies and technologies for efficient energy use,
including smart meters, energy-saving techniques, power consumption monitoring,
and occupancy-based management.

• Home/Building Automation: involves the automation of various tasks and systems
within homes or buildings, utilizing ambient intelligence, intelligent appliances, or
white goods (such as household appliances).

• Smart Robotics: the field of robotics encompasses the development and application of
robots in various domains or tasks, enhancing automation and intelligent interaction.

As shown in Figure 3, health status surveillance is the most heavily represented
area, making up 23% of the total research, followed closely by smart interaction and
AAL. This indicates that health-related services and interactive technologies are central to
current smart living research. Conversely, areas such as smart robotics and home/building
automation make up a smaller portion of the total research, pointing to less explored niches
that may have potential for development.

Figure 3. Percentage distribution of services and applications in smart living. The pie plot visually
represents the percentage distribution of research papers focusing on specific services and applications
within the smart living domain.
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3. Common Publicly Available Datasets

Numerous accessible public datasets are often employed for HAR; however, it is vital
to understand that these datasets may not fully address specific requirements for smart
living services and applications. A key consideration when choosing a dataset for smart
living services and applications is the kind of human action incorporated within the dataset.
The human actions must be pertinent to the smart living context and represent individuals’
everyday routines and tasks in their homes, workplaces, or urban settings. This way, it is
ensured that the HAR models derived from these datasets cater to the distinct demands of
smart living solutions.

Another essential factor to consider is the dataset’s subject diversity, including differ-
ences in age, gender, and physical capabilities. A broader representation of human activities
can be achieved with a diverse group of subjects, which helps create more resilient and
versatile HAR models that serve a wider population and can adapt to various individuals
and circumstances.

Additional aspects to consider when choosing a dataset for HAR in smart living
are data quality, the number of sensors utilized, the placement of these sensors, and the
duration of recorded activities. These factors can considerably influence the effectiveness
and dependability of HAR models, making it crucial to consider them when selecting the
most appropriate dataset for a specific application.

In this review, we have meticulously chosen several pertinent datasets extensively used
by the research community for HAR studies. These datasets comprise: Opportunity [44],
PAMAP2 [45], CASAS: Aruba [46], CASAS: Cairo [47], CASAS: Kyoto Daily life [48], CASAS:
Kyoto Multiresident [49], CASAS: Milan [48], CASAS: Tokyo [50], CASAS: Tulum [48],
WISDM [51], ExtraSensory [52], MHEALTH [53], UCF101 [54], HMDB51 [55], NTU RGB+D [56],
SmartFABER [57], PAAL ADL Accelerometry [58], Houses: HA, HB, and HC. [59], UCI-
HAR [60], Ordonez [61], Utwente [62], IITR-IAR [63].

An overview of the different datasets used by the review works is provided in Table 1.
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Table 1. Common Publicly Available Datasets.

Reference Name Sensors Subjects No/Type
of Environment Actions/Contexts

Roggen et al. [44] Opportunity
Getting up, grooming, relaxing, preparing and consuming coffee and a
sandwich, and cleaning up; opening and closing doors, drawers, fridge,
dishwasher, turning lights on and off, and drinking in different positions.

12
Body-worn, object-attached,

ambient sensors (microphones,
cameras, pressure sensors).

Reiss and Stricker [45] PAMAP2
Lie, sit, stand, walk, run, cycle, Nordic walk, iron, vacuum clean, rope
jump, ascend and descend stairs, watch TV, computer work, drive car,

fold laundry, clean house, and play soccer.
9 Inertial Measuring Units

(IMUs), ECG.

Cook and Diane [46] CASAS:
Aruba

Movement from bed to bathroom, eating, getting home, housework,
leaving home, preparing food, relaxing, sleeping, washing dishes

and working.
1 adult, 2 occasional visitors Environment sensors: motion, light,

door and temperature.

Cook et al. [47] CASAS: Cairo Bed (four different types), bed to toilet, breakfast, dinner, laundry, leave
home, lunch, night wandering, resident1 work, resident2 medicine. 2 adults, 1 dog Environment sensors: motion and

light sensors.

Cook and
Schmitter-Edgecombe [48]

CASAS:
Kyoto

Daily life
Making a call, washing hands, cooking, eating and washing the dishes. 20

Environment sensors: motion,
associated with objects, from the

medicine box, a flowerpot, a diary, a
closet, water, kitchen and telephone

use sensors.

Cook et al. [50] CASAS:
Tokyo Working, preparing meals, and sleeping. 2 Environment sensors: motion, door

closure, light.

Weiss et al. [51] WISDM

Walking, jogging, stairs, sitting, standing, kicking a soccer ball, dribbling
a basketball, catch with a tennis ball, typing, writing, clapping, brushing

teeth, folding clothes, eating (pasta, soup, sandwich, chips), and
drinking from a cup.

51 (undergraduate and graduate
university students between the

ages of 18 and 25)

Accelerometer and gyroscope
sensors, which are available in both

smartphones and smartwatches.

Singla et al. [49]
CASAS:
Kyoto

Multiresident

Fill medication dispenser, hang up clothes, move couch and coffee table,
sit on couch, water plants, sweep kitchen floor, play checkers, set out
dinner ingredients, set dining room table, read magazine, simulate

electric bill payment, gather picnic food, retrieve dishes from cabinet,
pack supplies in picnic basket, pack food in picnic basket.

2 (pairs taken from
40 participants)

Environment sensors: motion, item,
cabinet, water, burner, phone

and temperature.

Cook and
Schmitter-Edgecombe [48] CASAS: Milan Bathing, bed to toilet, cook, eat, leave home, read, watch TV, sleep, take

medicine, work (desk, chores), meditation.
1 woman, 1 dog,

1 occasional visitor
Environment sensors: motion,

temperature, door closure.
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Table 1. Cont.

Reference Name Sensors Subjects No / Type of
Environment Actions/Contexts

Vaizman et al. [52] ExtraSensory
Sitting, walking, lying, standing, bicycling, running outdoors with

friends, talking with friends, exercise at the gym, drinking, sitting at
home watching TV, traveling on a bus while standing.

60

Accelerometers, gyroscopes, and
magnetometers sensors, which are

available in both smartphones
and smartwatches.

Banos et al. [53] MHEALTH
Standing still, sitting and relaxing, lying down, walking, climbing stairs,

waist bending forward, frontal elevation of arms, knees bending
(crouching), cycling, jogging, running, jump front & back

10 Accelerometers, gyroscopes,
magnetometers, EEG.

Soomro et al. [54] UCF101
N. 101 action classes divided into five types: Human-Object Interaction,

Body-Motion Only, Human-Human Interaction, Playing Musical
Instruments, Sports.

N.A. RGB video clips (25 FPS,
320× 240 pixels).

Kuehne et al. [55] HMDB51

N. 51 action categories grouped into five types: general facial actions,
facial actions with object manipulation, general body movements, body

movements with object interaction, and body movements for
human interaction.

N.A. RGB video clips.

Shahroudy et al. [56] NTU RGB+D
N. 40 daily actions (e.g., drinking, eating, reading), 9 health-related

actions (e.g., sneezing, staggering, falling down), and 11 mutual actions
(e.g., punching, kicking, hugging).

40

3 Microsoft Kinect v2 sensors
located at the same height but from

three different horizontal angles:
−45°, 0°, and +45°.

Riboni et al. [57] SmartFABER
Preparing food, consuming meal, taking medicines, opening and closing

of drawers, fridge and cabinet doors, use of appliances, non-critical
anomalies, critical anomalies.

21 elderly individuals in a smart
home laboratory (7 healthy
seniors, and 14 with early

symptoms of MCI).

Presence, contact, pressure,
RFID, magnetic.

Climent-Perez et al. [58] PAAL ADL
Accelerometry

Six broad categories: eating and drinking, hygiene/grooming, dressing
and undressing, miscellaneous and communication, basic health

indicators, and house cleaning.
52 (26 women, 26 men) Wrist-worn device

with accelerometer.

van Kasteren et al. [59] Houses: HA,
HB, and HC.

Sleeping, leaving the house, toileting, showering, having breakfast,
having dinner, and drinking 1

Reed switches, pressure mats,
mercury contacts, passive infrared

(PIR), float sensors.

Anguita et al. [60] UCI-HAR Standing, sitting, laying down, walking, walking downstairs, and
walking upstairs. 30

Accelerometers and gyroscopes
embedded in a Samsung Galaxy S

II smartphone.
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Table 1. Cont.

Reference Name Sensors Subjects No / Type of
environment Actions/Contexts

Ordonez et al. [61] Ordonez Leaving, toileting, showering, sleeping, breakfast, dinner, drink,
idle/unlabeled, lunch, snack, spare time/tv, grooming. N.A.

PIR sensors (motion detection), reed
switches (open/close states of doors

and cupboards), float sensors
(flushing of toilets).

Shoaib et al. [62] Utwente Walking, jogging, biking, walking upstairs, walking downstairs, sitting,
standing, eating, typing, writing, drinking coffee, giving a talk, smoking. 10

Accelerometer, a gyroscope, and
linear acceleration sensors located

on the wrist and in the pocket.

Imran et al. [63] IITR-IAR

Clapping, crouching, hopping, running, walking, waving, dropping
object, carrying/pointing a gun, picking up object, recording video,

clicking selfie, throwing object, chasing, fighting, handshaking, hugging,
kicking, passing object, punching, pushing.

35 Cameras.
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4. Performance Metrics

Classification algorithms are evaluated using various metrics. accuracy (A), recall (R),
precision (P), F1-score (F1S), macro-F1-score (mF1S), and specificity (SP) are some com-
monly used ones. Accuracy (A) is determined by the formula

A =
TP + TN

TP + TN + FP + FN
. (1)

This metric measures the ratio of correct predictions made by the model to the total
number of predictions made. Recall (R), also known as sensitivity or true positive rate,
measures the proportion of relevant instances retrieved. It is determined by the formula

R =
TP

TP + FN
. (2)

Precision (P) represents the proportion of true positives among the predicted positives.
It is determined by the formula

P =
TP

TP + FP
. (3)

The F1-score (F1S) is the harmonic mean of precision and recall, balancing their trade-
offs. It is calculated using the formula

F1S = 2 × P × R
P + R

. (4)

The macro-F1-score (mF1S) calculates the average of the F1-scores for each class,
treating all classes equally regardless of their size. It is determined using the formula

mF1S =
1
N

N

∑
i=1

F1Si. (5)

Lastly, specificity (SP) is determined by the formula

SP =
TN

TN + FP
(6)

and measures the proportion of true negatives among the predicted negatives, reflecting
the model’s ability to correctly identify negative instances.

Regarding the symbols above, TP, TN, FP, and FN commonly represent different
outcomes in a binary classification problem. They are defined as follows:

• TP: True Positives: the number of positive cases correctly identified by a classifier.
• TN: True Negatives: the number of negative cases correctly identified as negative by

a classifier.
• FP: False Positives: the number of negative cases incorrectly identified as positive by

a classifier.
• FN: False Negatives: the number of positive cases incorrectly identified as negative by

a classifier.

5. HAR in Smart Living Services and Applications

The analytical framework presented above provides a comprehensive perspective on
the various dimensions of HAR in smart living. However, it is crucial to analyze each
dimension critically to ensure that the development of intelligent living environments
addresses potential concerns and challenges. Starting from the corpus of papers obtained
with the query indicated above, the most representative papers of the dimensions ana-
lyzed, namely context awareness, data availability, personalization, and privacy, have been
selected. This selection process ensures that the following state-of-the-art examination is
based on highly relevant and significant works in HAR.
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To facilitate a systematic and organized presentation, each section in the following
schematically reports the selected works for each dimension. Dedicated tables provide
concise and structured information about each paper, including the methodology employed,
the dataset used, the performances achieved, the sensors adopted, and the most prominent
actions considered in each work. These tables not only enhance readability but also serve
as a quick reference for understanding the critical aspects of each work.

Moreover, the selected papers also focus on identifying and analyzing the actions most
considered in the context of HAR in smart living. By prioritizing these actions, researchers
can gain insights into the specific human activities that have garnered significant attention
in the literature. This approach enables a deeper understanding of the current research
landscape and highlights areas that require further investigation and improvement.

By adopting this comprehensive approach, this paper aims to provide a detailed
overview of the state of the art in HAR for smart living services and applications. Including
the most representative papers and providing essential details about each work’s methodol-
ogy, dataset, performances, sensors, and prioritized actions contribute to a more thorough
understanding of the advancements and challenges in this evolving field.

The papers analyzed in the subsequent sections are carefully compared based on the
following evaluation criteria:

• Methods: The methodologies employed in each paper are thoroughly examined and
compared. This assessment aims to identify the strengths and weaknesses of different
approaches used in HAR for smart living, facilitating a comprehensive understanding
of the diverse methods employed in the field. Different methods, such as deep learning
models, signal decomposition, or fusion techniques, can have varying impacts on the
HAR performance. Understanding the methods employed in the reviewed literature
helps researchers and practitioners identify the most effective approaches and explore
novel methods.

• Dataset(s): The choice of datasets is significant for evaluating HAR systems. The se-
lected datasets should reflect real-world scenarios, incorporate human actions relevant
to smart living, and represent diverse populations. By analyzing the datasets used in
previous studies, researchers can identify suitable datasets for their own research and
assess the generalizability of existing models.

• Performance: Evaluating the performance of HAR systems is crucial to determine
their effectiveness. Performance metrics such as accuracy, recall, precision, F1-score,
macro-F1-score, and specificity provide quantitative measures of how well the HAR
models perform. These metrics help researchers compare different approaches, iden-
tify strengths and weaknesses, and guide the development of more accurate and
reliable HAR systems.

• Sensor(s): The choice of sensors used in HAR systems is essential for capturing human
actions accurately. Different sensors, such as wearables, cameras, or environmental
sensors, can provide distinct types of data and contextual information. Understand-
ing the sensors employed in previous studies helps researchers select appropriate
sensors for their own HAR systems and explore sensor fusion techniques to enhance
recognition accuracy. This evaluation aimed to assess the types of sensors employed,
their placement, and their impact on the performance and practicality of activity
recognition in smart living environments. By comparing the sensor configurations, a
comprehensive understanding of the advantages and limitations of different setups
can be achieved.

• Actions: Recognizing and analyzing specific human actions is the ultimate objective of
HAR. By evaluating the actions considered in previous studies, researchers can gain
insights into the scope and applicability of HAR in smart living. It helps identify rele-
vant actions for specific domains such as healthcare, security, or energy management,
and guides the development of HAR models tailored to specific application sectors.
This analysis provides insights into the specific activities that have received significant
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attention in the literature, facilitating a comprehensive understanding of the research
landscape and identifying potential gaps or areas for further exploration.

5.1. Context Awareness

Context awareness is a key aspect in designing smart living environments, where
systems recognize, interpret, and respond to various contextual factors, including time,
location, user preferences, and activities. By understanding and adapting to users’ contexts,
these systems can enhance user experience, promote independence, and facilitate conve-
nience [64–69]. Some studies have focused on improving feature extraction and resolving
activity confusion by using marker-based Stigmergy, a concept derived from social insects
that explains their indirect communication and coordination mechanisms (Xu et al. [64]).
This approach allows for efficient modeling of daily activities without requiring sophisti-
cated domain knowledge and helps protect the privacy of monitored individuals.

Other research has explored context awareness in HAR for multitenant smart home
scenarios, developing methodologies that constrain sensor noise during human activities
(Li et al. [65]). By integrating the spatial distance matrix (SDM) with the Contribution
Significance Analysis (CSA) method and the broad time-domain CNN algorithm, these
approaches ensure accurate and efficient HAR systems. In multi-user spaces, researchers
have addressed the challenges of complex sequences of overlapping events by employing
transformer-based approaches, such as AR-T (attention-based residual transformer), which
extracts long-term event correlations and important events as elements of activity patterns
(Kim [66]). This method has shown improved recognition accuracy in real-world testbeds.

Ehatisham-ul-Haq et al. [67] propose a two-stage model for activity recognition in-
the-wild (ARW) using portable accelerometer sensors. By incorporating the recognition of
human contexts, the model provides a fine-grained representation of daily human activities
in natural surroundings. Despite its limitations, the proposed method has achieved rea-
sonable accuracy. Buoncompagni et al. [68] present Arianna+, a framework for designing
networks of ontologies that enable smart homes to perform HAR online. This approach
focuses on the architectural aspects of accommodating logic-based and data-driven activity
models in a context-oriented way, leading to increased intelligibility, reduced computational
load, and modularity.

Lastly, Javed et al. [69] explore context awareness in HAR systems for sustainable
smart cities. They propose a framework for HAR using raw readings from a combination
of fused smartphone sensors, aiming to capitalize on the pervasive nature of smartphones
and their embedded sensors to collect context-aware data. The study reports promising
results in recognizing human activities compared to similar studies, achieving an accuracy
of 99.43% for activity recognition using a deep recurrent neural network (DRNN).

Moreover, context awareness plays a critical role in the development of intelligent,
smart living environments, and various research efforts have explored different method-
ologies and approaches to improve HAR systems by incorporating context-aware infor-
mation. These advances contribute to the development of sustainable smart cities and
healthier societies.

The following presents a detailed analysis of the works described above from the
complexity, validity, and generalizability perspective. The purpose is to offer readers
a comprehensive understanding of these aspects concerning the proposed solutions for
context-aware activity recognition in smart living environments. By examining the com-
plexity of the methods, the validity of their results, and the generalizability of their findings,
readers can gain insights into the strengths and limitations of each approach.

Xu et al. [64] propose a novel activity modeling method that utilizes marker-based
stigmergy and a directed-weighted network (DwN) with additional context-aware informa-
tion. The complexity of the method lies in aggregating context information at a low level
to generate activity pheromone trails. These trails are represented as a directed-weighted
network, capturing individual pheromone sources corresponding to locations. The solution
effectively addresses feature extraction and activity ambiguity, achieving good classification
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performance. The use of stigmergy as context-aware information aggregation enables the
modeling of daily activities without requiring sophisticated domain knowledge. The solu-
tion also ensures privacy by blurring the individual’s information within the aggregated
context-aware data. While the method shows promise, its generalizability might be limited
to specific use cases that align with the employed stigmergy paradigm.

Li et al. [65] propose an adaptable methodology for human activity recognition (HAR)
in multitenant smart home scenarios, emphasizing context awareness. The complexity of
their approach involves constraining sensor noise during human activities by constructing
a spatial distance matrix (SDM) based on environmental sensors’ layout. The authors
address the challenges of identifying triggers from sensor sequences by considering the
coherence characteristics of the home layout and human activities. This approach mitigates
behavior confusion errors and improves the overall HAR process. The integration of the
SDM with the CSA method and time-domain CNN algorithm ensures accurate and efficient
HAR. While the solution demonstrates effectiveness, its generalizability might depend on
the specific layout and configuration of the smart home environments.

Kim [66] presents AR-T (activity recognition transformer), a transformer-based ap-
proach for real-world activity recognition in multi-user spaces. The complexity lies in
extracting long-term event correlations and important events as elements of activity pat-
terns. The solution addresses challenges related to complex sequences of overlapping
events triggered by multiple users. The author introduces a duration-incorporated embed-
ding method that allows AR-T to differentiate between events with different durations.
The transformer’s ability to compute attention scores and assign importance weights to
each context enables effective handling of infrequent but significant contexts. The solu-
tion demonstrates improved recognition accuracy compared to existing approaches in
real-world testbeds. The generalizability of AR-T is supported by its performance across
different datasets, including a seminar room and a smart home testbed, indicating its
potential applicability in various multi-user environments.

Ehatisham-ul-Haq et al. [67] propose a two-stage model for activity recognition in-the-
wild (ARW) using portable accelerometer sensors. The solution incorporates the recognition
of human contexts, providing a fine-grained representation of daily human activities
in natural surroundings. The complexity lies in the two-stage supervised classification
approach, where primary physical activity of daily living (PADL) is identified in the first
stage, and activity-related contexts are inferred in the second stage using accelerometer
sensors. The model achieves an average balanced accuracy of 89.43% on the ExtraSensory
dataset, demonstrating effectiveness. However, the method’s generalizability might be
limited to the specified primary PADLs and context labels used in the experiments, and it
may face challenges when handling unforeseen activities and contexts.

Buoncompagni et al. [68] present Arianna+, a framework for designing networks
of ontologies to enable smart homes to perform online human activity recognition. The
solution focuses on architectural aspects, accommodating logic-based and data-driven
activity models in a context-oriented way. The complexity lies in using multiple contexts
for encoding knowledge required for activity recognition and classification, which en-
hances intelligibility, reduces computational load, and enables modularity. The authors
demonstrate that the modular network of small ontologies, specialized for each activity, is
more intelligible and computationally efficient compared to a single ontology encoding the
same knowledge. The solution’s generalizability is supported by its evaluation using the
CASAS dataset and its performance comparable to state-of-the-art techniques.

Javed et al. [69] propose a framework for human activity recognition (HAR) in sus-
tainable smart cities, utilizing raw sensor readings from smartphones. The framework
leverages a deep recurrent neural network (DRNN) applied to fused smartphone sensor
data, including accelerometer, gyroscope, magnetometer, and Google Fit activity tracking
module. The complexity lies in capturing context-aware data from smartphones’ embed-
ded sensors and training the DRNN on an extensive dataset. The solution demonstrates
promising results with an accuracy of 99.43% for activity recognition. The framework’s gen-
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eralizability is supported by its potential applications in healthcare, fitness, skill assessment,
and personal assistance, contributing to sustainable smart cities.

The works discussed in this section are summarized in Table 2. Table 2 reveals a wealth
of information on the strides made in context awareness within the sphere of HAR systems.
A broad range of methodologies are utilized in this area, including but not limited to
marker-based stigmergy, spatial distance matrix, transformers, machine learning, ontology
networks, and deep recurrent neural networks. Furthermore, the researchers have made
use of different types of datasets for their studies. These vary from standardized ones such
as CASAS and ExtraSensory to datasets that are self-collected, catering to a wide range of
activity recognition scenarios.

In terms of performance, the metrics appear to differ from one study to another.
However, the overall picture is one of high performance, indicating that the incorporation
of context-aware methods into HAR systems is effective. When it comes to data collection,
a variety of sensors are utilized, ranging from environmental sensors and smartphone
and smartwatch accelerometers, through to more unique sensors such as brightness or
seat occupation. This shows that a diverse array of data inputs can contribute to effective
context awareness.

Additionally, Table 2 showcases a spectrum of human activities that can be recognized
by context-aware systems. These activities range from everyday tasks like cooking, walking,
or reading to more complex actions such as moving furniture or engaging in technical
discussions. The applications of these context-aware approaches are vast, they cover
areas from smart homes and smart cities to individual mobile devices, underlining their
versatility and widespread applicability.
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Table 2. Context awareness.

Reference Methods Dataset/s Performance Sensor/s Actions

Xu et al. [64] Marker-based Stigmergy, DwN. CASAS
(Aruba)

R = 0.9669,
P = 0.9598,

F1S = 0.9633.

Environment sensors
(CASAS). Cooking, watching TV, reading, and sleeping

Li et al. [65] Spatial Distance Matrix, Contribution
Significance Analysis, Time-Domain CNN.

CASAS (Cairo,
Milan, Kyoto)

A = 0.9708,
P = 0.9535,
R = 0.9611,

F1S = 0.9571.

Environment sensors
(CASAS).

All activities included in Cairo, Milan, and
Kioto datasets.

Kim [66] Activity Recognition Transformer. CASAS,
Self-collected

A = 0.955,
P = 0.962,
R = 0.955,

F1S = 0.954.

Environment sensors
(CASAS), brightness,

speaker recognition, sound
level, light use, person

presence, seat occupying.

Chatting, seminar, technical discussion, and group study
in the seminar room testbed, and move furniture, play a

game, prepare for dinner, and pack a picnic.

Ehatisham-ul-Haq
et al. [67]

Supervised Machine Learning, Boosted
Decision Tree (DT), Neural Network

Classifiers.
ExtraSensory A = 0.8943

(avg.).%.
Smartphone and

smartwatch accelerometers Sitting, walking, lying, standing, running, and bicycling.

Buoncompagni
et al. [68] Ontology networks, logic-based reasoning. CASAS F1S = 0.78 (min.),

F1S = 0.98 (max).
Refer to CASAS (no further

details provided). Refer to CASAS (no further details provided).

Javed et al. [69]
Deep recurrent neural network (DRNN),

Recurrent neural networks (RNNs), Smart
city, Internet of things (IoT).

Self-collected
involving 12

subjects.
A = 0.9943 (max.).

Accelerometer, gyroscope,
magnetometer in
smartphone and

Google Fit.

In a vehicle, on foot, still, tilting, walking.

Ehatisham et al.
[70]

Decision Tree (DT), Random Forest (RF),
and Neural Networks (NN). ExtraSensory. A = 0.83 Accelerometers,

gyroscopes. All activities of ExtraSensory datasets.

Ceron et al. [71] K-Nearest Neighbor (KNN), Naive Bayes
(NB), and Hoeffding Tree (HT).

Self-collected,
22 participants

(11 young
people, and

11 older
adults)

F1 = 0.88

IMU placed in the
participants’s shoe, and

Bluetooth low energy
beacons (BLE) deployed in

the indoor environment.

Walking, Climbing, Being still, Using jug, Sweeping,
Using Bathroom sink, Using toilet.

Srihari et al. [72] Deep-learning-based Spatio-temporal
recognition, frame-based ROI detection. IITR-IAR. A = 0.985 (avg.). FLIR T1020 camera, FLIR

ONE thermal camera. All activities of IITR-IAR dataset.
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Table 2. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Mohamed et al.
[73]

Adaptive Profiling Model using multi-label
classification, Label

Combination(LC)-Random Forest (RF).
CASAS. A = 0.99 (avg.) Ambient sensor data of the

CASAS datasets.

Medication dispenser, reading magazine, sweeping floor,
setting table for dinner, reading magazine, gathering
picnic food, retrieving dishes from cabinet, packing

supplies for picnic food, hanging clothes, move furniture,
watering plants, playing checkers, prepare dinner, pay

bills, retrieving dishes from cabinet, packing picnic food.

Sridharan et al.
[74] Sequence matching, DTW algorithm. Self-collected. A = 0.918 (avg.).

Low power transmitting
wearable beacon with

embedded sensors clipped
on to the shirt collar.

Five micro-activities: Sitting on Centre of Couch, Sitting
on Left of Couch, Sitting on Right of Couch, Using the

Shower, Using the Bathroom Sink. Walking routes:
Bathroom to Kitchen Fridge, Kitchen Fridge to

Bathroom, Kitchen Fridge to Sink, Couch to Front Door,
Couch No.2 to Front Door.
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5.2. Data Availability

Data availability is a major challenge in developing robust HAR systems for smart liv-
ing services and applications. These systems require accurate and diverse data to learn the
intricacies of human movements and interactions, yet acquiring sufficient real-world data
for training can be time-consuming and expensive. Moreover, publicly available datasets
may not adequately represent the diversity of human actions or the specific contexts in
which smart living services and applications operate. To address these limitations, re-
searchers employ various strategies, such as data augmentation, synthetic data generation,
simulation, and transfer learning [75,76].

Data augmentation and synthetic data generation techniques help enhance the diver-
sity of training data and mimic real-world situations, enabling models to generalize better
and perform well on unseen data.

For instance, Vishwakarma et al. [75] developed SimHumalator, a simulation tool
for generating human micro-Doppler radar data in passive WiFi scenarios. Nan and
Florea [76] employed data augmentation techniques, such as uniform sampling, random
movement, and random rotation, to artificially generate new samples for skeleton-based
action recognition.

Annotation of collected data is another critical issue, as it is labor-intensive, time-
consuming, and often requires domain experts. To mitigate these annotation difficulties,
researchers are exploring the use of unsupervised and semi-supervised learning tech-
niques, which take advantage of the vast amounts of unlabeled data to improve the
performance of HAR systems without the need for manual annotation [77,78]. For example,
Riboni et al. [77] presented an unsupervised technique for activity recognition in smart
homes. Their approach utilized HMMs and employed a knowledge-based strategy incor-
porating semantic correlations between event types and activity classes. The unsupervised
method demonstrated a high level of accuracy, comparable to that of the supervised HMM-
based technique reported in existing literature. Additionally, Dhekane et al. [78] proposed
a real-time annotation framework for activity recognition, leveraging the change point
detection (CPD) methodology.

Semantic and ontology-based approaches can significantly address the data availability
problem by facilitating the annotation process, supporting data integration from multiple
sources, and enabling reasoning and inference [79]. These approaches can streamline the
annotation process by defining a structured and consistent vocabulary for describing human
actions and reducing ambiguities and inconsistencies in annotation. Moreover, ontologies
can automate certain aspects of the annotation process, reducing the time and effort required
by human annotators. By establishing a common semantic framework, researchers can more
easily combine and compare datasets, leading to improved performance and generalization
in HAR models. Another advantage of semantic and ontology-based approaches is their
ability to support reasoning and inference. By capturing relationships and hierarchies
between actions, objects, and contexts, these approaches can enable HAR systems to make
inferences about unseen or underrepresented actions based on their similarities to known
actions [79]. This can fill gaps in the training data and support the development of more
robust models even when faced with limited data.

Leveraging ubiquitous sensing devices, such as smartphones, is another way to ad-
dress data availability. For example, Liaqat et al. [80] proposed an ensemble classification
algorithm that uses smartphone data to classify different human activities. This approach
significantly expands the potential for widespread adoption of HAR systems, ensuring
more people, especially older adults, can benefit from ambient assisted living solutions
for improved monitoring and support. Moreover, data availability remains a significant
challenge in the development of HAR systems for smart living services and applications.
Researchers are adopting various strategies, including data augmentation, synthetic data
generation, simulation, transfer learning, unsupervised and semi-supervised learning,
semantic and ontology-based approaches, and the use of ubiquitous sensing devices to
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overcome this challenge. By enhancing the diversity and quality of training data, these
approaches help improve the performance and generalization of HAR models.

The following presents a detailed analysis of the works described above from the
complexity, validity, and generalizability perspective. The purpose is to offer readers a
comprehensive understanding of these aspects concerning the proposed solutions for data
availability in smart living HAR. By examining the complexity of the methods, the validity
of their results, and the generalizability of their findings, readers can gain insights into the
strengths and limitations of each approach.

The first solution, presented by Vishwakarma et al. [75], introduces SimHumalator,
an open-source simulation tool for generating human micro-Doppler radar data. The tool
uses animation data from motion capture systems and WiFi transmissions to simulate
micro-Doppler features that incorporate the diversity of human motion characteristics and
sensor parameters. SimHumalator allows users to select target, radar, and signal processing
parameters. The generated signatures are experimentally validated using a hardware
prototype. The study demonstrates the feasibility of using SimHumalator to generate
large human micro-Doppler databases. These synthesized signatures can be used for data
augmentation to address the problem of insufficient or unbalanced micro-Doppler training
data. The paper presents case studies on using SimHumalator-generated spectrograms
for activity recognition applications and showcases classification results from various
data augmentation schemes. The complexity of SimHumalator depends on the selected
parameters, animation data, and WiFi transmissions. The validity of SimHumalator is
supported by the experimental validation of the generated signatures. Generalizability
is achieved through the application of the generated data for data augmentation and the
demonstration of classification results using the augmented data.

The second solution, proposed by Nan and Florea [76], focuses on skeleton-based
action recognition using a neural network approach. The authors utilize a combination
of graph convolutional networks (GCN) and temporal convolutional networks (TCN). To
address the data availability challenge, the authors employ data augmentation techniques.
These techniques involve artificially generating new samples using various transformations
applied to the X, Y, and Z coordinates of the skeleton data. The transformations include
uniform sampling, random movement, and random rotation. Uniform sampling helps
eliminate redundant information and simulate actions collected using sensors with different
frame rates. Random movement simulates different positions of the person during data
collection, while random rotation simulates different sensor angles. The experiments are
performed on the NTU RGB+D dataset, and the proposed model achieves high accuracy
and inference speed. The complexity of the data augmentation techniques depends on
the number of samples and the chosen transformations. The validity of the approach is
demonstrated by the comparative evaluation with state-of-the-art methods and achieving
similar or superior performance. The generalizability is supported by the use of a widely
used dataset and the model’s ability to perform well on different protocols.

Riboni et al. [77] present an unsupervised technique for multi-resident activity recog-
nition in smart homes. The method leverages unlabeled sensor data stream and ontological
reasoning to extract probabilistic associations among sensor events and activities. The
authors implemented their algorithms and tested them on a dataset of multi-resident activi-
ties performed by couples in an instrumented smart home. The unsupervised approach,
combined with hidden Markov models (HMM), achieved high accuracy without the need
for labeled datasets. The complexity of the method lies in the unsupervised data acquisition
phase and the ontological reasoning process. The validity of the approach is demonstrated
by comparing it with a supervised HMM-based method and achieving comparable accu-
racy. The generalizability is supported by the use of a well-known dataset and the potential
for extending the method to handle more residents and collaborative activities in the future.

Dhekane et al. [78] propose a real-time annotation framework for activity recognition
based on CPD in the context of smart living. The authors address the challenges of annotat-
ing and recognizing activities in streaming, heterogeneous, and noisy smart home sensor
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data. They propose a similarity-based CPD algorithm that utilizes transfer learning for real-
time CPD. The framework comprises four components: feature extraction, classification,
data augmentation, and noise handling. The proposed framework achieves state-of-the-art
recognition accuracies on various datasets. The complexity of the framework depends on
the size and complexity of the sensor data stream, as well as the chosen feature extrac-
tion and classification methods. The validity of the framework is supported by achieving
high recognition accuracies and outperforming existing methods. The generalizability is
demonstrated by the evaluation on multiple datasets and the improvement over the state
of the art.

Semantic and ontology-based approaches are highlighted as effective solutions for
addressing data availability challenges in HAR systems. They can improve the annotation
process by providing a structured and consistent vocabulary for describing human actions
and contexts. This streamlines annotation, reduces ambiguities, and automates certain
aspects of the annotation process. These approaches also enable data integration from mul-
tiple sources by establishing a common semantic framework, facilitating the combination
and comparison of datasets collected in different contexts or using different methodolo-
gies. Furthermore, semantic and ontology-based approaches can support reasoning and
inference, enabling HAR systems to make inferences about unseen or underrepresented
actions based on similarities to known actions. This helps fill gaps in training data and
improves the robustness of models. The complexity, validity, and generalizability of these
approaches depend on the specific semantic and ontology-based techniques employed, as
well as the quality and richness of the semantic representations used.

Finally, Liaqat et al. [80] propose an ensemble classification algorithm that utilizes
ubiquitous sensing devices like smartphones for multiple activity recognition in older
adults. By utilizing smartphone data and employing ML and DL classifiers, the authors
achieve high classification accuracy, addressing the data availability challenge by leveraging
widely available sensing devices. The complexity, validity, and generalizability of the
approach depend on the selected classifiers, the quality of smartphone data, and the
performance achieved on diverse datasets. The validity is demonstrated by outperforming
other algorithms, while the generalizability is supported by the use of ubiquitous sensing
devices that can be widely adopted.

The works discussed in this section are summarized in Table 3. The table highlights the
methods used, the types of datasets involved, the performance of the systems, the sensors
utilized, and the specific actions the systems can recognize. The strategies range from data
augmentation and synthetic data generation to the use of semantic and ontology-based
approaches, underscoring the breadth of efforts being made to enhance data diversity
and quality.
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Table 3. Data Availability.

Reference Methods Dataset/s Performance Sensor/s Actions

Vishwakarma
et al. [75]

Human micro-Doppler signatures, motion
capture, CLEAN algorithm, spectrograms.

Synthetically
generated.

A = 0.694 (min.),
A = 0.9784 (max.).

WiFi (simulated), Kinect
(motion capture).

Rotating body, kicking, punching, grabbing an object,
walking back/forth in front of the radar, standing up from

a chair, sitting down on a chair, human walk to fall,
standing up from the ground to walk.

Riboni et al. [77] Hidden Markov Models (HMMs), Viterbi
Algorithm, OWL 2 Ontology. CASAS A = 0.7213.

Passive Infrared Motion
Sensors, Temperature
Sensors, Door Sensors,

Furniture Sensors,
Item Sensors.

Fill a medication dispenser, hang up clothes, move the
couch and coffe table, sit on the couch and read, water

plants, sweep the kitchen floor, play a game of checkers,
set out ingredient for dinner, set dining room table, pay an
electric bill, prepare a picnic basket, retrieve dishes, pack

supplies in the picnic basket.

Dhekane et al.
[78]

Similarity-based Change Point Detection
(S-CPD), Sensor Distance Error (SDE),

Feature Extraction, Classification, Noise
Handling, Annotations.

CASAS
(Aruba, Kyoto,

Tulum, and
Milan).

A = 0.9534 (min.),
A = 0.9846 (max.).

Motion, light, door and
temperature, associated

with objects.
All activities included in Aruba, Kyoto, Tulum, and Milan.

Zilelioglu et al.
[81]

Semi-supervised generative adversarial
networks (GANs) using temporal

convolutions.

PAMAP2,
Opportunity. A = 0.90.

Wearable IMUs,
objectsequipped with
sensors, and ambient

sensors.

All activities of PAMAP2, Opportunity-locomotion, and
LISSI HAR dataset.

Nan et al. [76] Graph Convolutional Networks (GCN),
Temporal Convolutional Networks (TCN). NTU RGB+D A = 0.8273 (min.),

A = 0.9825 (max.).
Microsoft Kinect v2

sensors.

Drinking, eating, reading, writing, brushing teeth,
sneeze/cough, staggering, falling, touch head (headache),

touch chest (stomachache/heart pain), touch back
(backache), touch neck (neckache), nausea or vomiting

condition, use a fan (with hand or paper)/feeling warm,
punching/slapping another person, kicking another

person, pushing another person, etc.

Civitarese et al.
[79]

OWL 2 ontology, Markov Logic Network
(MLN), Hidden Markov Model (HMM),
probabilistic and ontological reasoning,

semantic correlations, temporal reasoning.

CASAS,
SmartFABER.

A = 0.61 (min.),
A = 0.80 (max.),

F1S = 0.67 (min.),
F1S = 0.76 (max).

Presence, contact, pressure,
RFID, magnetic, motion,
light, door, temperature.

Fill medication dispenser, watch DVD, water plants,
answer the phone, prepare birthday card, prepare soup,
clean, choose outfit, taking medicines, cooking, eating.

Liaqat et al. [80]

Random forest, KNN, logistic regression (LR),
multilayer perceptron (MLP), decision tree,

quadratic discriminant analysis (QDA), SVM,
CNN, and long short-term memory (LSTM).

Self-collected
involving

30 subjects.
A = 0.98 (max).

Accelerometer, gyroscope,
and magnetometer in the

smartphone.

Standing, sitting, laying, walking, walking downstairs
and walking upstairs.



Sensors 2023, 23, 6040 25 of 45

5.3. Personalization

Personalization is crucial in smart living technologies, particularly in the realm of
HAR. Recognizing individual uniqueness when performing specific actions can lead to
improved recognition accuracy and personalized experiences, overcoming the challenges of
a “one-size-fits-all” approach [82]. Researchers have found that by identifying similarities
between a target subject and individuals in a training set, emphasizing data from subjects
with similar attributes can enhance the overall performance of HAR models [83].

CNNs have been successful in HAR due to their ability to extract features and model
complex actions. However, generic models often face performance deterioration when
applied to new subjects. Studies have proposed personalized HAR models based on CNN
and signal decomposition to address this challenge, achieving better accuracy than state-
of-the-art CNN approaches with time-domain features [82]. In healthcare applications,
personalization has been explored for classifying normal control individuals and early-stage
dementia patients based on activities of daily living (ADLs). Studies have demonstrated
that personalized models, considering individual cognitive abilities, exhibit higher accuracy
than non-personalized models, underlining the importance of personalization in classifying
normal control and early-stage dementia patients [84].

Several studies have proposed novel approaches for sensor-based HAR that focus on
personalization by maintaining the ordering of time steps, crucial for accurate and robust
HAR systems. They have introduced network architectures combining dilated causal
convolution and multi-head self-attention mechanisms, offering a more personalized and
efficient solution for sensor-based HAR systems [85]. Researchers have also explored
personalized approaches for HAR within smart homes by utilizing a multilayer perceptron
(MLP) neural network. The proposed method adapts to individual users’ patterns and
habits, achieving high recognition accuracy across all activity classes [86]. Recent work
has focused on addressing the challenges associated with recognizing complex human
activities using sensor-based HAR.

By exploring hybrid DL models combining convolutional layers with recurrent neural
network (RNN)-based models, researchers have demonstrated the potential of these models
to contribute significantly to personalization in various applications involving wearable
sensor data [87].

To address the challenge of personalization in sensor-based HAR, particularly in
healthcare applications, studies have proposed unsupervised domain adaptation ap-
proaches that allow sharing and transferring of activity models between heterogeneous
datasets without requiring activity labels for the target dataset. This approach enhances
the personalization aspect of activity recognition models, allowing adaptation to new,
unlabeled datasets from different individuals or settings [88].

Furthermore, personalization plays a vital role in enhancing the effectiveness and
efficiency of HAR models. By considering individual uniqueness and utilizing various
techniques such as CNNs, RNN-based models, and unsupervised domain adaptation,
researchers have made significant strides in creating more tailored and accurate HAR
systems for smart living and healthcare applications.

The following presents a detailed analysis of the works described above from the
complexity, validity, and generalizability perspective. The purpose is to offer readers
a comprehensive understanding of these aspects concerning the proposed solutions for
personalization in HAR-based smart living. By examining the complexity of the methods,
the validity of their results, and the generalizability of their findings, readers can gain
insights into the strengths and limitations of each approach.

The importance of personalized smart living technologies, especially in HAR, is
gaining more attention. The uniqueness of individuals and their actions necessitates a
more customized approach to improve the effectiveness of the technologies. Harnessing
distinctive individual features can significantly enhance recognition accuracy and create
personalized experiences, moving beyond a one-size-fits-all approach. This discussion is
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illustrated in various research, one of which is by Zunino et al., who propose a strategy
where data from individuals sharing similarities with the target subject is emphasized,
thereby achieving better HAR performance [83]. This process of data selection enhances
the model’s understanding of an individual’s action nuances, promoting more precise
recognition and a more tailored experience. It allows the model to perform excellently
even when training with fewer instances, indicating a high level of efficiency in training
complexity and good generalizability.

Gholamiangonabadi et al. propose a personalized HAR model based on CNNs and
signal decomposition [82]. This research offers another complexity layer by applying signal
processing techniques to extract features from multimodal sensor data, followed by CNN-
based classification. The model introduces a personalized touch by selecting the best suited
trained CNN version using a portion of the target subject’s data. This method proved
superior to other state-of-the-art CNN approaches, suggesting a high level of validity.
However, the choice of the best-suited CNN depends on the target subject’s data, which
could limit its generalizability to new subjects.

Furthermore, Kwon et al. focus on distinguishing between normal control individuals
and early-stage dementia patients based on their ADLs using smart home sensor data [84].
This approach uses a combination of statistical analysis and machine learning techniques such
as the random forest classifier (RFC), known for its excellent classification performance [89].
The model’s personalization aspect is seen in the setting of anomaly detection criteria based
on cognitive function, which enhances classification accuracy by considering each individual’s
unique range of activities. While the RFC’s strength in handling hundreds of independent
variables and large amounts of learning data promises good generalizability, the dependency
on personalized anomaly detection criteria may introduce complexity during adaptation to
new subjects.

Hamad et al. propose a novel network architecture that combines dilated causal convolu-
tion and multi-head self-attention mechanisms to address variations and complexities in human
behaviors [85]. This architecture maintains the ordering of time steps, crucial for accurate
HAR systems. The methodology contrasts with recurrent neural networks (RNNs), which
are inherently limited due to their sequential computation. This approach enables effective
parallelization of operations, offering efficiency and potential scalability to larger datasets.

In contrast, Gorjani et al. use a multilayer perceptron neural network to recognize
different human activities using data from wrist and ankle-worn devices [86]. Their approach,
providing a high level of personalization by adapting to individual users’ patterns and
habits, reveals high recognition accuracy across all activity classes, suggesting strong validity.
However, due to its high level of personalization, its generalizability may be limited.

Mekruksavanich et al.’s research involves the application of RNN-based deep learning
models in recognizing complex human activities using sensor-based HAR [87]. Their
approach of using hybrid models, combining convolutional layers with RNN-based models,
exploits the strengths of CNNs and RNNs for complex activity recognition tasks, thus
ensuring high accuracy, validity, and robustness of the model. However, the complexity of
the models and their heavy dependence on specific wearable sensor data may affect the
generalizability of the approach.

Lastly, Sanabria et al. propose an unsupervised domain adaptation approach (UDAR)
for sensor-based HAR, combining knowledge-driven and data-driven methods for feature
alignment [88]. This approach allows the model to adapt to the variations in unlabeled datasets,
indicating high robustness and adaptability. Although it demonstrates high recognition
accuracy and strong robustness against sensor noise, its dependence on feature alignment and
ensemble learning may introduce complexities in model development, affecting its scalability.

The works discussed in this section are summarized in Table 4. It is apparent that a key
trend in the current research landscape is the development of personalized HAR models
which aim to improve the recognition accuracy. This is typically achieved through the
innovative use of diverse methodologies including but not limited to signal decomposition,
dilated causal convolution, MLP neural networks, and unsupervised domain adaptation.
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Table 4. Personalization.

Reference Methods Dataset/s Performance Sensor/s Actions

Gholamiangonabadi
et al. [82]

Stationary Wavelet
Transform, Empirical Mode

Decomposition (EMD),
Ensemble EMD.

MHEALTH,
WISDM.

A = 0.912 (avg.,
MHEALTH), A = 0.576

(avg., WISDM).

Accelerometers, gyroscopes,
magnetometers. All activities of MHEALTH and WISDM datasets.

Kwon et al. [84]

Personalized anomaly
detection criteria, MMSE
score, Shapiro–Wilk test,
Wilcoxon rank-sum test,

Spearman correlation
analysis, random forest.

Self-collected,
13 participants

(7 healthy seniors,
6 early-stage
dementia).

A = 0.912

Environmental sensors (installed on
household appliances and various

locations): door sensors, motion
sensors, temperature-humidity
sensors, vibration sensors, lidar

sensors, and smart plugs.

Using the telephone, shopping, preparing
food/cooking, household chores, using

transportation, walking outdoors, taking
medications, managing finances, grooming,

using household appliances.

Hamad et al. [85]
Dilated causal convolution,

multi-head self-attention
mechanisms.

Houses, Ordonez,
UCI-HAR.

F1S = 0.7393 (min.),
F1S = 0.9224 (max.).

Embedded binary sensors, inertial
wearable sensors.

All activities from used datasets (see Houses,
Ordonez, and UCI-HAR datasets).

Gorjani et al. [86] Multilayer perceptron (MLP)
neural network. Self-collected. A = 0.98 (avg.).

Two individual wearable gadgets
based on STMicroelectronics

development boards with 3-axis
magnetometer, 3D accelerometer,
and 3D gyroscope worn on wrist-

and ankle-worn.

Climbing down the stairs, Climbing up the stairs,
Using a computer, Relaxing, Running, Standing,
Vacuum cleaning, Walking, Writing using a pen.

Mekruksavanich
et al. [87]

Gate recurrent unit (GRU),
bidirectional GRU (BiGRU),

CNN BiGRU, LSTMs,
BiLSTMs.

Utwente, PAMAP2,
WISDM.

A = 0.8209 (min),
A = 0.9878 (max.),
P = 0.8625 (min),
P = 1.0000 (max),
R = 0.9110 (min.),
R = 0.9889 (max),

F1S = 0.8561 (min.),
F1s = 1.0000 (max.).

Accelerometer, magnetometer, and
gyroscope in two smartphones

worn in right pants pockets and on
right wrists (emulating a

smartwatch).

Walking, standing, jogging, sitting, biking,
walking upstairs/downstairs, typing, writing,

drinking, talking, smoking, eating, lying,
running, cycling, vacuum cleaning, ironing,

brushing teeth.

Sanabria et al. [88]
Ensemble learning,

Variational autoencoder,
feature alignment.

Houses (HA, HB,
HC), CASAS

(Aruba, Twor).

F1S = 0.547 (min.),
F1S = 0.917 (max.).

Wireless motion sensor, passive
infrared (PIR), switch,

pressure sensors.

Leaving house, toileting, showering, having
breakfast, having dinner, and drinking, meal
preparation, eating, working, sleeping, bed to

toilet transition, housekeeping.

Ganesh et al. [90] Random Forest Classifier. Self-collected,
4 male subjects. A = 0.989. RGB camera. Gym activities:push-up, squat, plank, forward

lunge, and sit-up.
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In terms of datasets, both pre-existing ones like MHEALTH, WISDM, and UCI-HAR,
and self-collected datasets are being used. Notably, the trend towards collecting unique
datasets for particular studies demonstrates the increasing demand for capturing individual-
specific data to boost the personalization of HAR models. When considering performance,
the use of personalized approaches generally delivers high accuracy, reaching average
accuracy above 90% in several studies, which indicates the efficacy of these methods. It
can be discerned that a range of sensors—accelerometers, gyroscopes, magnetometers,
and environmental sensors—are being employed in the studies to detect a wide variety
of actions. This reveals an interdisciplinary trend where diverse sensor technologies are
deployed to cater to the unique requirements of each study.

Lastly, the variety of actions examined in these studies, spanning from everyday
activities such as cooking or walking to specific tasks such as gym activities, underlines
the broad applicability of HAR systems and the importance of personalization across
different contexts.

5.4. Privacy

Privacy concerns in HAR have been addressed through two primary aspects: sen-
sor choice and data security. Researchers have focused on exploring sensing modalities
that do not capture privacy-sensitive information. Device-free sensing approaches have
emerged as a viable alternative to intrusive body-worn or ambient-installed devices, with
examples such as WiFi and radar-based sensors [91–94]. Privacy-preserving techniques
have also been developed for traditional audio and video-based methods, using inaudible
frequencies or occluding person data [95–97]. Studies have demonstrated the impor-
tance of contextual information in HAR and its potential for preserving privacy without
sacrificing performance [97].

Researchers have also developed privacy-preserving HAR systems using low-resolution
infrared array sensors, showcasing promising recognition accuracy [98]. Furthermore, in-
audible acoustic frequencies have been explored for daily activity recognition, resulting
in privacy-preserving accuracies of up to 91.4% [95]. Data security has been addressed
through local training via federated architecture, preventing data from being sent to third
parties [99]. Detection of spoofing attacks in video replay and vulnerability to adversarial
attacks in video and radar data have also been investigated [100,101].

Diversity-aware activity recognition frameworks based on federated meta-learning
architecture have been proposed, which preserve privacy-sensitive information in sen-
sory data and demonstrate competitive performance in multi-individual activity recogni-
tion tasks [99]. Studies have also revealed radar-based CNNs’ vulnerability to adversar-
ial attacks and a connection between adversarial optimization and interpretability [100].
Lightweight DL-based algorithms capable of running alongside HAR algorithms have been
developed to detect and report cases of video replay spoofing [101].

Researchers have proposed novel methodologies for explainable sensor-based activity
recognition in smart-home environments, transforming sensor data into semantic images
while preserving privacy [102]. Federated learning has also been leveraged to develop
personalized HAR frameworks, allowing training data to remain local and protecting
users’ privacy [103]. The studies collectively contribute to addressing privacy concerns and
advancing HAR research. In this section, privacy concerns in HAR have been addressed
by focusing on sensor choice and data security. Researchers have explored device-free
sensing approaches that do not require intrusive sensors and developed privacy-preserving
techniques for traditional audio and video-based methods. Contextual information has
been shown to play a crucial role in HAR performance and privacy preservation. Data
security has been enhanced through federated learning and local training, reducing the need
to share data with third parties. Research has also investigated vulnerability to adversarial
attacks, spoofing detection, and the connection between adversarial optimization and
interpretability. Innovative methodologies have been developed to provide explainable
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activity recognition while preserving privacy in smart-home environments. Federated
learning has been employed to create personalized HAR frameworks that protect users’
privacy. These studies collectively represent the state of the art in addressing privacy
concerns in HAR and pave the way for advancements in the field, ensuring that users’
privacy is maintained while delivering reliable recognition performance.

The various solutions reviewed address privacy concerns in HAR primarily through
innovative sensing modalities, data security measures, and advanced learning techniques.
The fundamental aspects of complexity, validity, and generalizability are crucial for under-
standing the efficacy and potential implications of these solutions.

Complexity refers to the degree of intricacy of the developed model, the computational
resources it requires, and how easily it can be implemented or incorporated into existing
systems. Yan et al. [97], for instance, proposed a method involving image segmentation
for occluding human target data in privacy-preserving HAR. While the approach is more
complex than traditional HAR, it manages to maintain a high level of accuracy by preserv-
ing the target’s shape. This model balances the trade-off between privacy protection and
performance, but its complexity could potentially limit its real-world implementation. On
the other hand, Yin et al. [98] proposed a device-free sensing system using low-resolution
infrared array sensors, an approach that is less complex, ensures users’ privacy, and reduces
the deployment cost.

Validity refers to the extent to which a model correctly identifies or predicts the
phenomenon it is intended to study. In the case of Yan et al. [97], the validity of the
proposed model is demonstrated by the high accuracy rates achieved when only contextual
information was provided to the network. On the contrary, Yin et al. [98] showed high
validity of their approach with an impressive recognition accuracy of 98.287% for typical
daily activities, surpassing existing machine learning methods.

Generalizability refers to how well a model or method can be applied to various
scenarios or populations. Iravantchi et al. [95] developed a privacy-preserving device using
inaudible frequencies for activity recognition, achieving over 95% classification accuracy
across all environments, indicating its high generalizability.

Similarly, Shen et al. [99] proposed a diversity-aware activity recognition framework,
which demonstrates superior generalization ability compared to other models in multi-
individual activity recognition tasks. This high generalizability shows its potential for
widespread implementation in multiple contexts.

However, in the case of Huszár et al. [101], their model may not generalize well to
other scenarios since it was specifically designed to detect spoofing attacks in video replay
for automatic HAR applications. The authors themselves noted the need for fine-tuning of
the model for better-fit cases with higher image pixel density.

Arrotta et al. [102] proposed a novel methodology for explainable sensor-based ADL
recognition. While their method is relatively complex, involving transformation of sensor
data into semantic images and the application of multiple Explainable AI (XAI) methods,
it provides highly understandable insights, as validated by a user study. The approach’s
generalizability is demonstrated by its application on two datasets, yet it remains to be
seen how it performs in a broader range of real-world environments.

On the data security aspect, researchers have proposed solutions such as local training
through federated architecture, spoofing attack detection, and adversarial attack vulner-
ability investigation. The paper by Yu et al. [103] proposed a federated HAR framework
that addresses privacy preservation, label scarcity, real-time processing, and heterogeneity
patterns in HAR. Despite its complexity, the framework demonstrated its validity with
superior performance over existing methods, and its generalisability was demonstrated by
conducting experiments on two diverse real-world HAR datasets.

The works discussed in this section are summarized in Table 5. From an examination
of Table 5, a number of key insights can be gleaned about current research trends and
methods in addressing privacy concerns within HAR.
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Table 5. Privacy.

Reference Methods Dataset/s Performance Sensor/s Actions

Shen et al. [99]

Federated Meta-Learning,
CNN-based attention

module, cluster-specific
features.

Two self-collected
datasets with 30 and

48 participants.

A = 0.8395 (min.),
A = 0.9348 (max.),

F1S = 0.7836 (min.),
F1S = 0.9037 (max.).

Motion-reactive sensors such as
accelerometer, gyroscope, linear

acceleration, gravity, rotation vector, and
magnetic field sensors, as well as sensors

for location, phone state, temperature,
atmospheric pressure, humidity, proximity,
WIFI network, running application, screen
status, flight mode, battery charge, battery
level, doze modality, headset plugged in,
audio mode, music playback, audio from

the internal mic, notifications received,
touch event, and cellular network info.

Housework, self-care, eating, study,
lesson, social life, watching TV shows or

movies, social media usage, traveling,
coffee break, phone calling or chat,

reading or listening, hobbies, work, and
rest/nap.

Yin et al. [98] Butterworth filter, LSTM Self-collected
involving one subject. A = 0.98287 (avg). Low-resolution (8x8) infrared array. Lying, standing, sitting, walking,

and empty.

Iravantchi et al.
[95]

Raspberry Pi, infrasound
frequencies, Fast Fourier

Transform, Principal
Component Analysis,

Random Forest Classifer.

Self-collected in three
homes and four

commercial
buildings.

A = 0.914 (avg). Microphones 127 everyday household and
workplace objects.

Climent-Pérez
et al. [104]

Many-objective evolutionary
algorithm.

PAAL ADL
Accelerometry. A = 0.68 Wrist-worn devices equipped with

accelerometers. All activities of PAAL v2.0 dataset

Zhang et al.
[105] CNN. Self-collected. A = 0.90. Off-the-shelf FMCW radar operating at

C-band (5.8 GHz).

Walking, sitting down, standing up,
picking up an object, drinking water,

and falling.

Beaulieu et al.
[106]

Deep learning model
combining EfficientNetB0

and LSTM neural networks
using transfer learning and

minimalist data
pre-processing.

Self-collected,
10 participants. A = 0.655. Three XeThru X4M200 Ultra-Wideband

(UWB) radars.

Drinking, Sleeping, Putting on Jacket,
Cleaning, Cooking,Making Tea, Doing the
Dishes, Brushing teeth, Washing hands,
Reading, Eating, Walking, Putting on

Shoes, Taking Medication, Using
Computer.

Shang et al.
[107] LSTM-CNN.

Self-collected,
5 participants in a

classroom.
A = 0.941. WiFi signal transmitter and a Channel State

Information (CSI) receiver.

Two static movements of standing and
sitting, and three dynamic movements of

falling, standing up and stepping.
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Table 5. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Yan et al. [97]

Inflated 3D ConvNet,
Mask-Residual
Convolutional

Network (RCN).

UCF101, HMDB51. A = 0.611 (min.),
A = 0.931 (max.). RGB camera All activities included in UCF101 and

HMDB51 datasets.

Arrotta et al.
[102]

Explainable AI, Grad-CAM,
LIME, Model Prototypes,

CNNs.

Self-collected,
CASAS.

F1S = 0.90 (avg.,
Self-collected), F1S = 0.80

(avg., CASAS)

Magnetic sensors (doors and drawers),
pressure mats, smart-plugs, and inertial

sensor in smartwatches.

Answering phone, clearing table, cooking
a hot meal, eating, entering home, leaving

home, making a phone call, cooking a
cold meal, setting up table, taking

medicines, working, washing dishes,
watching TV.

Yu et al. [103]
Federated learning,

semi-supervised online
learning.

Self-collected
involving 15 subjects,

UCI-HAR.

A = 0.8169 (avg.,
Self-collected),

A = 0.9268 avg.,
(HAR-UCI), F1S = 0.7998

(avg., Self-collected)
F1S = 0.9232 (avg.,

UCI-HAR).

Self-collected: accelerometer, gyroscope,
and magnetometer on 7 body parts,

including chest, one forearm, head, shin,
one thigh, one upper arm and waist;

UCI-HAR: accelerometer and gyroscope,
3-axial linear acceleration and 3-axial
angular velocity of a smartphone on

the waist.

Running, standing, lying, sitting, walking,
jumping, climbing stairs down and up,
walking upstairs, downstairs, sitting,

standing, laying.
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Researchers are employing a range of innovative methods to balance the need for
precise activity recognition with privacy considerations. These methods often involve
leveraging advanced technologies such as federated learning, LSTM-CNN, Inflated 3D
ConvNet, and device-free sensing modalities such as WiFi and radar-based sensors. A
prominent trend is the utilization of less intrusive or privacy-preserving sensors. These
include infrared arrays, WiFi signals, and even ultra-wideband radars. This indicates a
shift towards non-wearable or non-intrusive sensors that minimize privacy intrusion while
still effectively recognizing human activities.

The exploration of federated architectures stands out as a significant trend for ensur-
ing data privacy. Federated learning allows model training to occur locally on devices,
preventing sensitive data from being transmitted to third parties. This, along with the use
of minimalist data pre-processing and many-objective evolutionary algorithms, suggests a
drive towards maximizing privacy without sacrificing model performance.

From a performance perspective, it is evident that these privacy-preserving approaches
do not significantly compromise the accuracy of the HAR models. Several studies reported
average accuracy rates upwards of 90%, indicating the effectiveness of these methods in
a privacy-considerate manner. The range of actions studied, from everyday household
activities to more specific tasks, further underscores the comprehensive applicability of
these privacy-preserving HAR techniques across various domains.

6. Smart Living Services and Applications

HAR systems have shown great potential in enhancing smart living services and ap-
plications, spanning diverse areas such as assisted living, health status surveillance, health
hazard surveillance, energy management, security surveillance, and natural interaction.
These applications aim to improve the lives of seniors, monitor health conditions, optimize
energy consumption, and enhance security across various settings by utilizing cutting-edge
ML techniques, sensor data, and innovative strategies like radar phase information and
WiFi-based recognition [108,109].

To illustrate the practical applications of HAR and provide concrete insights into the
challenges related to the dimensions of context awareness, data availability, personalization,
and privacy, some examples and case studies are presented. These real-world scenarios
shed light on how HAR can be applied in various domains and highlight the specific
challenges associated with each dimension.

• Context Awareness: Context awareness enables HAR systems to respond intelligently
to occupants’ needs and preferences in diverse environments. In the domain of smart
homes, context-aware HAR can automatically adjust lighting, temperature, and other
environmental settings based on occupants’ activities and preferences. For example,
when a person enters a room, the system can detect their presence and adjust the
room’s lighting to an appropriate level. Context-aware HAR also finds applications
in smart healthcare, where it can monitor and analyze patients’ activities to detect
anomalies and alert healthcare providers in case of emergencies.

• Data Availability: Data availability in HAR refers to the availability of data that is
useful for model training. In order to train effective HAR models, it is essential to have
access to real-world data that capture human activities in various contexts. However,
collecting and labeling real-world data can present challenges, particularly in cases
where the detection of harmful situations such as falls is necessary. To overcome these
difficulties, researchers have adopted methods based on simulated, synthetic, and
augmented datasets.

• Personalization: Personalization plays a key role in enhancing the effectiveness of
HAR systems in smart living. In the field of healthcare, personalized HAR models
can improve recognition accuracy and provide tailored support for individuals with
specific conditions. For example, personalized HAR can be used to classify normal
control individuals and early-stage dementia patients based on ADLs, leading to better
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diagnosis and treatment strategies. In smart homes, personalized HAR models can
adapt to individual users’ patterns and habits, allowing for high recognition accuracy
across all activity classes.

• Privacy: Privacy is a critical consideration in the design and implementation of HAR
systems. To address privacy concerns, researchers have explored various techniques.
For instance, device-free sensing approaches, such as WiFi and radar-based sen-
sors, have been used to capture activity information without compromising privacy.
Privacy-preserving techniques, including inaudible frequencies and occlusion of per-
sonal data, have been developed for traditional audio- and video-based methods.
Contextual information has been shown to play a vital role in preserving privacy
without sacrificing performance.

HAR systems have been particularly effective in assisted living applications, im-
proving the quality of life for elderly individuals and those with chronic conditions, while
supporting healthcare professionals and caregivers in providing more effective care [19,108].
For instance, HAR has been used to monitor the daily routines of older persons and detect
deviations in their behavior as well as to recognize fall activities and notify caregivers
or medical professionals during emergencies [109,110]. HAR systems can also identify
ADLs in smart home environments and provide valuable information about older adults’
health conditions to family members, caretakers, or doctors, helping to adapt care plans
as needed [19].

Health status surveillance plays a significant role in smart living services and applica-
tions, addressing the needs of an aging population and patients with neurodegenerative
disorders. ML and signal processing techniques, such as support vector machines (SVMs)
and random decision forest classifiers, can be employed to disaggregate domestic energy
supplies and assess ADLs [111]. Preventive healthcare can also be supported by recogniz-
ing dietary intake using DL models like EfficientDet [112] and monitoring physical activity
through smartphone accelerometer sensor data and DL models [113].

Health hazard surveillance is essential for the well-being and safety of elderly popula-
tions in smart living services and applications. HAR systems can help monitor older adults’
daily activities, identify potential hazards, and alert caregivers or medical professionals in
emergencies. This approach allows for timely intervention and can prevent the exacerbation
of health conditions or accidents, ensuring a safer environment for seniors [114,115].

Energy management in smart homes and buildings can be improved by incorporating
HAR into smart living services and applications. By understanding and monitoring human
behavior, these systems can optimize energy consumption while maintaining comfort
for the occupants. HAR can be employed to optimize energy consumption in heating,
ventilation, and air conditioning (HVAC) systems [116] and in building energy and comfort
management (BECM) systems by learning users’ habits and preferences and predicting
their activities and appliance usage sequences [117].

Security surveillance can be significantly enhanced by applying HAR in smart living
environments. Accurate identification and classification of activities based on visual or au-
ditory observations can contribute to a safer, more secure environment in various contexts.
This can be achieved through approaches like using a fine-tuned YOLO-v4 model for activ-
ity detection combined with a 3D-CNN for classification purposes [118] and employing
SVM algorithms to classify activities based on features extracted from audio samples [119].

In addition to enhancing security surveillance in various settings, such as video
surveillance, healthcare systems, and human-computer interaction, HAR systems can
provide accurate activity detection and recognition, offering valuable insights for security
personnel in real-world scenarios like university premises or urban environments [118,119].
By incorporating radar phase information and WiFi-based approaches, HAR systems
can significantly improve natural interaction in smart living services and applications,
providing low-latency, real-time processing, and touch-free sensing benefits for various
applications, including elder care, child safety, and smart home monitoring [120,121].
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Natural interaction in smart living services and applications can be improved by
recognizing human actions and gestures in a non-intrusive, privacy-preserving manner.
Exploiting radar phase information and WiFi-based approaches in HAR can enhance
natural interaction significantly in smart living services and applications, providing low-
latency, real-time processing, and touch-free sensing benefits. Recent advancements in
radar phase information extraction from high-resolution range maps (RM) offer a promising
alternative to traditional methods, such as micro-Doppler spectrograms, which suffer from
time-frequency resolution trade-offs and computational constraints [120]. The histogram of
oriented gradients (HOG) algorithm can capture unique shapes and patterns in the wrapped
phase domains, demonstrating high classification accuracy of over 92% in datasets of arm
gestures and gross-motor activities. By employing various classification algorithms, such as
nearest neighbor, linear SVM, and Gaussian SVM, improved performance and robustness
in various activity aspects, including the aspect angle and speed of performance, can
be achieved [120].

The ubiquity of WiFi devices in modern buildings provides an opportunity for cost-
effective, touch-free activity and gesture recognition systems. Human activities and gestures
can be accurately recognized by harnessing the channel state information (CSI) value
provided by WiFi devices [121]. Median filtering techniques can be applied to filter out noise
from the CSI, and massive features can be extracted to represent the intrinsic characteristics
of each gesture and activity. Using data classification algorithms, such as random forest
classifier (RFC) and SVM with cross-validation techniques, can achieve high recognition
accuracy rates of up to 92% and 91%, respectively [121].

Overall, the integration of HAR systems into smart living services and applications
offers a promising avenue for enhancing the lives of seniors, monitoring health conditions,
optimizing energy consumption, and bolstering security across various settings. With
continued advancements in ML, sensor technology, and innovative recognition strategies,
the potential of HAR systems in smart living services and applications will undoubt-
edly continue to grow, paving the way for more sustainable, secure, and supportive
living environments.

The works discussed in this section are summarized in Table 6. It is noticeable that a
significant portion of the referenced works focuses on assisted living, which underlines the
role of HAR in enhancing the quality of life for the elderly and those with chronic conditions
through sophisticated monitoring systems. These employ a variety of techniques ranging
from neural networks and object detection to more complex methods such as human–object
interaction (HOI) detection and scene understanding.

Table 6. Smart Living Services and Applications.

Reference Type Description Methods and Techniques

[108] Assisted
Living

HAR system for assisted living, designed
to monitor the vital signs and home

automation of patients in order to reduce
pressure on the social health

insurance system.

Object detection, Neural network, Human–Object
Interaction (HOI) detection, Scene understanding,

NVIDIA Jetson AGX processing unit, CNNs,
MQTT Protocol.

[109] Assisted
Living

Assist in monitoring the well-being of
elderly, and can be used in situations like

the COVID-19 pandemic to remotely
monitor patients.

Segmentation (activity, sensor, time, area), Features
(Time Domain, Frequency Domain Environment),
Supervised Learning, K-Nearest Neighbor (KNN),

Random Forest Classifier (RFC), Decision Tree
(DT), Naïve Bays (NB), Linear Support Vector

Machine (SVM), Ensemble Model.

[110] Assisted
Living HAR for elderly people in smart homes.

Naive Bayes supervised learning algorithm,
Prediction model for ADL, SVM, Linear

Regression (LR), and K-Nearest neighbors (K-NN),
CASAS dataset.
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Table 6. Cont.

Reference Type Description Methods and Techniques

[19] Assisted
Living

The system monitors and assesses the
health of the elderly and also records their
action histories and behaviors, reducing

the workload of caregivers as an ambient
assisted living system.

Stereo depth camera, UV-disparity maps,
Spatial-temporal features, Depth motion

appearance (DMA), Depth motion history (DMH),
Histogram of Oriented Gradients (HOG)
descriptor, Automatic rounding method,

Continuous long frame sequences

[122] Assisted
Living

The system identifies behavioral patterns
and detects anomalies in the activities of
older persons through ADL applications

and IoT data

Large-scale sensor data, Anomaly detection,
Parametric statistical approach, Self-reported

routines, Internet of things (IoT) devices, Real-time
monitoring, SMS-based notification service,

Off-the-shelf sensors, Uncontrolled environment.

[123] Assisted
Living

Classification scheme for fall detection and
prevention in smart home AAL.

Argumentation enabled devices, Fuzzy argument
based classification scheme (CleFAR), Fall Activity

Recognition (FAR), Fall prevention system,
Random Forest (RF), SVM, Naive Bayes (NB),

Decision Tree (DT), Artificial Neural Networks
(ANN), Weighted Voting Scheme (WVS), Wearable

fall detection systems.

[124] Assisted
Living

Complex human activities prediction from
a single accelerometer sensor using a local

weighted machine learning approach.

Locally Weighted Random Forest (LWRF) machine
learning algorithm, Time and frequency features,

PAAL ADL Accelerometry Dataset, Gender
recognition, Accelerometer signal domain, Mental

status tracking.

[111] Health Status
Surveillance

Non-intrusive monitoring wellbeing of
dementia patients living alone using smart

meter load disaggregation.

SVM classifier, Random Decision Forest (RDF)
classifier.

[112] Health Status
Surveillance

Multi-dish food recognition model to
improve dietary intake reporting in the

context of preventive healthcare.

EfficientDet-D1, EfficientNet-B1, bidirectional
feature pyramid network (BiFPN). Comparison

with: SSD Inception V2, Faster R-CNN Inception
ResNet V2.

[113] Health Status
Surveillance

Monitoring of physical activities of elderly
people using smartphone.

Deep learning models, smartphone accelerometer
sensor data, UCI and WISDM datasets.

[125] Health Status
Surveillance

Context-awareness system for
human-robot scene interpretation in

ambient assisted living scenarios,
particularly for the elderly, improving

robot performance and activity
recognition.

Topological Bayesian network (BN) models,
learning and inferring informal relationships,

OpenMarkov.

[126] Health Status
Surveillance

Monitoring activities of daily living (ADLs)
and detecting abnormalities in occupant

behavior.

Fuzzy Ontology Activity Recognition (FOAR),
fuzzy temporal ontologies, Fuzzy Semantic Web

Rule Language (SWRL).

[114]
Health
Hazard

Surveillance

Highly accurate bathroom activity
recognition system using

privacy-preserving infrared
proximity sensors.

Raspberry Pi devices, Wi-Fi, Bluetooth, Bluetooth
Low Energy, WebSockets for real-time

data transfers.

[115]
Health
Hazard

Surveillance

Recognize normal activities of elderly
residents, separate them from anomalous
activities, and identify anomalous days

based on the number of activities
performed in a day.

Probabilistic Neural Network (PNN), H2O
autoencoder for anomaly detection, curve fitting

(variations from the mean in daily activities).
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Table 6. Cont.

Reference Type Description Methods and Techniques

[116] Energy
Management

Save energy by dynamically changing the
setpoint of a connected thermostat through

human activity recognition based on
computer vision while preserving

occupant’s thermal comfort.

RGB-Depth cameras, skeleton-based models over
3D representation, Recurrent Neural Networks
(RNN) for Human Activity Recognition (HAR),

Long Short-Term Memory Networks (LSTMs), and
EnergyPlus™ for energy consumption simulations.

[117] Energy
Management

Building Energy and Comfort
Management (BECM) system that

monitors, recognizes, and predicts user
preferences and habits related to

appliance usage.

Probabilistic Prediction, Scheduling Algorithm.

[118] Security
Surveillance

Multimodal approach for recognizing
suspicious human activities in smart city

security using computer vision and
Internet of Things (IoT) technology.

YOLO-v4, 3D-CNN, intersection over union (IOU),
Internet of Things (IoT)-based architecture,

UCF-Crime and MS-COCO datasets.

[119] Security
Surveillance

Classify children’s activities (running,
playing, crying, and walking) using

environmental sound.

Audio recordings from smartphones, time-domain
and frequency-domain features, Python

programming language, PyAudio-Analysis library,
and SVM algorithm.

[120] Natural
Interaction

Classify human gross-motor activities and
arm gestures based on phase information
from high-resolution radar range maps.

Histogram of Oriented Gradients (HOG) for
feature extraction, Nearest Neighbor (NN), linear
SVM, Gaussian SVM for classification, and feature

fusion of different data domains.

[121] Natural
Interaction

Human activity and gesture recognition
schemes using CSI provided by

WiFi devices.

Hampel identifier algorithm for preprocessing,
RGB image creation from CSI data, data

augmentation to reduce overfitting, Deep CNNs
(AlexNet, VGG19, and SqueezeNet) for

classification and feature extraction.

HAR has also demonstrated significant potential in health status and health hazard
surveillance, with the studies using techniques such as SVM, RFC, and DT among others for
health monitoring and anomaly detection. The application of HAR in preventive healthcare
has been seen through the integration of innovative approaches such as deep learning
models for dietary intake recognition.

Table 6 further emphasizes the role of HAR in Energy Management, with a study em-
ploying a combination of computer vision and ML techniques for efficient energy consump-
tion. The application of HAR in security surveillance is also notable, with methodologies
including YOLO-v4 and SVM algorithms being utilized for recognizing and classifying
suspicious activities.

Finally, there is an increasing trend towards improving Natural Interaction in smart
living environments. These applications exploit radar phase information and WiFi-based
approaches to recognize human actions and gestures, contributing to a non-intrusive
and privacy-preserving environment. This is facilitated by a variety of methods such as
histogram of oriented gradients (HOG), NN, and deep CNNs.

7. Discussion: Open Issues and Future Research Directions

The integration of multiple sensing technologies is a promising research direction for
improving HAR systems in smart living services and applications. Combining data from
various sensor types, such as wearable devices, cameras, and ambient sensors, can yield
richer contextual information and lead to more accurate and reliable activity recognition.
As each sensor type has its strengths and weaknesses, their integration can compensate for
individual limitations and provide a more comprehensive understanding of users’ activities.
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Future research should explore efficient sensor fusion techniques and investigate how to
effectively exploit complementary sensor data for improved activity recognition.

Federated learning presents another avenue for future research in HAR, with potential
benefits in both performance improvement and privacy preservation. By enabling data
sharing across multiple devices, federated learning allows HAR systems to learn from
diverse, real-world data without directly accessing users’ sensitive information. This
approach can lead to more robust models that can better generalize to different populations
and contexts while respecting users’ privacy. Researchers should focus on optimizing
federated learning algorithms, as well as addressing challenges related to communication
efficiency, data heterogeneity, and security in distributed learning settings.

Another vital aspect of HAR in smart living services and applications is human-
centered design. A multidisciplinary approach that involves collaboration between com-
puter scientists, engineers, psychologists, and social scientists is essential for ensuring that
HAR systems meet the diverse needs and preferences of end-users. By prioritizing user
experience and incorporating insights from various fields, researchers can develop more
intuitive, adaptable, and user-friendly HAR systems that seamlessly integrate into people’s
everyday lives. Future research should emphasize the importance of human-centered de-
sign principles, investigate novel interaction modalities, and explore methods for eliciting
user feedback and preferences to inform system development.

The importance of overall system design, particularly emphasizing low-power con-
sumption and lightweight processing, must be considered for smart living services and
applications. Despite this, many studies still need adequate attention to these crucial aspects.
As smart environments frequently face limitations in energy consumption, device size, and
battery life, developing energy-efficient and lightweight solutions becomes imperative.
Energy-harvesting wearable devices, which can capture and store energy from various
sources like solar, thermal, or kinetic energy, can significantly mitigate energy consumption
concerns. Employing such energy-harvesting methods makes it possible to extend the bat-
tery life of wearable devices or even eliminate the need for batteries, substantially reducing
the system’s overall energy consumption. Additionally, low-power ML algorithms for HAR
can help minimize energy usage without compromising performance. These algorithms
can be designed to run on resource-constrained devices, such as microcontrollers or edge
devices, enabling HAR to be processed locally. This reduces the need for transmitting data
to the cloud, which can be power-intensive, and results in lower latency and increased
privacy. To further enhance the energy efficiency of smart living services and applications, it
is important to optimize both hardware and software components. This optimization could
involve employing energy-efficient processors, memory, and communication modules on
the hardware side. On the software side, researchers can focus on developing lightweight
algorithms that require minimal computational resources and can adapt dynamically to the
available energy budget. Smart living services and applications can become more viable
and sustainable in the long run by prioritizing low-power consumption and lightweight
processing in the overall system design.

Multi-resident HAR represents an important area for further exploration, as most
existing studies concentrate on single-occupant scenarios. The ability to accurately detect
and analyze the actions of multiple individuals in a shared environment opens up many
practical applications, addressing diverse needs across various sectors. In assisted living
facilities, for instance, multi-resident HAR can significantly enhance residents’ quality of
care and support. By simultaneously monitoring the activities of multiple individuals,
caregivers can receive real-time updates on each resident’s well-being, enabling timely
interventions if necessary. It is particularly beneficial for detecting falls, wandering, or
other behaviors requiring immediate attention, ultimately contributing to a safer and more
responsive living environment. Smart homes also stand to benefit greatly from advance-
ments in multi-resident HAR. By recognizing the activities of various family members,
smart home systems can make personalized environmental adjustments, such as controlling
lighting, temperature, and entertainment settings based on individual preferences and
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habits. Additionally, multi-resident HAR can bolster security measures by identifying and
differentiating between authorized family members and potential intruders. Addressing
the challenges associated with multi-resident HAR will likely involve refining existing
techniques and developing novel approaches. For example, researchers may need to devise
innovative ways to differentiate between the actions of multiple individuals, even when
their activities overlap or occur nearby. Furthermore, integrating data from various sen-
sor types, including wearable devices, cameras, and ambient sensors, could enhance the
accuracy and reliability of multi-resident HAR systems.

Lastly, it is essential to address ethical considerations and privacy concerns in smart liv-
ing environments that employ HAR systems. While recent advances in privacy-preserving
techniques have made some progress, privacy remains a significant concern in HAR. Re-
searchers should continue exploring ways to develop secure and privacy-preserving HAR
systems that protect individuals’ data and privacy, such as through differential privacy,
homomorphic encryption, or secure multi-party computation. In addition, the vulnerability
of HAR models to adversarial attacks and the connection between adversarial optimization
and interpretability warrant further investigation. Developing explainable HAR models
that provide transparent and interpretable insights into their decision-making processes
can help build trust and facilitate user acceptance of these systems in smart living services
and applications.

In light of the above discussions on open issues and future research directions in HAR
for smart living, several actionable insights and recommendations can be highlighted:

• Integration of sensor fusion techniques: Exploring the integration of multiple sensing
technologies, such as wearable devices, cameras, and ambient sensors, can significantly
enhance human activity recognition (HAR) systems in smart living. By combining
data from different sensors, a more comprehensive understanding of users’ activities
can be achieved, leading to improved accuracy and reliability in activity recognition.

• Investigation of federated learning for HAR: Further research should be conducted to
explore the potential benefits of federated learning in HAR systems. This approach
allows HAR models to learn from diverse real-world data while preserving user
privacy by enabling data sharing across multiple devices. Optimizing federated
learning algorithms and addressing challenges related to communication efficiency,
data heterogeneity, and security can result in more robust models that generalize well
to different populations and contexts.

• Adoption of human-centered design principles: Incorporating human-centered design
principles in the development of HAR systems is essential. Collaboration among
experts from various disciplines can lead to the creation of intuitive and user-friendly
systems that meet the diverse needs and preferences of users. Exploring novel in-
teraction modalities and incorporating user feedback can enhance the usability and
adaptability of HAR systems in smart living environments.

• Emphasis on low-power consumption and lightweight processing: Prioritizing energy-
efficient and lightweight solutions is crucial for HAR systems in smart living. Ex-
ploring energy-harvesting wearable devices, optimizing hardware and software com-
ponents for low-power consumption, and developing efficient machine learning
algorithms can minimize energy usage and enable local processing, resulting in longer
battery life, reduced latency, and increased privacy.

• Exploration of multi-resident HAR: There is a need to investigate the accurate detection
and analysis of activities from multiple individuals in shared living environments.
Advancing multi-resident HAR can enhance the quality of care in assisted living
facilities and enable personalized adjustments in smart homes. Addressing challenges
related to differentiating between multiple individuals’ actions and integrating data
from various sensor types can contribute to the development of more comprehensive
and effective multi-resident HAR systems.

• Addressing ethical and privacy concerns: Ensuring the development of secure and
privacy-preserving HAR systems is of utmost importance. Exploring techniques such
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as differential privacy, homomorphic encryption, and secure multi-party computation
can protect individuals’ data and privacy. Additionally, developing explainable HAR
models and investigating adversarial attacks can enhance system transparency, trust,
and user acceptance in smart living applications.

One potential limitation of this study is the limited exploration of the interplay and
integration of the dimensions of HAR in smart living with other key aspects of the smart
living ecosystem. While the study focuses on four important dimensions, namely context
awareness, data availability, personalization, and privacy, it does not extensively examine
how these dimensions interact and integrate with other dimensions within the broader
smart living framework.

8. Conclusions

This comprehensive review has meticulously examined the role of HAR within the
realm of smart living, delving into its various dimensions and pinpointing both the chal-
lenges and opportunities that lie ahead for future research. The proposed framework
emphasizes the critical importance of context awareness, data availability, personalization,
and privacy, in the context of smart living services and applications. Through a critical anal-
ysis of these aspects, this review accentuates the necessity to tackle biases and inaccuracies,
manage the complexity and privacy concerns, strike a balance between real-time processing
and resource efficiency, and prioritize privacy-preserving techniques. The comparative
advantages lie in its comprehensive coverage of the dimensions crucial for smart living,
addressing the limitations of previous reviews, and providing a solid foundation for further
advancements in the field.

As we look to the future, researchers should concentrate on refining and amalgamating
data availability approaches, devising innovative synthetic data generation techniques,
optimizing federated learning algorithms, and delving into the individual sensing technolo-
gies and systemic aspects of HAR systems. In addition to these technical advancements,
addressing the challenges of accuracy, reliability, scalability, and adaptability in smart living
services and applications is of paramount importance for the development of effective,
secure, and ethical HAR solutions. Prioritizing low-power consumption and lightweight
processing in system design, researchers can contribute to the creation of more sustainable,
accessible, and efficient smart living solutions that cater to a wide range of users and
environments. This will, in turn, enhance the quality of life for those who reside in smart
living spaces, promoting a more comfortable, safe, and convenient living experience.

The development of multi-resident HAR represents a crucial area for further explo-
ration, as it has significant practical applications in assisted living facilities and smart
homes. The ability to recognize and interpret the activities of multiple individuals simulta-
neously can contribute to a safer, more responsive, and personalized living environment.
For instance, in an assisted living facility, multi-resident HAR systems can monitor the
well-being of the elderly and provide timely assistance when required, ensuring their safety
and independence. Similarly, in a smart home setting, these systems can facilitate energy
conservation, enhance security, and enable seamless interaction between the residents and
their environment.

Moreover, addressing the ethical implications of HAR systems is essential, as the
widespread adoption of these technologies raises concerns regarding user privacy, data
ownership, and potential misuse of sensitive information. Researchers should work to-
wards establishing clear ethical guidelines and developing privacy-preserving techniques
that protect user data while still enabling effective HAR solutions. In light of the rapid
advancements in AI, ML, and sensor technologies, the potential of HAR systems in smart
living services and applications is immense. However, realizing this potential requires
a multidisciplinary approach, bringing together researchers from various fields such as
computer science, engineering, psychology, and social sciences. This collaboration will
help bridge the gap between technology and human-centered design, ensuring that HAR
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systems not only meet technical requirements but also address the diverse needs and
preferences of the end-users.

Ultimately, by overcoming the challenges and leveraging the opportunities highlighted
in this review, researchers and practitioners can develop innovative, robust, and user-
friendly HAR systems that seamlessly integrate into smart living spaces, transforming the
way we live and interact with our environment.

In the continuum of our review study, our ongoing and future work will concentrate
on a broader exploration of how HAR intertwines with multifarious facets of smart living.
Our approach entails a comprehensive examination of empirical research and real-world
applications that incorporate HAR into diverse areas of the smart living ecosystem. We
aim to uncover potential synergies, dependencies, and trade-offs that coexist between HAR
and these varying dimensions of smart living. To this end, our study will encourage and
incorporate interdisciplinary research collaborations to facilitate an exhaustive investigation
into the abundant scholarly works trailing overlapping domains. The goal is to condense
and amalgamate information on established methodologies, frameworks, and standards
that pave the way for the effortless integration of HAR into a wide array of smart living
services and applications.
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Abbreviations
The following abbreviations are used in this manuscript:

AAL Ambient Assisted Living
ADL Activities of Daily Living
AI Artificial Intelligence
BiGRU Bi-directional Gated Recurrent Unit
CNN Convolutional Neural Network
CPD Change Point Detection
CSI Channel State Information
DE Differential Evolution
DL Deep Learning
DT Decision Tree
GRU Gated Recurrent Unit
HAR Human Action Recognition
HMM Hidden Markov Model
IMU Inertial Measuring Unit
ICT Information and Communication Technology
IoT Internet of Things
KNN K-Nearest Neighbors
LR Logistic Regression
LSTM Long Short-Term Memory
LSVM Linear Support Vector Machine
ML Machine Learning
MLP Multilayer Perceptron
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PIR Passive Infrared
RCN Residual Convolutional Network
RF Random Forest
RGB Red-Green-Blue
RNN Recurrent Neural Network
SDE Sensor Distance Error
SVM Support Vector Machine
TCN Temporal Convolutional Network
UWB Ultra-Wideband
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