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Abstract: Timely data quality assessment has been shown to be crucial for the development of IoT-
based applications. Different IoT applications’ varying data quality requirements pose a challenge,
as each application requires a unique data quality process. This creates scalability issues as the
number of applications increases, and it also has financial implications, as it would require a separate
data pipeline for each application. To address this challenge, this paper proposes a novel approach
integrating fusion methods into end-to-end data quality assessment to cater to different applications
within a single data pipeline. By using real-time and historical analytics, the study investigates the
effects of each fusion method on the resulting data quality score and how this can be used to support
different applications. The study results, based on two real-world datasets, indicate that Kalman
fusion had a higher overall mean quality score than Adaptive weighted fusion and Naïve fusion.
However, Kalman fusion also had a higher computational burden on the system. The proposed
solution offers a flexible and efficient approach to addressing IoT applications’ diverse data quality
needs within a single data pipeline.

Keywords: data quality; internet of things (IoT); trust; big data model; data fusion

1. Introduction

The Internet of Things (IoT) has played a pivotal role in developing applications in
many industries, from smart agriculture to transportation, health care, and homes. At its
core, IoT is the integration of information and communication technologies into everyday
processes [1]. Sensors interact with the environment and collect data, and actuators receive
control signals from controllers. It is estimated that over 55.7 billion devices will be
connected to the Internet, producing over 73.1 zettabytes (ZB) of data by 2025 [2]. From
these IoT deployments, a vast amount of data are collected and used to advance innovations
and improve decision marking.

Like many IoT solutions, however, deployments are often composed of heterogeneous
sensor systems to ensure data collection [3]. The resulting data can suffer from high
variability, inconsistencies, and gaps. As data are at the center of inferring new insights,
it is essential to assess the quality of the data from which decisions are made. A poor
understanding of the quality of the data can lead to poor decisions. Therefore, data quality
assessment solutions have been proposed [4–7].

The factors (issues) that degrade the quality of IoT data exist at various stages through-
out the big data cycle. Karkouch et al. [5] define several of these factors (sensor faults,
resource limitations, network connectivity, security, and privacy) and illustrate their place-
ment into and through the big data cycle. Figure 1 shows how various issues exist at
different stages. Therefore, data quality assessment should also be carried out continuously
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throughout the big data cycle. Quantifying, understanding, and making these data quality
issues visible throughout the big data model is essential for effective insight.
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Figure 1. Factors that degrade IoT data across the big data model.

The vast opportunities IoT data presents have led to the development of many data
quality assessment solutions to mitigate the effects of poor data quality. Yang et al. [8]
proposed data quality assessment data based on deep learning for effective pest identifica-
tion in smart agriculture. Fizza et al. [9] proposed a conceptual data quality assessment
framework that is applied to monitor milk conditions for dairy farms.

More general solutions have also been proposed. Khokhlov et al. [10] proposed a
framework that uses a knowledge graph to connect various DQ metrics for IoT applications.
Mante et al. [11] implemented a 5D-IoT framework for heterogeneous IoT systems using
the semantic descriptions of sensor observations to assess the data. Several other solutions
have also been reported [12]. A common feature of all these solutions is that they all
assume data quality is an isolated problem that affects a single stage of the big data cycle.
Data quality challenges, however, exist at various stages throughout the big data cycle [4].
Evaluating at a single stage misrepresents the quality of the processing chain with respect
to the applied data. This affects the end user applications in two ways: (1) Using data with
incorrectly calculated quality assessment. (2) Lack of knowledge of where in the chain the
data quality suffers, or indeed, is enhanced.

Effective data quality assessment is based on a consumer’s (application) fitness for
use requirements, and indeed, this changes from one user to another [13]. Previous re-
search [14,15] has used the phrase fitness for use and data quality interchangeably. This
definition of data quality suggests that it is strongly influenced by the end user applica-
tion. Each application has its own unique combination of data quality dimensions (DQD)
throughout the big data cycle. This forms its fitness for use requirements. DQDs provide an
acceptable way to measure data quality, for example, timeliness, accuracy, and completeness.

Existing solutions consider data quality assurance to be a necessary step at a single
stage (data preprocessing) [13], applied like a Quality Gate with a predefined end point.
Once the objective is satisfied, they assume a lasting standard of data quality [13]. It is,
however, a common practice in most IoT deployments to use the same data for different
applications and use cases, or enrich the data with external data sources, hence different
fitness for use requirements. Such processes are essential for domain-specific applications [4].
As the data changes through the big data cycle, so should data quality considerations. None
of the existing solutions account for the changing nature of data, and hence data quality
throughout the big data cycle in a single data pipeline.

This paper implements a data quality assessment solution that uses data fusion strate-
gies to ensure continuous end-to-end data quality assessment throughout the big data
cycle. More specifically, this paper seeks to define a tangible link between data quality, data
quality stages, and their effect on the data through the stages in the big data model using data fusion.
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This builds on previous research that uses trust to evaluate data quality [4,16]. This paper,
therefore, uses data fusion strategies to combine quality scores at each stage into a single
score, while maintaining the contribution of each stage.

Each stage has unique data quality properties, and how these are combined deter-
mines the fitness for use for different applications. To deliver this unique experience for
each application within a single data pipeline requires a custom fusion strategy for each
application. Section 2 gives a detailed motivation using two example applications: real-
time analytics and historical analytics. It also highlights the importance of evaluating the
computational efficiency of the different fusion strategies. To this end, the following are the
core contributions of this paper:

1. Review data fusion strategies and implement a fusion engine that can integrate
into big data data quality assessment frameworks for IoT applications. This paper
compares three fusion strategies, Adaptive weighted fusion, Kalman’s fusion, and a
Naïve fusion strategy. These are compared in terms of computational resources.

2. Using real-time analytics and historical analytics as examples, this paper illustrates
how different fusion strategies can be harnessed to support different IoT applications’
unique data quality needs. Different applications can have varying data quality needs.

3. Integrate various industry standard data processing tools (e.g., Hadoop, Spark, and
Kafka) to implement a real-time data quality assessment solution and also evaluate the
computation resource efficiency associated with the fusion methods in an end-to-end
data pipeline.

The rest of this paper is structured as follows: Section 2 highlights the need to integrate
data fusion into big data quality assessment. Section 3 introduces data quality, trust, and
data fusion. These are the core concepts of this paper. It also highlights related work.
Section 4 outlines the theoretical and mathematical definition of the framework. Section 5
highlights the two evaluating strategies used in the paper, and finally, Section 6 gives the
summary and conclusive remarks.

2. Motivation

This section presents the motivation for integrating data fusion strategies into end-
to-end big data quality assessment for IoT applications and evaluating the computational
efficiency of each fusion strategy. Data quality assessment is a complex and multidimen-
sional process [17]. An organized methodology ensures big data quality throughout its
entire lifecycle. This methodology must include a comprehensive view of quality metrics
from the start of data acquisition to the implementation [18]. To this end, an end-to-end
data quality assessment framework has been defined [16].

This proposed approach evaluates various data quality dimensions at different stages
of the big data cycle, ultimately resulting in a single quality score that applications can
easily apply. This provides visibility of the individual quality factors at each stage. IoT
applications, however, have varying fitness for use requirements. Consider two broad
classes of applications, real-time analytics and historical analytics, and three data quality
dimensions, timeliness, accuracy, and completeness. Real-time applications require instan-
taneous input and fast analysis to make decisions or take actions within a specific time
frame. Processing data quickly with minimal latency is essential for the development and
deployment of real-time applications [19]. Some examples of this include smart intelligent
transportation, fraud detection, financial trading, and many others. Real-time analytics has
an essential requirement for timely data. Accuracy and completeness are considered desir-
able. Historical big data analytics, on the other hand, do not require timely data [19]. Some
examples of it include yield prediction is smart agriculture, weather predictions, and many
others. Such applications have an essential requirement for completeness. Each application
has a unique fitness for use requirement and hence varying data quality requirements.
Table 1 summarizes the fitness for use differences between real-time and historical analytics
applications based on the above requirements.



Sensors 2023, 23, 5993 4 of 18

Table 1. Fitness for use classification for real-time and historical analytics.

Application Class
Data Quality Dimensions

Timeliness Accuracy Completeness

Real-time Analytics Essential Desirable Desirable

Historical Analytics Desirable Desirable Essential

A challenge therefore exists. Given a single data stream within an IoT data shared
environment, how might a single data pipeline be developed that combines the various
DQDs at different stages of the big data cycle to achieve a customize data quality score
that uniquely satisfies each application. Currently, a few options exist: (1) A different data
quality assessment process can be developed for each unique application and integrated
within a single data pipeline. This is illustrated as option 1 in Figure 2. (2) Each unique
application can have its data pipeline integrated with data quality assessment that meets
its unique requirements. This is illustrated as option 2 in Figure 2. The first case requires
maintaining two data quality assessment processes, and the last requires maintaining two
data pipelines, each with its data quality assessment process. Therefore, as the number of
use cases increases, so would the need to scale the pipelines. This, however, introduces
redundancy, creating difficulties in consistency, and it has financial implications.

Data  
Collection

Data  
Pre-procesing

Data  
Analytics

Data  
Use

Timeliness + Accuracy + Completeness

Timeliness + Accuracy + Completeness Real-time Analytics

Historical Analytics

Data  
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Data  
Pre-procesing

Data  
Analytics

Data  
Use

Timeliness + Accuracy + Completeness Real-time Analytics

Historical Analytics

Data  
Collection

Data  
Pre-procesing

Data  
Analytics

Data  
Use

Timeliness + Accuracy + Completeness

Option 2

Option 1

Figure 2. Illustrations of the different way to cater to each application’s fitness for use requirements.

It is crucial to deliver high-quality data through a single data pipeline, but there are
additional requirements that must be taken into account. Many IoT applications have the
ability to off-load certain analytical processes to the lower layers of the application, for
example, fog and edge [20]. Such analytical processes might require data quality assessment.
A challenge exists in these kind of applications. Given various fusion strategies, when is it
appropriate to choose a given strategy based on their computational resource utilization?
For example, Kalman’s fusion has been reported to be computationally expensive [21],
and therefore, it might not be efficient for edge applications that are characterized by low
computational resources.

This paper proposes an approach that uses fusion within a single data pipeline to
deliver a unique experience for each application. As the use cases increase, so might the
fusion engine scale to support them. Fusion techniques have been widely used to combine
different parts of the same or sometimes different systems to complement or benefit from
the advantages of each. Fusion has an advantage that allows for the weighting of the combi-
nation of the DQDs to be tailored to specific applications. Therefore, this paper investigates
how various fusion techniques can be integrated into big data quality assessment to deliver
a single data pipeline that can uniquely cater to each application’s data quality needs. It
also assesses the computational resource utilization of the fusion techniques.
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3. Background and Related Work

This paper builds on previous research on data quality assessment using trust and
compares the performance of different data fusion strategies. This section defines key
concepts that form the basis for the remainder of the paper.

3.1. Data Quality

IoT data are a crucial part of many systems today and are used to aid decision making
and create innovations. Much of the data used, however, are curated by low-cost sensors,
which can be unreliable or inaccurate [22]. Assessing the quality of such data before use
is therefore important. Data quality has been defined differently by several authors due
to its subjective nature. Heravizadeh et al. [23] define data quality as the totality of an
entity’s characteristics (data) that bear on its ability to satisfy stated and implied needs.
Sidi et al. [24] define data quality as appropriateness for use or meeting user needs. This
definitions aligns with the illustration given in section 2. Not all applications have the same
data quality requirements.

Lee et al. [25] present a structured method to represent and apply a wide range of
metrics, possibly subjective to coefficients. This uses the concept of data quality dimensions
(DQDs). DQDs provide a framework to associate wide-ranging data quality metrics to data.
A DQD is a characteristic or feature of information for classifying information and data
requirements [25], for example, accuracy and completeness. DQDs exist at different stages
of the big data cycle. Each application has a unique weight for each DQD throughout the
big data cycle. To satisfy such requirements, different fusion strategies have to be applied.

In IoT and big data, various solutions have been proposed to address the challenges
of inadequate data quality. For instance, Kuemper et al. [26] introduced a framework
that leverages the capabilities of IoT infrastructure and interpolation algorithms to val-
idate crowdsourced data through sensor fusion. The authors employ machine learning
techniques to validate the resulting data quality, relying on data obtained from neigh-
boring sensors. However, a significant challenge faced by this and other data quality
solutions [9,27] is the requirement for a gold standard for validation.

3.2. Data Fusion

The terms data and information fusion have been used interchangeably in many fields.
In some, a distinction occurs, with data fusion referring to raw, unprocessed data and
information fusion referring to processed data. Several definitions of data fusion exist. In a
more concise definition, data fusion can be defined as a combination of multiple sources to
obtain improved information; in this context, improved information means less expensive,
higher-quality, or more relevant information [28]. Data fusion is a multidisciplinary area
that involves several fields, and it is not easy to establish a clear and strict classification [28].
In the context of this work, since the interest is to determine the relationship between data
quality properties across the big data model and how these propagate throughout the
cycle, this paper adopts an approach proposed by Durrant-Whyte et al. [29]. Here, fusion
is defined according to the relations between the input data sources. Three approaches
are defined:

1. Complementary: The information provided by the different sources represents differ-
ent parts of the system and fusing it results in a complete representation of the system.

2. Redundant: The same target is measured by two different processes, and fusing of the
resulting information can lead to increased confidence.

3. Cooperative: The result of the fusion process is said to produce new information that
is typically more complex than the original information.

Figure 3 summaries Whyte’s three classification strategies based on the relationships
between the data sources and shows how different sources can be combined under scenarios.
A more detailed description can be found here [28].
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Figure 3. Whyte’s fusion classification based on the relations between the data sources [28].

3.3. Related Work

The field of data fusion has grown immensely over the past years, with several
techniques reported and used in many applications [30]. Traditional fusion methods such
as least square estimation and arithmetic mean have been reported to have low accuracies
in many situations [31,32]. Commonly used techniques such as fuzzy logic, Kalman filter,
and Bayesian inference also suffer from their own limitations [33–35].

Kalman filter is a form of statistical interpolation that uses a model of dynamics and
onboard sensor measurements to recursively determine estimates for data fusion [36]. This
technique requires the system to provide the accurate state, observation equations, and
prior knowledge of the statistical characteristics of the system and observation noise [30,37].
Kalman filters exist in several forms. There is the basic Kalman filter, which was designed
for linear systems [38]. Other ones include the extended Kalman filter and unscented
Kalman filter. Each of the preceding filters tries to mitigate the weakness of its predecessor.

Hamouda et al. [39] applied the extended Kalman filter to measure and predict agri-
cultural parameters, including soil moisture and temperature, to filter noisy measurements
in smart heterogeneous precision agriculture from energy sensor nodes deployed on a
farm. Lai et al. [40] proposed a low-cost air quality monitoring and real-time prediction
system based on IoT and edge computing employing a prediction algorithm that is based
on a Kalman filter. This helps improve low-cost sensors’ accuracy by 27% on the edge
side. Abioye et al. [41] applied a Kalman filter to a subsurface fibrous capillary irrigation
system. It was used to reduce the sensor noise and help improve the accuracy of water
level estimation.

The Bayesian inference uses Bayes’ formula to combine sensor data [42]. Bayes’ for-
mula helps define the relationship between the a priori, a conditional, and a posteriori
probabilities given in a hypothesis [42]. The downside of this method is that it is sensi-
tive to prior probability distribution [33]. Razafimandimby et al. [43] applied Bayesian
inference to reduce the amount of high spatiotemporal correlated data which are sent
to the cloud for smart agricultural applications. Their results show a reduction in the
amount of transmitted data and energy consumption, while maintaining an acceptable
level of data prediction accuracy. Gevaert et al. [44] proposed a novel spectral–temporal
response surfaces methodology which uses Bayesian inference to impute missing spectral
information in the multispectral imagery and introduces observation uncertainties into the
interpolations. This is applied to a field of potatoes for experimentation.

The fuzzy logic theory allows the uncertainty in multisensor fusion to be directly
represented in the inference process [45–47]. When observational evidence highly conflicts
with itself, however, the fusion result may be unacceptable [33]. Manjunatha et al. [48]
used fuzzy logic to propose an algorithm for event detection applications in wireless sensor
networks. The results show that multiple data fusion improves the reliability and accuracy
of the sensed data.
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Weighted fusion algorithms have gained much traction from the data fusion commu-
nity [21,49–51]. These work by assigning a weight factor to each sensor input [21]. The core
advantages include optimality, unbiasedness, and minimum mean squared error [52,53].
Moreover, compared with the Kalman filter, Bayesian estimation, and fuzzy logic theory,
it can generate results without the requirement of any prior knowledge of the system or
observation noises [21,49]. In the case of the proposed application, the fusion’s weight-
ing strategy would help deliver unique fitness for use requirements for each application.
Table A2 summarises the advantage and disadvantage of the various strategies.

4. Framework Implementation

The end-to-end implementation of the system comprises two fundamental compo-
nents. The first component is the data quality assessment (DQA), crucial in real-time data
quality evaluation. The DQA component is responsible for assessing the data quality in
real-time. It operates through three stages, as shown in Figure 4. Each has unique data qual-
ity dimensions: accuracy, completeness, consistency, and timeliness. Previous research [16]
describes this in more detail.
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Figure 4. End -to-end implementation of the data pipeline with a fusion engine.

The second core component of the implementation is the data fusion engine. This
component plays a vital role in integrating and consolidating the results obtained from the
three stages of the DQA. It takes the intermediate quality assessment outputs from each
stage and returns a single quality score. The data fusion engine operates independently and
can be configured with different fusion strategies, providing flexibility and adaptability to
meet the specific needs of different applications. By combining the outputs from the DQA
stages, the data fusion engine provides a holistic view of the data quality, enabling support
for different application needs. Both components are modular and can apply assessments of
fusion strategies independently. The following sections highlight each component in detail.

4.1. Data Quality Assessment (DQA)

The DQA is responsible for assessing the quality of the data from data streams before
they are shared in real-time. This is based on previous research [16] that uses trust to
evaluate data quality. The previous study has built and tested an end-to-end DQ assessment
framework that integrates DQ assessment into the big data cycle for data-shared IoT
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applications [4,16]. Trust is a well-established metric that has been used to determine the
validity of a piece or source of data in crowdsourced or other unreliable data collection
techniques. In this paper, the terms trust score and quality score are used to mean the
same thing.

Figure 4 shows the detailed internal implementation of the DQA and how it inte-
grates with the data fusion engine to complement its functionality. The DQA is based
on industry-standard data pipeline tools. A detailed description and implementation of
the DQ assessment framework and the use of trust to evaluate DQ for data-shared IoT
applications can be found here [4,16].

As the data stream through the framework, they are evaluated for at each stage. In
Figure 4, this is represented by the Trust computation blocks. Each block has a set of unique
DQDs used to evaluate data quality. For example, the trust block during data preprocessing
(T1) will evaluate intrinsic data quality, which in our example is timeliness. Trust evaluated
during processing (T2) evaluates investigative trust, accuracy, and completeness in our
example. This computation results into a single trust score (T1, T2, and T3) for each stage. T3
is not used in this example, as it is still an element for future research. This requires defining
a feedback loop from each application back into the data quality assessment framework.
However, it can later be integrated into the framework without any modifications. The
resulting score must be combined into a single score that represents the unique fitness for
use for each end-user application.

4.2. Data Fusion Engine

The data fusion engine takes the output of all three trust stages and returns a single
score representative of all the stages. Depending on the fusion strategy used, the resulting
score should be able to satisfy the data quality requirements for each application in a
homogeneous data pipeline. Fusion allows the facility to control how each stage can be
weighted to achieve this objective. This paper uses an Adaptive weighted fusion strategy
and compares it with other fusion strategies.

4.2.1. Mathematical Formulation for Adaptive Weighted Fusion

Assuming there are n trust stages with a different trust score at each stage, the resulting
weighted data fusion model is shown in Figure 5. Moreover, assume that the mean squared
errors of each trust score for each stage are σ2

1 , σ2
2 , . . . , σ2

n , and the calculated trust scores
are T1, T2, . . . , Tn. The corresponding weight factors for the trust scores are W1, W2, . . . , Wn,
respectively. Since each trust score is independent of the other, and all belong to the
unbiased estimation of T∗, the trust score factor and weight of T∗ after fusion satisfy the
following relationship:

T∗ =
n

∑
i=1

WiTi ,
n

∑
i=1

Wi = 1 (1)

Therefore, the total mean square error is

σ2 = E
[
(T − T̄)2

]
= E

( n

∑
i=1

WiT −
n

∑
i=1

WiTi

)2


= E

[
n

∑
i=1

W2
i (T − Ti)

2

]
=

n

∑
i=1

W2
i σ2

i

(2)
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Following Equation (2), the mean square error σ2 is a multivariate quadratic func-
tion. Therefore, σ2 must have a minimum value. Using the extreme value theory of the
multivariate function, the minimum weight factor is

W∗
i =

1
σ2

i ∑n
i=1

1
σ2

i

(3)

Correspondingly, the minimum mean square error is

σ2
min =

1

∑n
i=1

1
σ2

i

(4)

For of any number of the trust stages j(j = 1, 2, 3, . . . , n), it can be concluded that

σ2
min < σ2

j (5)

   Initial Trust, 

Investigative Trust, 

   Result Trust, 

 
 

 

Figure 5. Adaptive weighted data fusion model.

Therefore, the overall mean square error is smaller than the mean square error of any
given single stage. Moreover, the overall fused trust score will be improved compared with
the trust score of a single stage. The data quality properties of each stage are reflected into
the final score. Their contribution, however, is weighted depending on the fitness for use
for each application. Table A1 summarises all the notations used.

4.2.2. Kalman Fusion

In 1D Kalman fusion, the system’s state and measurements are scalar values. The filter
maintains two estimates of the system’s state: the predicted state, based on the previous
state and the system’s dynamics, and the filtered state, based on the predicted state and
the most recent measurement [54]. The Kalman fusion process utilizes these two estimates,
the predicted state and the filtered state, to continuously update its understanding of
the system’s state over time. As new measurements become available, the filter refines
its estimates by iteratively adjusting the weights assigned to the predicted state and the
measurement. This iterative update mechanism allows the Kalman filter to adapt and
provide increasingly accurate state estimates as more data are assimilated. Figure 6 shows
the process of measurement update and prediction.

By iterating through these equations over time, the Kalman fusion combines measure-
ments with predictions to estimate the true state of a system. A detailed description and
mathematical illustration of Kalman fusion can be found here [54].
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Measurement 
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Prediction

Figure 6. Steps of the Kalman fusion.

5. System Evaluation

Two experiments were carried out to assess the proposed system, each serving a
different purpose. The initial experiment aimed to demonstrate each fusion method’s
impact on the resulting data quality score and examine how this can be used to support a
specific application.

Various fusion methods employ distinct weighting schemes. For instance, when
presented with two inputs, a fusion method could assign a greater weight to an input
with a lower standard error and a lesser weight to one with a higher standard error. As
a result, diverse fusion methods can produce varying data quality scores. Rather than
incorporating numerous data quality assessment procedures into a single pipeline or
constructing multiple pipelines, different fusion methods can be utilized to aid different
applications by simply integrating a new fusion method or implementing a novel weighting
scheme that is custom tailored to the application.

The objective of the second experiment is to evaluate and compare the computational
resource consumption of the different fusion methods. While it is crucial to deliver person-
alized data quality scores, it is also vital to assess the impact of each fusion method on the
application in terms of computational resources. Different applications perform analytics
that necessitate quality assessment at varying layers. Particular layers, such as the edge,
have resource constraints. This experiment, therefore, aims to facilitate improved service
placement within IoT application architectures.

The experiments were conducted separately because each dataset has specific features
supporting only one experiment. In the first case, a dataset with a gold standard was used
to assess fitness for use by varying DQDs. In the second case, a dataset collected over a
more extended period was used. Detailed descriptions of each dataset and experimental
setup are provided in the following sections.

5.1. Dataset Description

Two datasets where used to evaluate the proposed system. Both are collected from
real-world IoT deployments. The first is based on data collected in an air quality deploy-
ment. This dataset is publicly available [55]. A multisensor device was co-located with a
conventional air pollution analyzer. This was used to provide the true concentration values
of the target pollutants at the measurement site. These values were hence used as a gold
standard. This study uses data from the CO sensor. This was collected over a one year
period. This dataset is used to evaluate the fitness for use as it contains gold-standard data.
This ensures that the accuracy metric can be determined and held constant, as its only a
desirable DQD.

The second dataset consists of weather data collected from a real-world setup of
weather stations installed across the United Kingdom between 2014 and 2020. The dataset
encompasses over 100 weather stations, each recording air temperature, rainfall, relative
humidity, and wind values, as well as an average of 30,000 data points yearly. This
dataset serves as a test case for evaluating the system performance of the proposed fusion
techniques for big sensor data systems, covering real-time and batch processing scenarios.
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Its deployment scale and longevity make it ideal for assessing the effectiveness of the
proposed techniques.

5.2. Experiment 1

The goal of this experiment is to show the effects each fusion method has on the
resulting data quality score and how this can be used to support various applications. The
data undergo processing via the system illustrated in Figure 4. A Kafka producer reads
and preprocesses the data, then sends them to Apache Spark for further processing and
analytics. Preprocessing involves calculating quality score T1, which assesses timeliness
DQD, while data processing and analytics calculate the quality score, T2, based on accuracy
and completeness DQDs. These scores are sent to the fusion engine, which generates a
single, usable score, as depicted in Figure 4.

To investigate varying data quality requirements, the experiment explores two scenar-
ios by modifying essential DQDs. In the first scenario, T1 values are varied while T2 is held
constant. T1 values are varied by regulating the rate at which the Kafka producer transmits
data to the consumer, thereby introducing delays in the data pipeline. This is expected to
impact the data quality of the real-time analytics application by lowering timeliness.

The second scenario entails changing T2 values while keeping T1 constant, which
involves introducing missing values into the dataset to impact the completeness of DQD.
This manipulation can vary quality scores for T2 depending on the rate of missing values.
By virtue of the data requirements on the historical application, this manipulation should
affect the overall quality score for the application.

After calculating the scores, a distinct fusion strategy is employed for each application
to enable varying weighting of the scores and produce unique, usable quality scores. As
a result, two quality score curves are generated, one for each application, using a specific
fusion strategy. The resulting curves for the two scenarios are shown in Figure 7a and
Figure 7b, respectively.
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Figure 7. Comparing the effect of each fusion method on the resulting quality scores based on
Adaptive weighted fusion, Kalman fusion, and Naïve fusion. The highlighted green areas show the
effect each fusion method has on the resulting quality scores

5.3. Experiment 2

This experiment evaluates the resource consumption for the various fusion methods.
This is carried out for both real-time and batch processes. This measures the CPU and
memory utilization. In this setup, there were no modification to the data or the DQDs. The
data are processed as is. As the data are evaluated for quality, the experiment measures the
CPU and memory utilization of the fusion engine. It is important to note that the results
reported here are only for the fusion engine. The other parts of the system have been
previously evaluated [16]. This is represented in Figures 8 and 9.
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Figure 8. Comparing CPU and memory utilization for three fusion strategies in a real-time data
streaming pipeline.
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Figure 9. Comparing CPU and memory utilization between adaptive weighted and Kalman fusion
for batch data pipeline.

5.4. Results and Analysis

Figure 7 shows the resulting quality scores that take into account fitness for use
requirements for the two categories of applications. Figure 7a shows the resulting effect of
continuously reducing timeliness and its effect on both application categories. Adaptive
weighted fusion and Kalman fusion were able to maintain a more stable quality experience
even when timeliness was reduced. Kalman fusion presents an overall mean quality score
of 0.987 and standard deviation of 0.009. Adaptive weighted fusion presents an overall
mean quality score of 0.984 and standard deviation of 0.01. Although the difference between
Kalman fusion and Adaptive fusion is relatively small, the characteristics they show can
be used to deliver a different quality experience to different application with varying data
quality needs where timeliness is not a stringent requirement. Naïve fusion, however, was
impacted by a reduction in timeliness, therefore resulting in lower data quality. It had an
overall mean quality score of 0.886 and standard deviation of 0.05. In an application where
timeliness is a stringent requirement, this can be useful to show the reduced data quality
while taking timeliness into consideration.

Figure 7b shows results of varying completeness. The highlighted area shows the
effect each fusion method has on the resulting quality scores. A reduction in T2 did not have
a significant impact on Kalman fusion. Unlike the above case, Adaptive weighted fusion
presents lower quality scores at some point compared with Naïve fusion, thus showing
the dynamic capacity of the fusion schemes over the Naïve approach. Overall, Kalman
fusion presents a mean quality score of 0.984 and standard deviation of 0.011 compared
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with Adaptive weighted fusion, with a mean of 0.97 and standard deviation of 0.02. As
in the above case, these differences in the resulting quality score for each fusion method
can be used to deliver different quality experience to IoT applications with varying data
quality needs within a single data pipeline.

As illustrated above, each fusion method had a different effect on the resulting quality
score. This paper has compared only a few fusion methods and how this can help deliver
unique fitness for use to two broad categories of applications. The system can easily be
extended to include other fusion methods that can have custom weighting strategies to
deliver data quality scores to very specific applications in IoT.

5.5. System Performance

System performance was evaluated for the fusion engine’s CPU time and memory
utilization. These metrics have been suggested as the most appropriate when evaluating
a fusion strategy [28]. The evaluation was performed for both real-time streaming and
batch-processing data pipelines. It is important to note that the evaluation results reported
here are only for the fusion engine. The other part of the system has been evaluated in a
previous study [16].

5.5.1. Real-Time Streaming

The fusion engine node is completely decoupled from the rest of the system; there-
fore, its resources can be fully customized depending on the workload. The fusion node
was configured for the real-time streaming pipeline with 5 CPUs, each at 2.40 GHz and
32 GB of RAM. CPU utilization is measured in percentage usage, while memory is in
megabytes consumed.

Figure 8a shows the comparison results for CPU utilization for three fusion strategies:
Adaptive weighted fusion, Kalman fusion, and Naïve fusion for a single real-time stream
job. As shown, Kalman and Adaptive weighted fusion have the highest comparable
percentage of CPU utilization, with means of 22.44% and 22.54% and standard deviations
of 4.39 and 4.14, respectively. Naïve fusion had the lowest values, with a mean of 8.75%
and a standard deviation of 5.04. All three methods had high viability, as shown in the
graph, and high and comparable standard deviation values.

Figure 8b shows the comparison results for memory utilization for the three fusion
strategies. Unlike CPU utilization, Kalman fusion had the lowest values, with a mean of
10.93 MB and a standard deviation of 0.04. Kalman fusion has been suggested to be more
resource-effective for smaller data sizes [56]. However, overall, all three fusion strategies
had values within a close range, with means and standard deviations of 11.33 MB and
0.132 and 11.49 MB and 0.03 for Adaptive weighted and Naïve fusion, respectively. This is
because, for real-time streaming jobs, a small amount of data are processed at a given time.

5.5.2. Batch Processing

The system was also evaluated for batch processing workloads. The results in this
section compare two fusion strategies: Adaptive weighted and Kalman fusion. They were
evaluated for CPU time and memory utilization as data size increased. The data size was
measured in the number of months. This was performed on a single node with 5 CPUs,
each at 2.40 GHz and 32 GB of RAM.

Figure 9a,b compares CPU time and memory utilization between Adaptive weighted
fusion, Kalman fusion, and Naïve fusion, respectively, as data size increases for batch
processing. As shown, as data size (in months) increases, so does consumption for both
CPU and memory. Adaptive weighted fusion and Naïve fusion had lower values compared
with Kalman fusion. As previously reported, Kalman fusion is a highly computational
fusion strategy [21].

As compared with real-time streaming, batch processing had lower memory consump-
tion. This is partly due to the frequent memory reads and writes that streaming jobs incur.
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Batch processing had high CPU percentage usage compared with real-time streaming, with
averages of up to 95%.

The system was also evaluated for scalability with different compute configurations.
These are summarized in Table 2. The results indicate that the fusion engine could not be
scaled. Increasing compute resources yielded the same average delay in CPU time and
memory utilized. It should be noted, however, that this constraint is inherent in the fusion
algorithms rather than the overall system. This is because, during the fusion stage, all the
data have to be processed in a single stage. It should also be noted that the scalability of
the DQA was reported in previous research [16]. The results show that it could scale both
horizontally and vertically.

Table 2. System resource configuration for batch data pipelines.

Conf 1 Conf 2 Conf 3 Conf 4

CPU (vcpus) 4 8 16 32

RAM (GB) 8 16 32 64

5.6. Discussion

This paper compares three fusion strategies which combine quality scores for a given
data stream or data inputs. It can be argued that each fusion technique is suitable for a
given application; that is, it presents a suitable representation of the data quality for the
given application. The application of a given fusion strategy will depend on how the
application views quality. For example, some applications might require consistent data
quality, requiring a dynamic means to represent quality, while others might handle patches
of fluctuating data quality but require overall quality above a given threshold. This can be
useful to support data from sensors in difficult communication situations.

Each fusion method has a different weighting strategy which affects the final score.
In Kalman fusion, higher error rates are penalized highly [52]. This can be useful in
applications where a change in a single data quality dimension (for example, timeliness)
should not affect the overall quality of needs of the application. Using Kalman fusion,
therefore, a higher penalty would be applied to that data quality dimension to deliver
the desired quality experience for that application. For example, in real-time analytics,
sometimes, the data can be late; however, this should not affect the overall quality. These
data can be used to calculate intermediate results, which can be updated later. Using this
kind of fusion strategy, such applications can be supported.

Adaptive weighted fusion can determine the optimal weights for each source. This
allows the differences between each data source’s error rate to be flexibly considered [57].
They can be useful in dynamic environments where the error rates between several data
sources must be considered. This would help maintain a quality score that adapts to the
error rate. This can be useful to support applications (for example, smart agriculture) that
rely on data from network-constrained environments by offering a more dynamic data
quality assessment experience.

Naïve fusion would assign equal weights. This can be useful in cases where we do
not know the application’s needs. For scalability and resource-constrained environments,
however, Adaptive weighted fusion is a better choice compared with Kalman fusion.

The goal of this work is not to imply that a given fusion method is better than the
other in all general cases but rather to show that a given fusion method can deliver a better
quality experience that satisfies a given application requirement.

6. Summary and Conclusions

This paper discussed different IoT applications’ varying data quality needs, called
fitness for use. The solution integrates different fusion methods to cater to different applica-
tions’ unique data quality needs. The study investigates the impact of these fusion methods
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on data quality scores and their applicability in supporting diverse applications. It also
evaluates the computational efficiency of the fusion methods to optimize service placement.

However, it is essential to note some limitations of the study. Firstly, the real-time
and historical analytics comparison may not capture all potential scenarios and variations
in data quality requirements. Different applications may exhibit distinct patterns and
data characteristics, which could influence the performance of fusion methods differently.
Additionally, the study focuses on only three fusion methods—Kalman fusion, Adaptive
weighted fusion, and Naïve fusion—limiting the exploration of other potential fusion
techniques that could enhance data quality.

In conclusion, this paper offers an insightful approach to addressing the diverse data
quality needs of IoT applications through the fitness for use solution and fusion methods.
However, limitations regarding the representativeness of the comparison scenarios, the
limited exploration of fusion methods, and the lack of detailed resource requirements
and scalability considerations should be considered when interpreting the findings and
applying them in practical IoT settings. These form the basis for future work.
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Appendix A

Table A1 list all the math notations used in the paper.

Table A1. Math notations and their definitions.

Symbol/Notation Interpretation

σ Mean squared error of each trust score for each stage
T Trust score for each stage
T∗ Resultant trust score after fusion
W Weighting factor for each stage

Appendix B

Table A2 Summary of the advantages and disadvantages of data quality control
methods and fusion approaches.
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Table A2. Summary of the advantages and disadvantages of data quality control methods and
fusion approaches.

Method Advantages Disadvantages

Data Quality
Dimensions (DQDs)

• DQDs provide an
acceptable, standardised, flexible, and
measurable set of quality metrics to measure
data quality.

• They require domain knowledge to define.
• They are a nonexhaustive list which can be hard to

define for IoT applications because each use case is
unique.

Fuzzy logic

• It is simple and capable of dealing with
imprecise information and possibly including
heuristic knowledge about the phenomenon
under consideration [58]

• It can produce unacceptable results if there is
conflict between the input observations [33]

• It is computationally expensive [21]

Kalman filter
• Kalman filter provides an unbiased and optimal

estimate of a state-vectorin the sense of
minimum error variance [58]

• Requires the system to provide the accurate state,
observation equations, and prior knowledge of the
statistical characteristics of the system and
observation noise [30,37]

• It is computationally expensive [21]

Bayesian inference • It is simple and easy to setup • This method is sensitive to prior probability
distribution [33]

References
1. Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
2. Kishor, A.; Chakarbarty, C. Task Offloading in Fog Computing for Using Smart Ant Colony Optimization. Wirel. Pers. Commun.

2022, 127, 1683–1704. [CrossRef]
3. Kollolu, R. A Review on Wide Variety and Heterogeneity of IoT Platforms. SSRN Electron. J. 2020, 12, 3753–3760. [CrossRef]
4. Byabazaire, J.; O’Hare, G.; Delaney, D. Using Trust as a Measure to Derive Data Quality in Data Shared IoT Deployments. In

Proceedings of the 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI,
USA, 3–6 August 2020; pp. 1–9. [CrossRef]

5. Karkouch, A.; Mousannif, H.; Al Moatassime, H.; Noel, T. Data quality in internet of things: A state-of-the-art survey. J. Netw.
Comput. Appl. 2016, 73, 57–81. [CrossRef]

6. Alrae, R.; Nasir, Q.; Abu Talib, M. Developing House of Information Quality framework for IoT systems. Int. J. Syst. Assur. Eng.
Manag. 2020, 11, 1294–1313. [CrossRef]

7. Farooqi, M.M.; Ali Khattak, H.; Imran, M. Data Quality Techniques in the Internet of Things: Random Forest Regression. In
Proceedings of the 2018 14th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 21–22 November
2018; pp. 1–4. [CrossRef]

8. Yang, J.; Lan, G.; Li, Y.; Gong, Y.; Zhang, Z.; Ercisli, S. Data quality assessment and analysis for pest identification in smart
agriculture. Comput. Electr. Eng. 2022, 103, 108322. [CrossRef]

9. Fizza, K.; Jayaraman, P.P.; Banerjee, A.; Georgakopoulos, D.; Ranjan, R. Evaluating Sensor Data Quality in Internet of Things
Smart Agriculture Applications. IEEE Micro 2022, 42, 51–60. [CrossRef]

10. Khokhlov, I.; Reznik, L. Knowledge Graph in Data Quality Evaluation for IoT applications. In Proceedings of the 2020 IEEE 6th
World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6. [CrossRef]

11. Mante, S.; Hernandez, N.; Hussain, A.M.; Chaudhari, S.; Gangadharan, D.; Monteil, T. 5D-IoT, a semantic web based framework
for assessing IoT data quality. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual, 25–29
April 2022; pp. 1921–1924. [CrossRef]

12. Zhang, L.; Jeong, D.; Lee, S. Data Quality Management in the Internet of Things. Sensors 2021, 21, 5834. [CrossRef]
13. West, N.; Gries, J.; Brockmeier, C.; Gobel, J.C.; Deuse, J. Towards integrated Data Analysis Quality: Criteria for the application of

Industrial Data Science. In Proceedings of the 2021 IEEE 22nd International Conference on Information Reuse and Integration for
Data Science (IRI), Las Vegas, NV, USA, 10–12 August 2021; pp. 131–138. [CrossRef]

14. Reynolds, M.W.; Bourke, A.; Dreyer, N.A. Considerations when evaluating real-world data quality in the context of fitness for
purpose. Pharmacoepidemiol. Drug Saf. 2020, 29, 1316–1318. [CrossRef]

15. Devillers, R.; Bédard, Y.; Jeansoulin, R.; Moulin, B. Towards spatial data quality information analysis tools for experts assessing
the fitness for use of spatial data. Int. J. Geogr. Inf. Sci. 2007, 21, 261–282. [CrossRef]

16. Byabazaire, J.; O’Hare, G.M.; Delaney, D.T. End-to-End Data Quality Assessment Using Trust for Data Shared IoT Deployments.
IEEE Sens. J. 2022, 22, 19995–20009. [CrossRef]

http://doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1007/s11277-021-08714-7
http://dx.doi.org/10.2139/ssrn.3912454
http://dx.doi.org/10.1109/ICCCN49398.2020.9209633
http://dx.doi.org/10.1016/j.jnca.2016.08.002
http://dx.doi.org/10.1007/s13198-020-00989-6
http://dx.doi.org/10.1109/ICET.2018.8603594
http://dx.doi.org/10.1016/j.compeleceng.2022.108322
http://dx.doi.org/10.1109/MM.2021.3137401
http://dx.doi.org/10.1109/WF-IoT48130.2020.9221091
http://dx.doi.org/10.1145/3477314.3507234
http://dx.doi.org/10.3390/s21175834
http://dx.doi.org/10.1109/IRI51335.2021.00024
http://dx.doi.org/10.1002/pds.5010
http://dx.doi.org/10.1080/13658810600911879
http://dx.doi.org/10.1109/JSEN.2022.3203853


Sensors 2023, 23, 5993 17 of 18

17. Abdullah, M.Z.; Arshah, R.A. A Review of Data Quality Assessment: Data Quality Dimensions from User’s Perspective. Adv. Sci.
Lett. 2018, 24, 7824–7829. [CrossRef]

18. Faniel, I.M.; Jacobsen, T.E. Reusing Scientific Data: How Earthquake Engineering Researchers Assess the Reusability of Colleagues’
Data. Comput. Support. Coop. Work (CSCW) 2010, 19, 355–375. [CrossRef]

19. Mohamed, N.; Al-Jaroodi, J. Real-time big data analytics: Applications and challenges. In Proceedings of the 2014 International
Conference on High Performance Computing and Simulation (HPCS), Bologna, Italy, 21–25 July 2014; pp. 305–310. [CrossRef]

20. Taneja, M.; Jalodia, N.; Davy, A. Distributed Decomposed Data Analytics in Fog Enabled IoT Deployments. IEEE Access 2019,
7, 40969–40981. [CrossRef]

21. Yaohui, Z.; Li, W.; Bao, S.; Haibo, H.; Long, L. Application of an adaptive weighted estimation fusion algorithm in landslide
deformation monitoring data processing. IOP Conf. Ser. Earth Environ. Sci. 2020, 570, 062045. [CrossRef]

22. Okafor, N.U.; Delaney, D. Considerations for system design in IoT-based autonomous ecological sensing. Procedia Comput. Sci.
2019, 155, 258–267. [CrossRef]

23. Heravizadeh, M.; Mendling, J.; Rosemann, M. Dimensions of business processes quality (QoBP). In Business Process Management
Workshops; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]

24. Sidi, F.; Shariat Panahy, P.H.; Affendey, L.S.; Jabar, M.A.; Ibrahim, H.; Mustapha, A. Data quality: A survey of data quality
dimensions. In Proceedings of the 2012 International Conference on Information Retrieval and Knowledge Management, Kuala
Lumpur, Malaysia, 13–15 March 2012; pp. 300–304. [CrossRef]

25. Lee, Y.W.; Strong, D.M.; Kahn, B.K.; Wang, R.Y. AIMQ: A methodology for information quality assessment. Inf. Manag. 2002,
40, 133–146. [CrossRef]

26. Kuemper, D.; Iggena, T.; Toenjes, R.; Pulvermueller, E. Valid.IoT. In Proceedings of the 9th ACM Multimedia Systems Conference,
Amsterdam, The Netherlands, 12–15 June 2018; pp. 294–303. [CrossRef]

27. Tsai, F.K.; Chen, C.C.; Chen, T.F.; Lin, T.J. Sensor Abnormal Detection and Recovery Using Machine Learning for IoT Sensing
Systems. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA),
Tokyo, Japan, 12–15 April 2019; pp. 501–505. [CrossRef]

28. Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 704504. [CrossRef]
29. Durrant-Whyte, H.F. Sensor Models and Multisensor Integration. Int. J. Robot. Res. 1988, 7, 97–113. [CrossRef]
30. Luo, R.C.; Yih, C.C.; Su, K.L. Multisensor fusion and integration: Approaches, applications, and future research directions. IEEE

Sens. J. 2002, 2, 107–119. [CrossRef]
31. Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamic Systems; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011.

[CrossRef]
32. Nandi, S.; Kundu, D. Asymptotic properties of the least squares estimators of the parameters of the chirp signals. Ann. Inst. Stat.

Math. 2004, 56, 52–544. [CrossRef]
33. Gao, S.; Zhong, Y.; Li, W. Random weighting method for multisensor data fusion. IEEE Sens. J. 2011, 11, 1955–1961. [CrossRef]
34. Hall, D.L.; McMullen, S.A.H. Mathematical Techniques in Multisensor Data Fusion; Artech House: New York, NY, USA, 2004.
35. Liao, Y.H.; Chou, J.C. Weighted Data Fusion Use for Ruthenium Dioxide Thin Film pH Array Electrodes. IEEE Sens. J. 2009, 9,

842–848. [CrossRef]
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