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Abstract: Most deep-learning-based object detection algorithms exhibit low speeds and accuracy
in gear surface defect detection due to their high computational costs and complex structures. To
solve this problem, a lightweight model for gear surface defect detection, namely STMS-YOLOv5,
is proposed in this paper. Firstly, the ShuffleNetv2 module is employed as the backbone to reduce
the giga floating-point operations per second and the number of parameters. Secondly, transposed
convolution upsampling is used to enhance the learning capability of the network. Thirdly, the
max efficient channel attention mechanism is embedded in the neck to compensate for the accuracy
loss caused by the lightweight backbone. Finally, the SIOU_Loss is adopted as the bounding box
regression loss function in the prediction part to speed up the model convergence. Experiments
show that STMS-YOLOv5 achieves frames per second of 130.4 and 133.5 on the gear and NEU-DET
steel surface defect datasets, respectively. The number of parameters and GFLOPs are reduced by
44.4% and 50.31%, respectively, while the mAP@0.5 reaches 98.6% and 73.5%, respectively. Extensive
ablation and comparative experiments validate the effectiveness and generalization capability of the
model in industrial defect detection.

Keywords: gear defect detection; lightweight network; attention mechanism

1. Introduction

Gears, which are widely used as transmission components, generally have various
defects on their surfaces, caused by their complex and numerous manufacturing processes.
These surface defects can seriously affect their performance and service lives. Therefore,
gear surface defect detection before leaving the factory becomes particularly significant.

The detection of gear surface defects usually comprises manual inspection. However,
manual detection methods are heavily dependent on skilled technicians and prone to
unevenness in accuracy. Moreover, the human cost is becoming increasingly high for gear
manufacturers due to the decrease in the labor force. Thus, traditional machine-vision-
based detection methods have emerged to replace manual inspection. These methods
usually use traditional image processing techniques, such as edge detection [1] and image
filtering [2], to extract the features of the gear surface. Then, classification techniques such
as support vector machines (SVM) [3] and multilayer perceptron (MLP) [4] are employed
for defect classification. Nevertheless, these methods are not widely used in actual gear
surface defect detection due to their slow detection speeds, poor robustness, and the poor
generalization ability of the manually designed features.
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With the continuous advancement of convolutional neural networks (CNN) and the
steady improvements in computer performance, deep-learning-based methods are rapidly
developing in the surface defect detection field. An object detection network based on
deep learning can accurately and precisely identify the location and category of a surface
defect. YOLOv5, as a mature algorithm in the YOLO [5] series, has superior, comprehensive
performance and many application cases in the industrial defect detection field. However,
there are some challenges when directly applying YOLOv5 to gear surface defect detection:
the brightness, type, and size of surface defects are inconsistent, since gear surface defects
are affected by various external factors during the production process, which makes it
difficult to detect subtle defects. Although the detection accuracy has been improved
in some cases, the number of parameters, the giga floating-point operations per second
(GFLOPs), and the model complexity are relatively large, which results in a low detection
speed. Although some lightweight models can effectively reduce the number of model
parameters and the computational costs, they cause a loss of accuracy. The balance between
accuracy and speed needs to be carefully considered.

To solve the above issues, this paper proposes a YOLOv5-based lightweight gear
surface defect detection model named STMS-YOLOv5, which can effectively detect three
types of gear surface defects (break, lack, and scratch). The principal contributions of this
paper are as follows:

(1) The lightweight ShuffleNetv2 architecture is used as the backbone to replace the
CSP architecture of YOLOv5, reducing the GFLOPs and the number of parameters.
Transposed convolution upsampling is adopted to achieve semantic-level upsampling,
which further reduces the parameters of the model.

(2) The max efficient channel attention (MECA) mechanism is embedded in the neck to
extract the critical information adaptively and enhance the multi-scale feature fusion.
In addition, the Mosaic data augmentation strategy is utilized during training to
enhance the dataset and improve the efficiency of the model training.

(3) Through comparison experiments with other mainstream models, it is proven that
the model in this paper is effective in detecting gear defects. The detection effect of
the improved model is demonstrated on a public industrial dataset (NEU-DET) [6],
which verifies the generalization ability and robustness of the model.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3
outlines the architecture of the YOLOv5 network. Section 4 introduces the STMS-YOLOv5
algorithm. Section 5 analyzes and discusses the experimental results. Finally, Section 6
presents the conclusions and future work.

2. Related Work

In recent years, with the powerful feature extraction ability of CNNs and the abil-
ity to characterize high-dimensional data, deep-learning-based methods have gradually
dominated the industrial surface defect detection field, providing a basis for accurate
industrial defect detection. The deep-learning-based object detection algorithms are mainly
divided into two categories: (1) two-stage object detection algorithms, e.g., R-CNN [7],
Fast R-CNN [8], and Faster R-CNN [9], and (2) one-stage object detection algorithms,
e.g., SSD [10], YOLOv3 [11], YOLOv4 [12], and YOLOv5. The main difference between
the two types of networks is that the two-stage network first needs to generate candidate
boxes that may contain defects before object detection, while the one-stage network directly
utilizes the features extracted from the network to predict the locations and classes of
defects at the same time.

Chen et al. [13] fused the feature pyramid network (FPN) on the basis of Faster-RCNN
and introduced a new visual attention mechanism (SPAM) in the backbone network to
achieve the accurate detection of weld defects. Chen et al. [14] recombined ResNet-50 and
deformable convolution as the backbone feature extraction network for Faster-RCNN to
improve the detection performance of the algorithm for small targets, and they achieved an
mAP of 93.72% on the weld defect dataset. Hu et al. [15] adopted ResNet50 as the backbone
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of Faster R-CNN to improve the detection of small surface defects on PCBs. Simultaneously,
the basic residual units were replaced by the ShuffleNetV2 residual units to reduce the
network’s computational complexity. Chen et al. [16] introduced the optimized Gabor
filter into the Faster R-CNN detection network. At the same time, a two-stage training
method based on genetic algorithm and backpropagation was designed to achieve the high-
precision detection of fabric surface defects. Chen et al. [17] used the deep residual network
Res2Net to enhance the original backbone network and improve the feature extraction
ability. The weighted feature fusion module was used to improve the detection performance
of small-target welding defects. Zhang et al. [18] used EfficientNet-B0 as the feature
extraction network of Mask RCNN, improved the BiFPN structure, and added a CBAM
attention mechanism to the branch. Although this method improves the accuracy of steel
defect detection, the number of parameters is relatively large. Furthermore, although the
above two-stage detection methods improve the detection accuracy, they typically require
more detection time than one-stage detection algorithms. Therefore, two-stage detection
algorithms have difficulty in meeting the real-time needs of industrial detection.

In the domain of industrial defect detection, compared with two-stage target detection
algorithms, one-stage target detection algorithms are more commonly used because of their
higher detection speeds. Chen et al. [19] replaced Darknet-53 with DenseNet-121 as the
backbone of YOLOv3 for feature extraction and used the Taguchi method for the sensitivity
analysis of the hyperparameters. The tested mAP was 14.98% higher than that of the tradi-
tional YOLOv3. Qi et al. [20] used a linear bottleneck structure with an inverted residual as
the backbone of YOLOv3-Tiny to efficiently extract the features of track fastener defects.
Deep convolution and pointwise convolution were utilized to reduce the computational
complexity of the model. Su et al. [21] combined depthwise separable convolution with
ResNet-34 as the feature extraction backbone network for YOLOv3, achieving the real-time
detection of metal gear cross-sectional defects. The above-mentioned methods all redesign
the backbone feature extraction network of YOLOv3 to achieve the precise detection of
defect types. Han et al. [22] embedded a self-attention mechanism into the backbone of
Tiny-YOLOv4 and added the efficient channel attention neural network (ECA-Net) into
the FPN network, which significantly reduced the complexity of the original YOLOv4
algorithm and achieved the real-time detection of insulator defects. Ma et al. [23] integrated
depthwise separable convolution and dual-channel attention modules as the backbone
network of YOLOv4, reducing the network size. The above method uses lightweight
modules to redesign the backbone feature extraction network of YOLOv4, achieving the
real-time detection of defective targets. Hu et al. [24] embedded the CBAM attention
module in the backbone network of YOLOv5 and proposed a fast spatial pooling pyramid
structure, SimSPPF, to speed up the operation of the model and reduce the amount of
computation while improving the feature extraction capability of the model. Lan et al. [25]
used the lightweight Ghost module as the backbone network of YOLOv5 and embedded
the CBAM attention mechanism into the neck network to improve the detection accu-
racy. Lang et al. [26] introduced the MobileNetV3 module as the backbone of YOLOv5
and replaced the SPPF module with the SE attention module to reduce the number of
parameters and computational complexity, thus accelerating the speed in the detection of
surface defects on magnetic rings. Wu et al. [27] used Ghost Conv and Ghost Bottleneck to
replace the traditional convolution and bottleneck CSP module in the backbone network
of YOLOv5, to reduce the number of model parameters. Shi et al. [28] decoupled the
large convolution kernels in the YOLOv5 network in channel and space and introduced
a lightweight coordinate attention module, reducing the number of model parameters.
Chen et al. [29] proposed a new type of industrial detection network based on the im-
provement of YOLOX, using the efficient channel attention (ECA) mechanism and adaptive
spatial feature fusion (ASFF) in the feature extraction network. The detection accuracy
of the model was improved when tested on public datasets in multiple industrial fields.
Table 1 presents some previous studies similar to our approach.
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Table 1. Summary of previous studies similar to our approach.

Method Year Key Features

Chen et al. [19] 2021 It used DenseNet-121 as the backbone of YOLOv3 for
feature extraction.

Han et al. [22] 2021 The self-attention mechanism was embedded into the backbone of
Tiny-YOLOv4.

Ma et al. [23] 2022 It integrated depthwise separable convolution and dual-channel
attention modules as the backbone network of YOLOv4.

Hu et al. [24] 2023 A fast spatial pooling pyramid structure (SimSPPF) was proposed
to speed up the operation of YOLOv5.

Lan et al. [25] 2022 The lightweight Ghost module was used as the backbone network
of YOLOv5.

Wu et al. [27] 2022
The Ghost Conv and Ghost Bottleneck was used to replace the
traditional convolution and bottleneck CSP module in the network
of YOLOv5.

Shi et al. [28] 2022
It decoupled the large convolution kernels in the YOLOv5 network
in channel and space and introduced a lightweight coordinate
attention module.

Chen et al. [29] 2023 A new type of industrial detection network based on the
improvement of YOLOX.

Based on the above work, some researchers have improved the detection accuracy
by enhancing the network performance. Nonetheless, the model parameters have also
increased, making it difficult to meet the requirements of real-time detection. Some re-
searchers have simplified the model by sacrificing the detection accuracy. To achieve a
balance between detection accuracy and speed and meet the requirements of gear surface
defect detection under limited hardware platform resources, a novel lightweight algorithm
for the detection of surface defects on gears, known as STMS-YOLOv5, has been developed.

3. YOLOv5 Object Detection Algorithm

YOLOv5 is a typical one-stage object detection algorithm proposed by the Ultralytics
team in June 2020, which transforms the detection task into an end-to-end regression
problem. According to the depth and width of the network structure, YOLOv5 is divided
into four versions, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (s < m < l < x). For real-
time detection and easy deployment, this paper chooses the YOLOv5s network with the
smallest width and depth as the base model. The network structure of YOLOv5 is shown
in Figure 1, which consists of four parts: input, backbone, neck, and prediction.

Figure 1. YOLOv5 network structure.

The input component of YOLOv5 consists of three modules: Mosaic data enhancement,
adaptive anchor box calculation, and adaptive image scaling. Mosaic data enhancement
uses four images randomly scaled, cropped, and lined up for stitching. YOLOv5 embeds
the adaptive anchor box calculation function to adaptively calculate the best anchor box
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in different training sets. At the same time, adaptive image scaling reduces the amount of
calculation and improves the inference speed. By implementing Mosaic data augmentation,
adaptive image scaling, and adaptive anchor box calculation at the input stage, the accuracy
and robustness of object detection have been improved.

The backbone part is mainly responsible for extracting image features at different levels
of the image and consists of modules such as CBS, C3, and spatial pyramid pooling faster
(SPPF). The CBS layer consists of convolution, batch normalization, and activation functions.
The C3 module includes three standard convolution layers and multiple bottlenecks. SPPF
uses two pooling kernels, 5 × 5 and 1 × 1, which can increase the receptive field and enter
any image aspect ratio and dimension. The potential drawbacks when using the CBS, SPPF,
and C3 architectures in YOLOv5’s backbone include increased computational complexity
and memory usage, which lead to slower detection and increased resource requirements.
Therefore, to realize the light weight of the network model, this paper adopts ShuffleNetv2
as the backbone network.

The neck feature fusion network adopts the structure of the feature pyramid network
(FPN) [30] and path aggregation network (PAN) [31]. The FPN structure transfers distinc-
tive semantic features from the top feature maps to the bottom feature maps. The PAN
structure conveys robust localization features from the lower feature maps to the higher
feature maps. The FPN+PAN structure used in the neck of YOLOv5 can enhance feature
fusion and improve the detection accuracy by combining information from multiple scales
and resolutions.

The GIOU_Loss function is used as the bounding box loss function to solve the
problem of non-overlapping bounding boxes. Then, non-maximum suppression (NMS) is
used to further optimize the target detection frame in the prediction stage to obtain the best
size detection frame. For the GIOU_Loss function, convergence is slow in the horizontal
and vertical directions when two bounding boxes intersect. Therefore, this paper chooses
the SIOU_Loss function.

4. STMS-YOLOv5

In order to balance the speed and accuracy in gear surface defect detection, this paper
proposes a lightweight network named STMS-YOLOv5. Figure 2 illustrates the overall
structure of STMS-YOLOv5, which comprises three parts: the backbone for feature extrac-
tion, the neck for feature fusion, and the head for location and class prediction. To reduce
the number of model parameters and GFLOPs, ShuffleNetv2 is used as the backbone to
extract features. To compensate for the loss of accuracy caused by the lightweight Shuf-
fleNetv2 network, transposed convolution upsampling and MECA attention modules are
embedded in the FPN and PAN of the neck part. The transposed convolution upsampling
method can transfer the more distinctive features from the top feature maps to the bottom
feature maps. The MECA attention modules can adaptively extract essential information.
Finally, the SIOU_Loss function is used in the prediction layer to solve the problems of the
GIOU_Loss function and speed up the convergence of the model.

4.1. ShuffleNetv2-Based Backbone

ShuffleNetv2 [32] is a lightweight network proposed by Kuangshi Technology in
2018, specifically designed for embedded devices. Figure 3 shows the basic structure of
ShuffleNetv2, and block (a) and (b) correspond to Shuffle_Block (a) and Shuffle_Block (b)
in Figure 3. Conv is normal convolution, DWConv is depthwise convolution, BN is batch
normalization, ReLU is the activation function, Channel Split refers to channel splitting,
Concat refers to the splicing operation, and Channel Shuffle refers to channel shuffling.

Block (a) is a classical feature extraction module that partitions the input feature
channels into two groups by channel splitting. The left branch performs constant mapping
through shortcut connections to reduce fragmentation operations and speed up the model
training. The right branch uses three continuous convolutions to form an inverted residual
structure for feature extraction, ensuring that the input feature matrix and output feature
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matrix have the same number of channels, to minimize the memory access cost (MAC).
Subsequently, the features from the left and right branches are spliced and shuffled through
the channel shuffle operation to enable information exchange between the two branches.

Block (b) does not have the channel splitting operation but uses the DWConv with
stride = 2 in both branches to realize downsampling. Then, both branches employ the 1 × 1
convolution operation to ensure that the left and right branches have the same-sized feature
maps. Finally, as in block (a), the features of the left branch and right branch are concatenated
and shuffled together through the concatenation and channel shuffle operation.

Figure 2. STMS-YOLOv5 network structure.

Figure 3. ShuffleNetv2 basic module.

The backbone feature extraction network consists of the CBRM, Shuffle_Block (a),
and Shuffle_Block (b) modules. The CBRM module consists of a convolutional layer,
a batch normalization layer, a ReLU activation function, and a max pooling layer. The
ReLU activation function easily yields large gradients in the network training process.
Therefore, the ReLU activation function in CBRM is replaced by the ReLU6 activation
function. Using ReLU6 can limit the output range of the activation function and enhance
the stability and numerical stability of the model. The shuffle block replaces the pointwise
group convolution with a channel splitting operation, which avoids an increase in the
memory access cost. Moreover, this approach significantly reduces the computational
complexity and the number of parameters, making it suitable for deployment on hardware-
limited devices.
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4.2. Transposed Convolution Upsampling

This paper uses transposed convolution [33] to replace YOLOv5’s nearest neighbor
interpolation method for upsampling operations. Transposed convolution is a self-learning
upsampling method in the image feature space. Compared with nearest neighbor interpo-
lation, transposed convolution enables the optimization of its weights through network
training, which enhances the detection accuracy. Transposed convolution is formally equiv-
alent to the reverse gradient calculation of a convolution layer. The convolution kernel
performs an inner product operation on each element of the input sequentially and fi-
nally adds up each result to obtain the output of the transpose convolution. In this way,
the feature map can contain more semantic information, thereby improving the detection
performance of the model.

As is shown in Figure 4, assuming that the input feature map size is 2 × 2, a feature map
of size 4 × 4 is obtained after transposed convolution using a transposed convolution with a
kernel size of 3, stride of 1, and padding of 0 (kernel = k, stride = s, and padding = p). First,
we fill s − 1 = 0 rows and columns 0 between elements (equal to 0 without padding); then,
we fill k − p − 1 = 2 rows and columns 0 around the feature map and flip the convolution
kernel parameters up and down, and left and right, and finally perform normal convolution
(padding 0, step 1).

Figure 4. Transposed convolution.

Equations (1) and (2) are used to calculate the size of the feature map after the trans-
posed convolution operation.

Hout = (Hin − 1)× stride[0]− 2× padding[0] + kernel_size[0] (1)

Wout = (Win − 1)× stride[1]− 2× padding[1] + kernel_size[1] (2)

where stride [0] denotes stride in the height direction, padding [0] denotes padding in
the height direction, kernel_size [0] denotes kernel_size in the height direction, and the
index [1] denotes the width direction.

The transposed convolution is used to achieve upsampling because this process is
learnable, and high-resolution information can be fully recovered during the parameter
adjustment process. Transposed convolution can preserve more sharp boundaries than the
bilinear interpolation method and enhance the fidelity of the reconstructed features.

4.3. MECA Attention Mechanism

In order to better extract more important gear surface defect features, this paper
integrates the MECA attention module in the neck structure. The MECA attention module
is a lightweight and efficient channel attention module based on the ECA [34] attention
module. The attention mechanism endows the network with the capability to learn feature
weights autonomously. The network can focus on important information among many
inputs and effectively filter out irrelevant information, thereby addressing the potential
accuracy loss problem during the lightweight phase.
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The MECA attention module is shown in Figure 5, where X represents the input
feature map; H, W, and C represent the height, width, and channel number of the input
feature map; X̃ represents the output feature map; GAP represents global average pooling,
GMP represents global maximum pooling; σ is the activation function; and ⊗ denotes
element-by-element multiplication.

Figure 5. Structure of MECA attention module.

Firstly, the MECA attention module passes the input feature map through global
average pooling and global max pooling to obtain two 1 × 1 × C feature maps. Then,
it adds the two feature maps to obtain a 1 × 1 × C feature map and uses 1 × 1 convolu-
tion to learn the channel attention information. Finally, the obtained channel attention
information is multiplied with the original input feature map to obtain the final specific
channel attention feature map. The MECA attention module effectively captures informa-
tion from cross-channel interactions, allowing the network to locate and identify object
areas more accurately.

As shown in Equation (3), there is a mapping relationship between the convolution
kernel size (k) and the number of channels (C).

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(3)

Here, ‖odd indicates that only odd numbers can be taken, γ and b are set to 2 and 1,
respectively, to adjust the ratio between the number of channels (C) and the convolution
kernel size (k).

Global average pooling, which provides feedback for each pixel on the feature map,
is utilized in the MECA attention mechanism. Global average pooling can aggregate the
channel information of feature maps to achieve information sharing. The MECA attention
mechanism can improve the capability of detecting objects with different scales, which
reduces the rate of missed detection and compensates for the accuracy loss caused by the
model’s light weight.

4.4. SIOU_Loss Function

The loss function of YOLOv5 consists of three parts: classification loss, bounding box
loss, and confidence loss. The GIOU_Loss [35] function is used to calculate the bounding
box loss.

The GIOU_Loss function adopts the method of first expanding the area of the union
and then optimizing the IOU [36]. For any two bounding boxes A and B, first, we find the
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minimum bounding box C that can cover them; then, the GIOU_Loss function is defined
by Equations (4) and (5):

GIOU = IOU − C− (A ∪ B)
C

(4)

LGIOU = 1− GIOU (5)

However, as shown in Figure 6, the GIOU is degraded to the IOU when the pre-
diction box contains the actual box. Moreover, the convergence speed is slow in the
horizontal and vertical directions when the two boxes intersect. This will lead to inaccurate
detection results.

Figure 6. GIOU degraded to IOU.

To solve this issue, the SIOU_Loss [37] is used to replace the GIOU_Loss. The SIOU_Loss
function redefines the distance loss by considering the vector angle between the required
regressions, which can effectively reduce the degree of freedom of regression, speed up
network convergence, and improve the regression accuracy.

The SIOU_Loss function consists of four cost functions, namely the angle cost, distance
cost, shape cost, and IOU cost.

The angle cost allows the prediction box to move well to the nearest axis, and it is
defined as

Λ = 1− 2 sin2(arcsin(x)− π

4
) (6)

The distance loss is redefined based on the angle loss, and it is defined as

∆ = ∑t=x,y(1− e−γρt) (7)

where ρx =

(
bgt

cx−bcx
cw

)2
, ρy =

(
bgt

cy−bcy
ch

)2

, γ = 2−Λ.

The definition of the shape cost is as follows:

Ω = ∑t=w,h(1− e−ωt)θ (8)

where ωw = |w−wgt|
max(w,wgt)

, ωh = |h−hgt|
max(h,hgt)

.
Figure 7 shows the calculation method of the IOU loss function.

Figure 7. IOU calculation method.



Sensors 2023, 23, 5992 10 of 17

Finally, the SIOU_Loss function is defined as

LSIOU = 1− IOU +
∆ + Ω

2
(9)

SIOU_Loss introduces an angle loss factor to reduce the degree of regression freedom,
which can accelerate the convergence of the network and improve the detection accuracy.

5. Experiments and Results
5.1. Experimental Environment

The hardware platform used in this experiment is as follows: Intel Xeon Processor
(Icelake) CPU, 32 GB memory, Nvidia A100-SXM4 GPU, 40 GB memory. The software
environment is as follows: CUDA version 11.4, Python 3.7, and PyTorch 1.10.0 as the deep
learning framework.

5.2. Dataset and Data Pre-Processing

The gear dataset is provided by Guizhou University [38], and it has 3000 images
with a size of 800 × 600 pixels and contains three defect types, i.e., break(1000), lack(1000),
and scratch(1000).

The LabelImg tool [39] is employed to annotate the gear surface defect dataset. Subse-
quently, the dataset is divided randomly at a ratio of 8:2 to obtain the training (2400 images)
and test (600 images) datasets, respectively. Then, the Mosaic9 data enhancement method is
used to reduce overfitting during network training and improve the network’s generaliza-
tion capability. The Mosaic9 data enhancement method randomly crops, scales, arranges,
and stitches nine images into one image.

5.3. Model Training and Evaluation

The SGD is used as the optimizer, with a weight decay of 0.0005 and momentum
of 0.937. The warm-up method is used to initialize the learning rate, and the cosine
annealing algorithm is adopted to update the learning rate. The size of the input image is
640 × 640 pixels, the batch size is 128, and the initial learning rate is 0.01. The total number
of training epochs is 300.

This paper uses the mAP, model parameters, GFLOPs, FPS, and weight size to evaluate
the proposed model.

The mAP is calculated by the following formula:

mAP =
1
N

N

∑
i=1

AP (10)

where N represents n classifications and AP represents the average precision, which is
calculated as shown in Equation (11):

AP =
∫ 1

0
P(R) dR (11)

where P denotes precision and R denotes recall, which is calculated as shown in Equation (12):

P =
TP

TP + FP
R =

TP
TP + FN

(12)

True positive (TP) denotes the number of positive samples that are correctly predicted
as positive, false positive (FP) represents the number of negative samples that are incorrectly
predicted as positive, and false negative (FN) denotes the number of positive samples that
are mistakenly predicted as negative.

5.4. Ablation Experiments

The ablation experiments are utilized to evaluate the impact of network structure
changes. Five sets of ablation experiments are conducted and the results are presented
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in Table 2. In the ablation experiment, this paper abbreviates the ShuffleNetv2 backbone
network as S, the TransposeConv upsampling as T, the MECA attention module as M,
and the SIOU_Loss function as S.

Table 2. Ablation experiments on gear dataset.

Model S T M S mAP@0.5/% Parameters/106 GFLOPs/109 FPS Weight Size/MB

YOLOv5 97.8 7.2 16.3 92.6 14.5
S-YOLOv5

√
97.1 3.8 8.0 129.4 8.0

ST-YOLOv5
√ √

97.3 3.7 8.1 132.7 8.3
STM-YOLOV5

√ √ √
98.4 4.0 8.2 130.3 8.4

STMS-YOLOv5
√ √ √ √

98.6 4.0 8.1 130.4 8.4

As can be seen from Table 2, compared with the YOLOv5 model, the GFLOPs and
parameter quantities of S-YOLOv5 are reduced by 50.92% and 47.22%, respectively, and the
FPS is increased by 39.74%, which shows that ShuffleNetv2 as the backbone feature ex-
traction network realizes a light weight and improves the detection speed. Compared
with S-YOLOv5, the mAP of ST-YOLOv5 is increased by 0.2%, and the FPS is improved by
3.3, which confirms that the transposed convolution upsampling can further improve the
detection speed and accuracy of the model. Compared with ST-YOLOv5, the mAP of STM-
YOLOv5 is increased by 1.1%, which confirms that the MECA attention mechanism can
improve the detection accuracy more efficiently. Compared with STM-YOLOv5, the mAP
of STMS-YOLOv5 is improved by 0.2%, respectively. Finally, compared with the original
YOLOv5 model, the GFLOPs, parameter number, and model weight of STMS-YOLOv5 are
reduced by 50.31%, 44.44%, and 42.07%, respectively, while the mAP and FPS are increased
by 0.8% and 40.82%, respectively. All the above analyses show that the proposed model
achieves high detection accuracy as well as a fast detection speed.

Figure 8 shows the PR curve graph when the IOU threshold is 0.5. The area between
the curve and the abscissa represents the AP of the category. The closer the curve is to the
upper right corner, the higher the AP value and the better the detection effect. As shown in
Figure 8, the AP value of scratch is 97.3%, the AP value of break is 99.0%, and the AP value
of lack is 99.5%. Thus, it shows that the proposed model can accurately identify the three
types of defects on the gear surface.

Figure 8. PR with IOU threshold of 0.5.

To verify the generalization ability of the proposed model, the publicly available NEU-
DET steel surface defect dataset is used for an ablation experiment. The NEU-DET dataset
contains a total of 1800 pictures and 6 categories (crazing, inclusion, patches, pitted_surface,
rolled-in_scale, and scratches). The results of the ablation experiment are shown in Table 3.
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Table 3. Ablation experiment on NEU-DET dataset.

Model mAP@0.5/% Parameters/106 GFLOPs/109 FPS

YOLOv5s 72.6 7.2 16.3 100.2
S-YOLOv5s 71.9 3.8 8.0 132.5

ST-YOLOv5s 72.3 3.7 8.1 136.4
STM-YOLOv5s 73.2 4.0 8.2 133.5

STMS-YOLOv5s 73.5 4.0 8.1 133.5

As shown in Table 3, the adoption of ShuffleNetv2 results in a 32.3 increase in the
FPS but a 0.7 decrease in the mAP. The transposed convolution upsampling and MECA
attention mechanism improve the mAP, compensating for the accuracy loss incurred by
ShuffleNetv2. The final STMS-YOLOv5s model increases the mAP by 0.9 and the FPS by
33.3, as well as reducing the number of parameters and GFLOPs by 44.44% and 50.31%,
respectively, which proves the generalization ability of the proposed model.

5.5. Comparison Experiments

For comparison with the ShuffleNetv2-based backbone, some lightweight networks,
e.g., MobileNetv3 [40], EfficientNet [41], and GhostNet [42], are employed as the backbone
of the YOLOv5s model, with the remainder of the network left unaltered. The experimental
results are presented in Table 4. As shown in Table 4, when compared to other lightweight
network models, ShuffleNetv2 can significantly reduce the number of parameters and
model complexity without causing a significant loss of accuracy.

Table 4. Experimental comparisons of different backbones.

Model mAP@0.5/% Parameters/106 GFLOPs/109 Weight Size/MB

YOLOv5s 97.8 7.2 16.3 14.5
YOLOv5s + MobileNetv3 97.3 4.3 9.4 8.7
YOLOv5s + EfficientNet 96.2 4.9 10.3 12.0

YOLOv5s + GhostNet 95.4 5.4 13.6 12.8
Ours 97.1 3.8 8.0 8.0

To verify the effectiveness of introducing the MECA attention mechanism, the MECA
attention mechanism is added to the ST-YOLOv5 model and compared with the addition
of the SE [43], ECA, and CBAM [44] attention modules. The experimental results are
presented in Table 5, which indicates that the MECA attention mechanism achieves the
maximum accuracy gain.

Table 5. Experimental comparisons of different attention mechanisms.

Model mAP@0.5/% Parameters/106 GFLOPs/109 FPS

ST-YOLOv5s 97.3 3.7 8.1 128.7
ST-YOLOv5s + SE 97.9 3.8 8.1 126.4

ST-YOLOv5s + ECA 98.0 3.8 8.1 125.8
ST-YOLOv5s + CBAM 98.2 3.9 8.2 125.2
ST-YOLOv5s + MECA 98.4 4.0 8.2 124.3

In order to verify the effectiveness of using the SIOU_Loss function, the SIOU_Loss
function is used in the STM-YOLOv5 model and compared with the EIOU, GIOU, and CIOU
loss functions. For a fair comparison, the loss value and mAP at the 249th epoch of the
above loss functions were selected for comparative analysis, as shown in Table 6. The
SIOU_Loss has the minimum value and achieves the maxmum mAP, which verifies the
effectiveness of the improved loss function.
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Table 6. Experimental comparisons of different loss functions.

Model mAP@0.5/% Parameters/106 Weight Size/MB Loss

STM-YOLOv5s + GIOU 98.4 4.0 8.4 0.025922
STM-YOLOv5s + CIOU 98.0 4.0 8.4 0.026942
STM-YOLOv5s + EIOU 97.7 4.0 8.4 0.027605
STM-YOLOv5s + SIOU 98.6 4.0 8.4 0.024837

To evaluate the overall performance of the proposed STMS-YOLOv5 model in terms
of detection accuracy, computational complexity, and model size on the gear surface defect
dataset, we compare it with four other models, i.e., Faster R-CNN, YOLOv3, YOLOv4,
and YOLOv5s. The results are shown in Table 7. It can be seen that the STMS-YOLOv5
model proposed in this paper is superior to the other four algorithms in terms of all
evaluation indicators. The size of the STMS-YOLOv5 model is only 8.5MB, and the number
of parameters is only 4.1M, but the mAP is as high as 98.6%.

Table 7. Comparison of experimental results.

Model mAP@0.5/% Parameters/106 GFLOPs/109 Weight Size/MB

Faster R-CNN 94.1 60.6 180.3 108.9
YOLOv3 93.2 61.5 152.6 117.4
YOLOv4 91.5 52.5 112.4 98.7
YOLOv5s 98.2 7.2 16.3 14.5

Ours 98.6 4.1 8.1 8.5

Figure 9 shows the mAP@0.5 comparison curve of STMS-YOLOv5 and the other four
models. As can be seen from the graph, STMS-YOLOv5 converges rapidly due to the
adoption of the SIOU_Loss function. Although STMS-YOLOv5 has undergone lightweight
processing, due to the addition of the MECA attention mechanism, the mAP does not
decrease but increases slightly.

Figure 9. mAP with IOU threshold of 0.5.

Figure 10 presents the detection results for three categories of gear defects on the
YOLOv5s and STMS-YOLOv5 models. As shown in Figure 10, the proposed STMS-YOLOv5
model provides more comprehensive detection of defects in the gear surface, including
break, lack, and scratch. The confidence scores of the detected defect categories are higher
than those of the original YOLOv5s model, which fully demonstrates the excellent detection
performance of STMS-YOLOv5.
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Figure 10. Gear detection results. (a) The original gear images. (b) The detection results of YOLOv5s.
(c) The detection results of STMS-YOLOv5.

To validate the performance of the proposed model on real gears, we collected 100 real
gear images from the workshop. The final detection result is shown in Figure 11. STMS-
YOLOv5 has better detection accuracy than the YOLOv5s model in all categories. In
particular, the scratch defect can be more easily detected by STMS-YOLOv5.

Figure 11. Real gear detection results. (a) The original gear images. (b) The detection results of
YOLOv5s. (c) The detection results of STMS-YOLOv5.
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6. Conclusions

This paper proposes a lightweight network architecture called STMS-YOLOv5 to
address the trade-off between detection speed and accuracy in existing models for gear
surface defect detection. The network utilizes the lightweight ShuffleNetv2 structure as the
backbone for feature extraction, reducing the model complexity. Then, the network uses
transposed convolution for upsampling operations to enhance the model’s learning capa-
bility. Furthermore, to compensate for the decreased accuracy caused by the lightweight
backbone, the MECA attention mechanism is integrated into the neck structure. Lastly,
the SIOU_Loss function is employed in the detection head section to accelerate the model’s
convergence speed. The results of the ablation and comparative experiments indicate
that our proposed method achieves an FPS of 130.4 and 133.5 on the gear and NEU-DET
steel surface defect datasets, respectively. The number of parameters and GFLOPs are
reduced by 44.4% and 50.31%, respectively, while the mAP@0.5 is improved by 0.8 and 0.9,
respectively. Compared to other object detection algorithms, STMS-YOLOv5 demonstrates
higher detection accuracy while ensuring a fast detection speed and controlling the model
size. It effectively addresses the issue of missed detection in gear surface defect detection
tasks, further confirming the strong generalization capability of the proposed algorithm in
this paper.

In future research, we will expand the gear defect dataset to more comprehensively
evaluate and validate the applicability of our proposed method. In terms of methods, we
will explore techniques such as model pruning and knowledge distillation and continue to
attempt lightweight processing to enhance the detection speed of our model.
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