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Abstract: Individual cells have many unique properties that can be quantified to develop a holistic
understanding of a population. This can include understanding population characteristics, identifying
subpopulations, or elucidating outlier characteristics that may be indicators of disease. Electrical
impedance measurements are rapid and label-free for the monitoring of single cells and generate
large datasets of many cells at single or multiple frequencies. To increase the accuracy and sensitivity
of measurements and define the relationships between impedance and biological features, many
electrical measurement systems have incorporated machine learning (ML) paradigms for control
and analysis. Considering the difficulty capturing complex relationships using traditional modelling
and statistical methods due to population heterogeneity, ML offers an exciting approach to the
systemic collection and analysis of electrical properties in a data-driven way. In this work, we
discuss incorporation of ML to improve the field of electrical single cell analysis by addressing the
design challenges to manipulate single cells and sophisticated analysis of electrical properties that
distinguish cellular changes. Looking forward, we emphasize the opportunity to build on integrated
systems to address common challenges in data quality and generalizability to save time and resources
at every step in electrical measurement of single cells.

Keywords: machine learning; electrical sensing; single-cell analysis; impedance cytometry; impedance
spectroscopy

1. Introduction
1.1. Motivation to Measure Single Cells

The uniqueness of gene expression and phenotype is inherent in any biological system
and generates the variation of function necessary to maintain homeostasis in our cells
and bodies. Recent work in the field of healthcare has sought to address the need to
personalize medicine and design diagnostics that are flexible and sensitive to variations
between patients and between individual cells making up a single system, especially
in the context of resource-limited areas [1,2]. For example, there is a need to identify
circulating tumor cells (CTCs) from the other cells that make up the composition of a blood
sample to predict cancer prognosis [3]. While size can act as a preliminary method for
isolating certain components of blood, more complex methods are needed to tease apart the
identity and origin of CTCs from cells with similar size [4]. Even within a single organ, the
population of cells is composed of individuals, each with unique genetic and physiological
properties. For this reason, the measurement of single cells and analysis of population
heterogeneity has become a focus of modern diagnostics research. Beyond the expansion of
technology into resource-limited areas, the movement towards personalized healthcare has
been essential in identifying the benefits of single-cell analysis. A review from Tavakoli et al.
describes the way recent advances in microfluidics have empowered the study of single-cell
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applications in the context of cancer understanding, diagnosis, therapy, highlighting the
necessity of individual measurements [5]. Similar efforts studying other diseases have used
microfluidics to isolate and genetically analyze single cells while reducing the equipment
and footprint necessary [6,7].

Cellular heterogeneity comes from variations in genetics or expression that can be
caused by random mutations or as a response to environmental factors. Heterogeneity
poses many challenges for both measurement processes and the design of analytical systems.
A single cell measurement system must have the sensitivity to capture specific small-scale
changes, sufficient data features, and a sample size to detect these nuances. Similarly,
an analytical system needs the capability to handle a large volume of data and often
requires more sophisticated approaches than purely statistical analysis. When studying a
population of single cells, data tends to be more dispersed, rather than the cleanly defined
data belonging to less heterogeneous systems. In the study of cellular populations, it
is important to have the ability to identify not just important features and trends, but
also determine standout or outlier cells in a population that may not be representative
of the whole [8,9]. When looking at consistent and integrative methods to generate such
data rapidly and with minimal resources, a natural choice is evaluation of the cellular
electrical properties.

1.2. High-Throughput Electrical Measurement

For the evaluation of single cells making up a larger population, the necessary number
of measurements is limited by the techniques used to manipulate the cells physically
and measure their properties. Electrical impedance measurements using microfluidic
channels has become a popular mechanism for single-cell handling because of the ability
to design precise control of the cell measurement location and due the rapid nature of the
electrical signal acquisition [10,11]. These systems also have the potential to add physical,
chemical and immunological cell property measurements using optical systems, and to
probe mechanical, inertial and adhesive characteristics through microfluidic designs for a
rapid and multi-faceted approach to characterization [12]. Although methods exist to look
at individual cell properties using optical and genetic profiling techniques, these techniques
are less diagnostically accessible than electrical cell profiling. Electrical characterization has
the benefit of not requiring label molecules, rapid sample preparation and measurement,
and low-profile devices that are easily translatable to point-of-care purposes. Although
the electrical measurements tend to give less specific information, the variety of available
experimental parameters and variables is ideal for the incorporation of machine learning
algorithm adoption.

The inclusion of multiple types of electronic sensor designs generates highly tunable
systems which can maximize the multi-frequency information obtained from each cell
during its travel in the channel [13]. Additionally, microfluidic systems have been used to
isolate chambers for simultaneous measurements of multiple samples at a time. Lopez et al.,
reported a multi-cell sensor capable of measuring constant current stimulation, constant
voltage stimulation, and impedance spectroscopy on roughly 16,500 input electrodes with
integrated analysis [14]. The combination of electrical measurement and microfluidics is
paramount for the development of lab-on-a-chip devices that can incorporate the handling,
measurement, and analysis of samples on a small footprint. Such integrative devices
have gained popularity as accessibility has become a goal in the healthcare field because
they have the potential to function in areas lacking resources in infrastructure, personnel,
or consumables.

1.3. Machine Learning Applications in Studying Complex Variable Relationships

Because cell individuality can influence a variety of cell properties and processes
as summarized in Figure 1, analysis can require spatial, temporal, or multimodal data.
The data required to capture deep understanding of a population lends itself to machine
learning as an analytical tool, especially in conditions with many input modalities or when
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comparing highly overlapping population changes. Machine learning is the study of learn-
ing processes and application of computer-based modeling to fit and predict trends in large
datasets [15]. Exemplifying the capability for machine learning to address the challenges
associated with single cells, Chien et al., showed that single cells with highly overlapping
electrical opacity can be distinguished visually using clustering and population distribution
even with no significant difference by statistical analysis, demonstrating the capabilities of
clustering algorithm or principal component analysis to find new relationships in single-
cell data [16]. Traditional machine learning using feature selection, classification, or a
combination thereof can give information on both the most important features to identify
changes and subsequently inform future iterations of device designs.
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Beyond classical machine learning algorithms, multilayer artificial neural networks
can add layered decision-making processes to model more complex relationships, similar
to the way human neurons process information, using variable feature information and
context to generate understanding. Deep learning has expanded the capabilities of the
machine learning field to enable more adaptable algorithms using larger and more varied
sets of data. Deep learning incorporation is key to developing precision and individualized
medicine in a clinical setting as shown in previous work using biological measurements or
imaging data to predict disease state of an individual. Deep learning has also expanded past
the scientific fields to incorporation in our daily life in audio processing, facial recognition,
and data retrieval by search engines [17]. The benefit of its application in comparison
to traditional statistical methods is the ability to parse complex relationships between
many variables in applications like predicting human behavior and determining how the
combination of these variables contributes to an overall classification or outcome [18,19].
The trained model can often be used to generate optimized variable values or improve
visualizations to show distinctions in an otherwise convoluted dataset. For this reason,
neural networks are commonly applied to the study of single-cell characteristics making
up larger, often heavily overlapping populations [20–22]. As cellular measurements can
include larger amounts of data either in fluorescence at multiple wavelengths, optical
monitoring over periods of time, or genetic profiling of hundreds of genes, the need for
comprehensive analysis has grown. Both traditional models and neural networks are
adaptable and may be better applied when addressing specific requirements of model
performance or interpretability of results.

All machine learning paradigms are highly tunable to balance the computational load
of the model, time to run, and performance. Typically, multiple model types are applied
in a given study because although methods like logistic regression (LR), support vector
machines (SVM), and neural networks (NN) are most common, the accuracy performance
is often dataset dependent [23]. The models vary in algorithm complexity and transparency,
so based on the necessary computational time and sensitivity, model hyperparameters
can be tuned to accomplish the desired task. Beyond the classification of samples, models
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can focus on the selection of the most important features as a way to characterize the
variable relations. Feature selection methods can determine any correlation or redundancy
when examining a large feature set or improve the features given to an eventual prediction
model [24,25]. An overarching goal of any model is the ability to generalize or extend
its use to independent datasets. As such, there is a need to ensure a sample size large
enough to prevent overfitting, something easy to achieve using high-throughput single-cell
measurement systems.

In this review, we look to cover recent work joining the fields of electrical impedance
sensing and machine learning towards the development of more intelligent single-cell
diagnostic systems, as shown in Figure 2. To our knowledge, this is one of the first compre-
hensive looks at machine learning on electrical approaches to improve the standardization
and design process for singular cell measurement and analysis. Although machine learning
models make decisions based on governing equations, we intend to focus on the appli-
cations and would refer the reader to one of many textbooks on the subject [26]. Our
discussion includes the more explored method of machine learning as an analytical tool to
address common challenges with existing electrical measurement systems. In addition to
machine learning as an analytical tool, we cover systems where machine learning is used
as an iterative approach to achieve more rapid and cost-effective device development in
both microfluidics and sensors, making an argument for more single-cell applications in
this design field.
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2. Machine Learning for Electrical Sensor Data Analysis on Single Cells

Single cell measurements collected using electrical sensors typically fall into the
categories of cytometric or spectroscopic. Cytometric measurements reach high sample
numbers, however, are limited in the frequency features that can be collected while a cell
passes through the measurement gap and the interaction of a cell with a constant electrical
field is positionally dependent. Alternatively, spectroscopic measurements collect a larger
number of frequency features and properties, however the longer measurement and need
for cell trapping limits the number of cell samples. Machine learning is ideal in both cases
when compared to traditional statistical methods because of the adaptability to incorporate
and compensate for these confounding and limiting factors. In this section, we discuss the
ways ML can address the limitations of electrical measurement systems to improve the
ability to analytically distinguish between individual cells.

2.1. Positional Dependency Compensation

One of the factors most crucial in preventing overfitting and aiding the later gen-
eralization of machine learning algorithms is the large sample size necessary. For this
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reason, electrical impedance measurements in single-cell applications are overwhelmingly
conducted using impedance flow cytometry, which is closely related to the previously men-
tioned optical flow cytometry. However, because the principles of impedance modeling
typically rely on the assumption that the cell is subject to a uniform electrical field during
measurements, positional changes and size heterogeneity in a cell population can impact
accuracy. Considering the small magnitude of most cellular changes in an electrical system,
characterizing these confounding factors becomes integral for improving identification
of true properties of the cell versus the measurement system. A summary of recent work
using machine learning to compensate for the positional dependency of flow cytometry
measurements can be found in Table 1.

Table 1. Summary of recent publications using various ML methods to compensate for size and
positional dependency of flow cytometry measurements on single cells.

Learning Category ML Method Achieved Accuracy Application Citation

Deep Learning NARX NN 4.3 × 10−5

Normalized Mean Square Error
Predicting Particle Impedance and

Location in Sheath [27]

Supervised Linear Regression 37% improvement in
size distinction

Positional Dependency
Compensation and Size [28]

Supervised Random Forest 71.4% using size, deformability,
and polarization

Using position and size in addition
to electrical measurements to

enhance classification
[29]

Supervised Linear Regression Accuracy within 1.5 µm of
the height

Positional and size determination
using opacity and impedance [30]

Deep Learning RNN Within 0.09 µm for diameter, 2.2%
for velocity, 2.4% for position

Predicting cell X and Y position
based on properties of time

domain curve
[31]

Considering cytometric measurement limitations, several papers in recent years have
worked to establish correction factors to monitor cell location during measurement and
improve the classification of particles based on positional compensation. These methods
can either rely on the peak amplitude and spacing properties of the time domain cytometric
measurement [31] or extracted parameters calculated from the initial measurements, such
as opacity [28,30]. For these methods, the accuracy of the model is typically defined as the
closeness to the distributive values of the measured parameters. Work from Honrado et al.,
used a recursive neural network operated in real time to show that based on impedance
measurements, particle diameter could be predicted within 0.9 microns, velocity could be
predicted within 2.2%, and position could be predicted within 2.4% [31]. Machine learning
for this purpose can also assist in monitoring the ability of sheath flow to direct cells to
an optimal measurement location [27]. Inclusion of the size, positional, or biomechanical
properties of cells has been shown to improve the classification when considered as features
for cells of similar types. Apichitsopa et al., generated predictions for similar types of
leukemia cells using polarization at three frequencies, size, and deformability with an
overall accuracy of 71.4% classification. In this work, they showed that the inclusion
of the physical properties alongside the electrical properties improved the accuracy and
consistency of the predictions [29]. Based on the discussion presented, a variety of machine
learning methods can be used to predict and compensate for the positional dependence of
impedimetric flow cytometry readings, making the results of the measurement technique
more accurate and reproducible.

2.2. Analyzing Dielectric Parameters

One of the goals of multi-frequency electrical measurement is the determination of
internal cell properties, most commonly the dielectric properties of the cell membrane and
cytoplasm. Determination of these intrinsic properties is possible due to the differential
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scattering at various frequencies of electrical sinusoidal signals. Based on the work of Foster
and Schwan, it is well established that in biological cells and tissues, different compartments
dominate the signal at different frequencies [32,33]. In subsequent years, these scattering
properties have been further expanded to include specificity of cellular inferences that can
be made from each range of scattering [34,35]. Understanding dielectric properties combats
one of the main concerns about electrical measurement, which is the difficulty explaining
what exactly is causing the measured change within the cell to cause an electrical difference.
Dielectric properties can be determined through several methods, two of the most popular
of which are dielectrophoresis or impedance analysis.

Use of the principles of dielectrophoresis (DEP) is a common way to distinguish be-
tween cells with different dielectric properties, often without the need for circuit modelling.
Dielectrophoresis can determine a unique crossover frequency at which a repulsive or nega-
tive DEP signal response changes to an attractive or positive DEP signal response. Without
the use of models to differentiate between cell types, work in the DEP field has shown
the ability to distinguish stages in colon cancer models [36] and glioblastoma models [37].
Characterizing this unique frequency-based response change in different cell types and
in cells under different conditions including after differentiation or drug treatment, has
been extensively described in previous work [38]. DEP measurements have also been com-
bined with shell modelling as described in the next section to develop more interpretable
results and extract parameters of the nucleus [39]. Although discrimination is possible
independent of the dielectric property simulation, machine learning may help enhance
our understanding of the correlations between dielectric properties and the physiological
properties of different cell types.

Dielectric properties are determined using impedance measurements through a circuit
and shell model, wherein the cell is considered a combination of mixtures which can be
polarized with unique properties to define the membrane, cytoplasm, and nucleus. These
models are computationally intensive to run, especially in more complex multi-shell models
to examine the nucleus and it is often difficult to determine the appropriate parameters
for simulation. Despite the complexity of designing and fitting these models, it remains
important to expand the understanding of electrical spectroscopic measurements. Without
an understanding of dielectric properties, it is difficult to rationalize or justify a choice
to shift diagnosis, considering the lack of specificity to a particular intracellular target.
Applying an understanding of how electrical properties change with certain diseases
makes the attempts to classify cells less of a black box model, where only the inputs and
outputs are fully realized.

In the age of rapid diagnostics and high throughput, there is a need for similarly
improved speed in parameter extraction for both dielectrophoretic and impedance models.
Neural network models have been used to predict dielectric parameters in real-time for
individual cells based on raw impedance values in cytometric systems based on previous
simulation fittings [40]. In another work, similar neural network classification strate-
gies have been shown to quickly generate dielectric parameters as a precursor to a rapid
classification model to identify cell types. In this example, Tan et al. showed that cytomet-
ric constriction channels combined with a feedforward neural network can distinguish
different types of similarly size leukocyte cell lines based on four frequency impedance
values [41]. In another complex application of the neural network approach, Caselli et al.
applied a multi-layer recurrent neural network (RNN) for initial data segmentation fol-
lowed by a classification scheme using a multiple convolution neural network (CNN)
structure to identify red blood cells and nearly identical ghost red blood cells [42]. In this
work, impedance measurements at eight frequencies were evaluated to accurately predict
cell radius, membrane capacitance, cytoplasm permittivity, and cytoplasm conductivity
and classification using these parameters identified the cell types with an accuracy of 96.6%.
A comparative summary of these recent works can be found in Table 2.
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Table 2. Summary of recent work using various ML methods to predict dielectric parameters of
mammalian cells.

Learning Category ML Method Achieved Accuracy Application Citation

Shallow Learning FCN 94.6% Predicting dielectric parameters in
real-time to identify cell type [40]

Shallow Learning Feedforward NN 90.5%
Determining dielectric parameters in

constriction microchannel and identifying
cell type

[41]

Deep Learning RNN, CNN 96.6% Predicting dielectric parameters in real
time for classification [42]

Unsupervised KNN 98.9% Using Extracted Dielectric Parameters to
train classification model [43]

Alternatively, recent work from Tang et al. uses a maximum length sequence (MLS)
system to analyze 512 broadband frequency impedance measurements to calculate the
impedance magnitude and phase for each cell [43]. The most easily distinguished range of
frequency magnitude and phase were then analyzed using a k-Nearest Neighbor (KNN)
learning model to classify adenocarcinoma cells and white blood cells with an accuracy
of 98.9%. Based on the models discussed in this section, a variety of learning schemes
can be used to (1) improve the real-time identification of cells based on extrapolated
dielectric properties from limited frequency information and (2) improve classification
between groups based on measured dielectric properties to identify the most relevant
frequency regions.

2.3. Classification of Cell Differences

Remembering that the ultimate goal of most electrical impedance measurement sys-
tems is improving the speed, cost, and overall accessibility of diagnosis, one of the most
important challenges to address in a measurement system is the sensitivity to distinguish
populations. The applications of this can include identifying healthy from diseased cell
states [44–47], determining the proliferation of patient cells for clinical study [48,49], or
quantifying the response of cells to a potential treatment [50–52]. In each case, there exist
multiple populations representing different changes that can be difficult to determine, espe-
cially in cases where cells each have individual responses to treatment or levels of disease.
A summary of recent work identifying changes in cellular condition using various machine
learning methods for data analysis can be found in Table 3. The benefits of the methods
employed in this section are the reduced computational burden and time to prediction
saved by model training without circuit fitting.

Table 3. Summarized recent works applying various ML methods to identify cellular responses to
disease or treatment.

Data Type Learning
Category ML Method Achieved

Accuracy Application Citation

Impedance
Cytometry Supervised SVM 95.9% Identifying the efficacy of

drug treatment on cancer cells [53]

Impedance
Cytometry Unsupervised KNN 98.4%

Identify drug treatment
efficacy using electrical and
optical flow cytometry data

[50]

Impedance
Cytometry

Supervised, Deep
Learning

LR, KNN, DT,
SVM, RF, BPNN

91.7% using RF
and SVM

Distinguish cancerous and
healthy bladder cells [44]
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Table 3. Cont.

Data Type Learning
Category ML Method Achieved

Accuracy Application Citation

Electrical
Impedance

Spectroscopy
Supervised

QDA, SVM,
Ensemble Bagged

Tree

99.5% using
Ensemble Tree

Detecting Surface Protein in
Severe Endometriosis [45]

Electrical
Impedance

Spectroscopy
Shallow Learning LSTM RNN 91% Identifying proliferating and

differentiated patient cells [49]

Electrical
Impedance

Spectroscopy

Supervised,
Shallow Learning MLE, LDA, BPNN 100%

Identifying strains of
gram-negative bacteria that

commonly contaminate food
[46]

Impedance
Cytometry Supervised SVM 9.2% Detection

Error

Identification of
antibiotic-susceptible bacteria

in real time
[51]

Impedance
Cytometry Shallow Learning BPNN 98%

Identify MCF-7 cell with
treatments based on electrical

and biophysical properties
[52]

Impedance
Cytometry Unsupervised Clustering

1–3% Deviation
from True

Proportions

Identifying proportion of
blood cells in AML patients

and healthy controls
[48]

Impedance
Cytometry Supervised Gaussian SVM 99.8% Identify CTC from WBC in

focused serpentine channel [47]

Impedance
Cytometry Supervised LDA, SVM 91.2%

Distinction of PBMC’s in
mixed solution and cancer cell

lines
[54]

Impedance
Cytometry Shallow Learning FNN, RNN 84.9% and 91.2% Identifying subpopulations of

leukocytes [55]

Impedance
Cytometry Supervised

KNN, SVM, LR,
DT, AdaBoost,

Gaussian Naïve
Bayes

92.5%, 93.7%,
90.2%, 88.5%,
90.6%, 84.3%

Classifying response of
prostate tumor and cancer

associated fibroblasts to
treatment

[56]

The effectiveness of classification schemes typically relies on the data type and prepro-
cessing applied as well as the hyperparameters given to the model. The cyclical process
of optimizing a model for the data type and the evaluation required to make predictions
on new data can be seen schematically in Figure 3. The need for cyclical and thorough
evaluation of multiple methods and parameters in a given model is exemplified in work by
Jeong et al. wherein they compared the classification accuracy of normal and cancerous cells
using a micro-EIS device taking rapid cytometric measurements [44]. The work compared
the prediction accuracy of 5 different supervised machine learning schemes as well as a
deep learning structure, showing the best accuracy using RF and SVM. In applications
identifying the effects of drugs on cells using cytometry, measurements on the same cell
type can be difficult to differentiate, requiring processing to both generate appropriate
features from the initial signals and determine which features are most effective when given
to a classification model. The cyclical nature of these processing steps is readily exemplified
in the context of classifying the effectiveness of a treatment on cancer cells from Ahuja
et al. [53]. In this work, the change in signal amplitude at four frequencies became features
to train an SVM classifier and showed that when compared with traditional live/dead
staining using trypan blue, there was impressive correspondence between the two methods.
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There are three overarching machine learning approaches that have been applied to
address raw electrical population differences: unsupervised clustering, supervised learning
models, and neural networks, among others. The least computationally demanding of
these is clustering, an approach that can be either unsupervised for the purposes of visual-
ization or supervised to apply a classification using known data labels. Using a clustering
approach, cells become grouped based on proximity to a predicted central position in a
feature space. In a similar fashion, support vector machine models generate a decision-
making plane in a projected feature space and classify based on where new samples would
project to. Many of these classifications are done by artificial neural networks as mentioned
earlier, which model the decision-making process of human neurons wherein each node
gets multiple inputs and the output is established based on whether the weighted inputs
reach an established threshold [57]. ANNs are especially useful for learning hierarchies
and tackling more complex non-linear problems or feature relationships [57]. A recent pub-
lication distinguished leukocytes using FNN and RNN methods to separate populations
using impedance cytometry measurements and demonstrated an increase in classification
accuracy to 84.9% and 97.5%, respectively [55]. Considering the highly overlapping proper-
ties of these cell types, neural network flexibility and complexity made this subpopulation
analysis possible without the typical expensive and time-consuming processing. Artificial
neural networks can improve model flexibility and accuracy for complex fitting problems,
however they tend to be limited in interpretation, as they are generally approached as a
black box model.

The combined use of feature selection and classification together can provide insights
when sensitivity makes the separation of populations difficult. An example of this is
our previous work classifying cells in populations using electrical impedance data at
201 frequencies ranging from 9 kHz to 9 GHz to identify changes in nucleus size [58].
In this work, we found that the combination of feature selection using recursive feature
elimination (RFE) when combined with SVM both improved the accuracy of predictions
but also could identify the most relevant frequency features. The benefit of this is the ability
to distinguish the best frequency measurements to explain this highly variable spectra
change even in the highly overlapping populations, in which there is an inherent biological
variability. In this case, a less computationally demanding model was able to increase the
sensitivity of the overall analytical system to internal changes in impedance.

For work identifying the composition of cells in a solution, clustering or segmentation-
based learning methods are the most effective at partitioning the populations. Schütt et al.
showed that clustering methods can be used to identify the proportion of myeloblasts
compared to the regular blood proportions in samples from patients with acute myeloid
leukemia (AML) [48]. This rapid nano-impedance cytometer used impedance measure-
ments and peak analysis to compare the population proportion with results from several
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optical and electrical techniques including fluorescence-activated cell sorting (FACS) and
electrical impedance spectroscopy (EIS), among others. Through both feature selection and
classification methods, machine learning can assist in the identification of specific effects of
different treatments or classes of cells.

3. Machine Learning for Intelligent Design of Microfluidics and Sensors

A unique and emerging application of machine learning is to predict the performance
of new measurement paradigms and conditions to streamline the prototyping process. In
this way, less time and resources can be spent fabricating and characterizing sensors that
may not provide optimal results for the final measurement design [59]. In the process of
creating most microfluidic channels or sensing systems in general, there are many steps in
the production of a physical system based on a simulated design including characterizing
the size, surfaces, and the efficacy of any surface treatment. Machine learning can be
applied to the process of design to predict the outcome of certain variable changes without
the need to run the physical manifestation through an experiment. The application of this
overcomes traditional laboratory limitations in resources and time to develop a successful
design. In this section, we organize the history of machine learning driven design processes
in the tangential fields of microfluidics and electrical sensing to show the potential for
adopting these principles for single-cell problems. While machine learning for design
optimization has played a role in these adjacent fields, it remains largely untapped in single
cell analysis. Going forward, there may well be a place for the improvement of the design
processes to create and produce single-cell focused microfluidics for both manipulation
and analysis.

3.1. Microfluidics Design and Control

Microfluidic systems are integral for the study of single cells and the development of
diagnostic tools that are both rapid and portable. Machine learning can be either applied
to the design of these systems or automating the operation of specific fluidic control
components [60,61]. Using machine learning in the design of these systems often relies on
deep learning and the incorporation of some mathematical model, either based purely on
the governing equations of fluid dynamics or software simulation using a program like
COMSOL. The incorporation of machine learning is typically a function of reducing the
computational load necessary through repetitive simulation of various parameters in the
channel with examples typically including the flow rate, channel width, or protruding
features. It is also necessary to mention that a key benefit of automating these systems is
device translation between research settings so that similar devices and control systems
can be created for differing applications [62].

Machine learning and microfluidics have been combined in a variety of applications
in the field of medicine. Intelligent microfluidic design allows the simultaneous control and
analysis of more complex systems, which has been applied mostly in the realm of optical
characterization rather than electrical diagnostics. One example is the development of a
multiplexing assay to identify Lyme disease using a streamlined process to select relevant
antigens on an optically analyzed device [63]. In another instance, an applied assay based on
a digital microfluidic sensor was tuned by identifying the features to optimize a particular
reaction or yield in each channel. Notably, this was shown using both linear regression and
neural networks, showing that either model complexity can characterize and predict the
same outputs [64]. Similarly, in the study of bacteria, unique learning-based design systems
were used to automate the culture of thousands of microwells to monitor the growth of
genetically modified bacteria [65] and monitor the chemotaxis of members in a bacterial
community [66]. In addition to these, there have been efforts to incorporate quantitative
pharmacology methods into the more efficient design of organ-on-a-chip systems in which
systemic effects of circulation and bodily interactions are modeled on a small scale to better
predict the complex relationships between chambers [67,68]. The incorporation of various
analytical learning methods into the development of microfluidics promises to revolutionize
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all small-volume sensing applications, however, currently remains understudied in single-
cell electrical systems.

Considering that typically, single-cell electrical analysis systems involve the design of
microfluidics to isolate the individual cells over a particular sensing region there is a need
to incorporate machine learning based methodology to develop more integrated systems.
By using smart design choices to create standard practices, every part of the sensing
process including control, measurement, and the eventual processing of the impedance
measurements from the individual cells can be incorporated.

3.2. Electrical Sensor Design and Control

Parallel to the push to incorporate smarter design processes into the realm of mi-
crofluidics, electronic sensors are constantly moving to become smaller, faster, and more
accessible in the digital world. Inclusion of machine learning to design systems has been
emphasized as the critical next step to develop lab-on-a-chip sensors that are sized for
easy transport and user friendly enough to move into healthcare environments [69]. The
automated and improved design of commercial mechanical sensors has long been posited
as the solution to connecting the sensor with the monitored process, enabling more rapid
response to system changes and better data retrieval [70]. In this way, the investment using
machine learning at the beginning of the sensor production process can reap dividends
in its output incorporation within modern smart systems. While this has been shown in
biosensor design applications at several levels, the ML-directed design of single-cell sensors
has been slower to be adopted.

Machine learning incorporation into biosensor-based devices has been previously
reviewed for the analysis of biological molecules and tissues in several publications [71–73].
Recent highlights in the incorporation of machine learning designed devices includes the
work from Govindaraju et al., which identifies white blood cell count on a smartphone
integrated system for ease of measurement display [74]. Alternatively, machine learning
was used to both design the monitoring system and development of tissue growth on a
bioscaffold using electrical impedance spectroscopy by Shohan et al. [75]. The design of
this system was critical in its ability to not impact the tissue health, making it a viable
option for the analysis of patient cultures for future graft or transplant applications. By
saving time and resources in the production of clinical devices, there is more room to adapt
to developing clinical needs during the process of translation.

While point-of-care (POC) devices remain one major rationale behind single-cell
electrical sensing, the field mostly remains at the research phase. Newer generations of
diagnostic devices result in the production of more information and necessitates more strin-
gent standards of accuracy, safety, and understanding as automation becomes incorporated.
The combination of device and computational systems allows scientists to actively parse
this information, however practical device design and control becomes critical for them
to translate from the benchtop to the doctor’s office. Reyes et al., explains the need for
practical standards in microfluidics to bridge this gap and also increase the accessibility for
diagnostic devices that anticipate non-expert users [76]. The improvement of the design
that machine learning could create for single-cell measurement and analytics is essential for
the standardization that would be necessary to create any commercialized medical system.

A primary example of machine learning in the control of microfluidics and electrical
sensors for single-cell cytometry is recent work from Wang et al. [77]. In this work, real-time
analysis of cytometer electrodes using a convolution neural network provided feedback-
based controls to the pumps running the sample. Based on the real-time cytometric
measurements on the cells, the system automatically adjusted the flow rate to control the
number of samples measured with an accuracy of greater than 90%. This presents an
interesting and useful construct for the optimization of measurement patterns and the
prevention of clogging within microfluidic systems. The success of these efforts belies the
benefits of fully integrated designs in all aspects of single-cell measurement systems.
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4. Machine Learning Analysis of Non-Electrical Single-Cell Measurements

In the past few years, single-cell characterization methods have experienced pushes
to incorporate machine learning for data analysis, most notably in the fields of Raman
spectroscopy, optical flow cytometry, and genomic profiling. The success in these similar
single-cell processing fields provides an aspirational framework for the adaptation of
standardized data processing and machine learning methods in the electrical field. While
not yet perfected in any field, the widespread use and greater historical context experienced
in these other single-cell measurement types shows the advantage of comparable data to
enhance the study of wider populations.

Raman spectroscopy is a method that uses the vibrational properties of a material to
generate a spectrum that describes the chemical composition of the cell [78]. Machine learn-
ing has been combined with this data type for the purpose of classifying differing cell types,
both mammalian [79,80] and bacterial [81]. Optical flow cytometry is a method that relies
on images of rapidly moving cells, typically characterized by either deformability, size, or
intensity of a targeted fluorescent label. Several reviews have covered the combination
of this method with machine learning to automate the detection of specific subpopula-
tions [82,83], improve high-speed analytical throughput [84], and address the accessibility
of cancer diagnosis in clinician-limited settings [85]. Many algorithms and applications
have been developed to address the analysis of single cells in these non-electrical fields
while the measurement technology has struggled to become more cost-effective and higher
throughput. This directly opposed the concerns seen in the field of electrical measurement
where the devices are already developing the throughput and cost-effectiveness to address
the data needs, but there is a distinct need for standard algorithms and analysis methods.

Genomic profiling in the ‘-omics’ field can incorporate analysis of genomic, transcrip-
tomic, proteomic, or epigenomic data to track the changes in both genetic content and
expression in singular cells belonging to the same population. A vast array of papers on
this topic have been published in recent years, there have also been several reviews to
summarize the work in this field [86–88]. Genetic analysis of individual cells using RNA
has been used to map associated changes within many cell types affected by acute myeloid
leukemia [89] and analyze the quality of laboratory derived macrophage treatments [90].
Incorporation of methods such as t-distributed stochastic neighbor embedding (t-SNE) or
partition-based graph abstraction (PAGA), as seen in Figure 4, for visualization has also
enabled the comparison of properties shared among cell types across all stages of devel-
opment from fetal stem cells to differentiated adult cells using genetic information [91].
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As previously mentioned, there are many standard algorithms for ‘-omic’ analysis of
single-cell data which have been established and published online, making this single-cell
method one of the most accessible after obtaining the expensive sequencing equipment.
The success of RNAseq and similar algorithms in the field of genetic sequencing shows the
ability of a field to adopt, standardize and communicate these more complex data analysis
methods and points the direction the electrical single-cell analysis field can aspire to.
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5. Conclusions and Future Outlooks

Many challenges exist when meeting the criteria required for adopting single cell
analysis to new applications both in research and clinical settings. Primarily, the need for a
sufficient number and distribution of samples to capture the true properties of the entire
population. Additionally, there is a need to ensure reproducible measurements from the
systems that can be used to consistently train and validate the machine learning models.
The collection of repositories of consistent and sizeable data structures is a critical next
step to generating new integrated methods of design and analysis to compare the complex
property changes in single cells biophysically, genetically, and metabolically. Growth in this
field and the compilation of larger datasets could enable an electrical profiling capability
on par with the development of the human genome project, however generating a data
type easier to collect and analyze in a point-of-care setting.

Future research in the combination of machine learning paradigms with electrical
single-cell sensing can leverage the design principles and processes to branch into wider
applications. Most research around this population analysis of single cells is centered
around flow cytometry, due to the large sample number that can be collected and the estab-
lished measurement processes and equipment. However, as discussed in the design section,
iterative design prediction could be used to create more rapid spectroscopic measurement
systems wherein larger numbers of frequencies or smaller footprint devices can improve
the data quantity or accessibility of diagnostic tools. In addition, real-time classification
of samples, especially in blood testing, could be incredibly useful in a clinical setting to
decrease the time from processing to diagnostic results. Because machine learning can pro-
duce rapid and accurate classification of individual cells, it would be incredibly useful for
identifying circulating tumor cells in blood samples or identifying alterations in blood cell
properties to indicate disease for screening. The future is especially bright considering the
incorporation into interpretable AI to address the black-box model concerns and improve
the accessibility of machine learning models for the general public.

A main challenge that integrated and standardized practices can also help address is
the individualized nature of the performance of different machine learning categories with
each dataset. The performance depends highly on the features measured themselves, the
complexity of the relationship between the variable features, and the amount of computa-
tional power required to address the classification challenge. As shown in Table 4 below,
each method does have associated pros and cons, making different paradigms ideal for
different problems and types of impedance information collected or fitted. Methods that
handle deeper complexity of relationships are typically more computationally demanding
and less interpretable. These are more generalized evaluations, and the performance is gen-
erally dependent on the data itself, making a wide-sweeping, thoughtful, and eventually
standardized approach uniquely beneficial for future efforts in this field.

Table 4. Summarized pros and cons of mentioned machine learning classification methods.

ML Method Pros Cons

Support Vector Machine Complexity Interpretability Computational Demand
Neural Networks Complexity Computational Demand Interpretability

K-Nearest Neighbor Clustering Interpretability Computational Demand Complexity
Decision Trees Interpretability Computational Demand Complexity
Random Forest Complexity Interpretability Computational Demand

Logistic Regression Interpretability Computational Demand Complexity

Electrical single-cell sensing is one of the most viable options for accessible diagnostic
systems, especially in resource limited settings where permanent infrastructure or trained
personnel may be limited. Machine learning enables the incorporation of analysis into
more inclusive, small footprint devices and systems that make it easy to take a rapid
and accurate tool for diagnosis anywhere in the world. While the incorporation of these
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analysis methods has revolutionized the information handling in traditional electrical
sensing fields, there remains the potential to revise devices and measurement schemes
based on machine learning suggestions in the design process. This could include iteratively
determining the frequencies of interest and adjusting measurement design accordingly
or automating control systems in a way that reacts to common problems in microfluidic
systems like clogging or balancing throughput with measurement quality. By learning
from the applications already supplied in general microfluidic or assay design, the field of
single-cell electronics has the potential to move into smaller, inclusive, and accurate tools
for diagnosis, using intelligence to overcome the posed challenges.
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Abbreviations

Abbreviation Extended Phrase
AdaBoost Adaptive Boosting
AI Artificial Intelligence
ANN Artificial Neural Network
BPNN Back-Propagation Neural Network
CNN Convolution Neural Network
CTC Circulating Tumor Cells
DEP Dielectrophoresis
DT Decision Tree
EIS Electrical Impedance Spectroscopy
FACS Fluorescence-Activated Cell Sorting
FCN Fully Convolutional Network
FNN Feedforward Neural Network
KNN K-Nearest Neighbor
LDA Linear Discriminatory Analysis
LR Logistic Regression
LSTM Long Short-Term Memory Network
ML Machine Learning
MLE Maximum Likelihood Estimation
NARX Nonlinear Autoregressive Exogenous Model
NN Neural Network
PAGA Partition-Based Graphical Abstraction
POC Point of Care
QDA Quadratic Discriminatory Analysis
RF Random Forest
RNN Recurrent Neural Network
SVM Support Vector Machine
t-SNE t-Distributed Stochastic Neighbor Embedding
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