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Abstract: There are multiple types of services in the Internet of Things, and existing access control
methods do not consider situations wherein the same types of services have multiple access options.
In order to ensure the QoS quality of user access and realize the reasonable utilization of Internet of
Things network resources, it is necessary to consider the characteristics of different services to design
applicable access control strategies. In this paper, a preference-aware user access control strategy
in slices is proposed, which can increase the number of users in the system while balancing slice
resource utilization. First, we establish the user QoS model and slice QoS index range according to the
delay, rate and reliability requirements, and we select users with multiple access options. Secondly, a
user preference matrix is established according to the user QoS requirements and the slice QoS index
range. Finally, a preference matrix of the slice is built according to the optimization objective, and
access control decisions are made for users through the resource utilization state of the slice and the
preference matrix. The verification results show that the proposed strategy not only balances slice
resource utilization but also increases the number of users who can access the system.
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1. Introduction

In recent years, the gradual popularization of mobile intelligent terminals of the In-
ternet of Things and the development of emerging business demands such as smart cities,
telemedicine, unmanned driving, and virtual reality have put forward stricter require-
ments for the Internet of Things [1]. For example, there are fault diagnosis applications in
industrial Internet of Things applications. The authors of [2] proposed an unsupervised
cross-domain rolling-bearing fault diagnosis method based on time–frequency information
fusion to enhance the diagnosis accuracy and strong robustness in the industrial Internet of
Things. The authors of [3] designed a feedback-aided PD-type ILC design for time-varying
systems with non-uniform trial lengths, which can achieve asymptotic tracking of the de-
sired trajectories for time-varying systems with non-uniform trial lengths in the industrial
Internet of Things. Different services have different network requirements. According to
different service requirements, the network can be divided into three application scenar-
ios: enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication
(URLLC) and massive machine-type communication (mMTC) [4]. These three different
scenarios correspond to different Quality of Service (QoS) requirements. The eMBB type of
traffic focuses on services that require large and guaranteed bandwidth, such as augmented
reality services; the uRLLC type mainly serves low-latency, high-reliability services, such as
the Industrial Internet of Things. Finally, mMTC needs to support large-scale devices that
can tolerate certain access delays, such as smart-home services. The business requests of the
Internet of Things may not only belong to one type of business; for example, the requests
related to smart medical care belong to both URLLC business and mMTC business. There-
fore, there are situations where a service has multiple access options. Therefore, in order to
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connect users to the network as much as possible while ensuring the QoS requirements
of users, it is necessary to perform appropriate access control on users. Network slicing
can provide a logically separated independent network, which can realize QoS isolation
of different traffic and support more service requests. Due to the introduction of network
slicing technology, in IoT network slicing, user access is fundamentally different from that
in traditional mobile networks [5]. On the one hand, network slicing is logical virtualization
and isolation by sharing physical infrastructure. Therefore, physical and virtual resources
should be considered in network slicing resource allocation. On the other hand, in order to
meet service requirements, user equipment needs to select an appropriate network slice for
access. Due to resource constraints, not all base stations can provide specific slice services.
For users with specific QoS requirements, the association between network slices and base
stations should be jointly optimized. In IoT access network slicing, the service guarantee for
slice users is more complicated than that in traditional mobile networks because not only
are physical access constraints between users and base stations required, but logical access
constraints between users and slices also need to be considered. Therefore, the user–base
station–slicing three-layer association problem has become an important and challenging
problem, and an appropriate user access control strategy is the key to solving this problem.

There have been studies for user access control in slicing. The authors of [6] studied
access control in slicing, considered the delayed access problem, modeled the problem as
a multiple knapsack problem with random reach for unknown future information, and
proposed a heuristic algorithm to obtain suboptimal gains under resource constraints. The
authors of [7] guaranteed the minimum data rate requirement of users within a slice by
controlling the number of users accessing the slice and proposed a user access control
policy that rejected new users when the slice could not guarantee the rate requirement of
all users and removed users when a tenant changed its resource allocation policy and could
not meet the user rate; they described the user access problem as a network slicing game
problem by solving the Nash equilibrium to improve network performance. The authors
of [8] designed a joint resource allocation and admission control scheme to maximize
the number of terminals that could be accessed by slicing while satisfying the terminal
interference constraint. In [9], an access control scheme considering inter-slice and intra-
slice priorities was proposed for network slicing, which improved user experience while
increasing throughput and resource utilization. The authors of [10] pointed out that
admission control and resource allocation mechanisms are pivotal for realizing network
slicing efficiently; this paper proposed an approach encompassing intelligent and efficient
mechanisms for admission control and resource allocation for network slicing in the 5G
core network. The admission control mechanism introduces two solutions, one based on
reinforcement learning and the other based on deep reinforcement learning, considering
the QoS requirements of 5G use-cases, differentiating network core nodes from edge nodes
and processing slice requests in time windows to favor the service provider’s profit and
resource utilization. Reference [11] presented a Network Slice Selection Function (NSSF)
validation for IoT scenarios in an E2E network slicing architecture, considering traffic
prioritization for critical applications. For this, data analytics, machine learning and multi-
criteria decision-making methods were used. However, the above-mentioned references
fail to consider the problem of multiple access control for a single service, which can lead
to load imbalance between slices and thus affect the network utility.

There is similarity in QoS requests for different types of services. As presented in
Figure 1, only a small number of applications can access only one slice type, while the
performance index requirements of most applications are located between two or more
slices, and there are multiple access options. For example, the data rate of a user can be
satisfied by multiple slices simultaneously [12], i.e., there will be an intersection of QoS
between different slices. Therefore, in this paper, we consider the existence of such users
in the IoT system and define such users as fuzzy users, and for users with multiple access
options, reasonable user access is achieved by designing an access control mechanism.
First, the fuzzy users are defined, and the users with multiple access options are filtered.



Sensors 2023, 23, 5989 3 of 17

Then, the user preference matrix is established according to user QoS requirements and
slice QoS interval, the slice preference matrix is built according to the objective function,
and fuzzy users and slices are grouped according to the preference matrix. Thus the main
contributions of this paper are as follows.

• A fuzzy user selection strategy is proposed by considering the characteristics of
different services with similar QoS requirements, the user’s delay, data rate and
reliability indicators, and corresponding slice QoS intervals are designed. The slice
membership function is defined to calculate the degree of membership of users to
different slices, and the fuzzy users with multiple access options are screened out
according to the degree of membership.

• A user access control strategy is designed, and user-slice grouping is performed ac-
cording to the preference matrix by designing the slice preference matrix and the user’s
preference matrix. Furthermore, user access control decisions are made according to
the current resource utilization of different slices, and users are connected to slices
with low resource utilization, thereby effectively increasing the number of access users
while ensuring load balancing.
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Figure 1. Network slicing service distribution diagram.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 designs the system model. Section 4 proposes the user QoS demand
analysis. Section 5 is problem modeling. Section 6 presents the user association strategy.
Section 7 describes the simulation analysis. Section 8 concludes the paper.

2. Related Works

In Cloud Radio Access Network (C-RAN) for IoT, the available resources and the
distance to the user vary from one Remote Radio Head (RRH) to another because the
location of the user is uncertain. Therefore, there are differences in the QoS performance
that various RRHs can provide for users. For each user, not all RRHs can provide the
service. Therefore, choosing the right RRH for each user is a key issue.

The problem of user access control in IoT has been studied and analyzed by several
researchers. The authors of [13] investigated the problem of associating users with RRHs to
minimize the number of switches in the network while ensuring user QoS. A reinforcement
learning algorithm was used to ensure that the user had a long communication connection
after accessing the RRH. The index of candidate RRHs and the distance, angle and direction
between the user and the RRH was considered as the state space, and an intelligent body
selected the appropriate RRH for the user to associate with the candidate RRHs so that the
cumulative reward could be maximized. In [14], a concept of coupled multiple access under
ultra-dense networks was proposed to allow users to access multiple base stations for uplink
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and downlink, respectively. By constructing a decoupled multi-access matching game, a
switching matching game algorithm was adopted to obtain higher data transmission rates
with guaranteed user QoS requirements. The authors of [15] considered the user access
problem in small-cell systems and proposed a Gale–Shapley stable matching algorithm
based on user access control to optimize the throughput performance of each user by
selecting the access point with the maximum channel gain.

Network slicing has been widely recognized as a key architectural technology for
cellular IoT. In C-RAN slicing, the user access strategy is more complex due to the inclusion
of network slicing. An efficient user access scheme for RAN slicing was proposed in [16]
to improve network throughput while reducing equipment switching cost. User access
control under wireless network slicing has a crucial role in load balancing, radio spectrum
efficiency and network efficiency [17–19]. User access in a network slicing architecture is
related to how users access the base station and also to the slices associated with the base
station. Increasing the data rate of users in traffic intensive areas under traditional network
architectures is limited by interference, network congestion, and operational cost. In [20], a
new network slicing architecture is proposed to solve the user access problem in wireless
LANs using technologies such as SDN (Software Defined Network) and NFV (Network
Function Virtualization). Firstly, the isolation property of slices was used to eliminate the
interference between base stations, while user access control algorithms were adopted
to find a stable match between user devices and different network slices. The authors
of [21] pointed out that user access based on the maximum signal-to-noise ratio was not an
effective access control strategy. Therefore, the authors investigated the user access problem
for multi-tenant network slices in heterogeneous networks combined with fairness, quality
of service, energy consumption and energy efficiency aspects while considering the priority
of tenants and users, and utilized genetic algorithms were implemented for user access
control to maximize the weighting and rate.

Different services in the network have large variability in throughput and delay
requirements, and to achieve different service requirements, the authors of [22] proposed a
network slicing throughput and delay model, and the user access problem was abstracted
as a mixed integer programming problem. For small networks, the global search method
was used to solve user access decisions. For large networks, heuristic algorithms were
adopted to balance the bandwidth and delay issues of different services so as to ensure the
quality of user access. However, the above-mentioned references do not consider the access
control problem for multiple access users in network slicing.

The above results ignore the multiple access control issues of a single service, which
leads to unbalanced load among slices, thereby affecting network utility. However, this
paper considers the existence of such users in the system, defines such users as fuzzy
users, and realizes reasonable user access through an access policy designed for users
with multiple access options. Therefore, the number of users connected to the system can
increased while the load is relatively balanced.

3. System Model

In this paper, the system model consists of an RRH, a Base Band Unit (BBU), slices
of different service types and users in an IoT C-RAN network slice scenario. Figure 2
shows that there are three types of slices associated with the RRH and four types of user
requests within the RRH coverage area, namely, enhanced mobile broadband (eMBB)
users, ultra-reliable and low-latency communication (URLLC) users, massive machine-
type communication (mMTC) users and a large number of fuzzy users. Fuzzy users are
described specifically in Section 4. As shown in Figure 2, each slice has data rate, delay
and reliability metrics, and when a usersubmits a business access request, the slice selects
the user that can satisfy its QoS requirements for access. However, we must consider that
slices have different service times for different tasks, i.e., some tasks have large service
delays, and the occupied resources cannot be released in a short time. Therefore, there are
two cases of high resource utilization and low resource utilization for different slices in the
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same period. Considering the different resource utilization of slices in different periods,
to reduce the load imbalance of slices and ensure the system throughput, effective access
control of slices is required.

mMTC Users eMBB Users Fuzzy User URLLC Users

Slice1

Rmin=0.5Mb/s

Rmax=1.5Mb/s

Delay=1ms

Reliability indicators

Slice2

Rmin=0.5Mb/s

Rmax=1.5Mb/s

Delay=1ms

Reliability indicators

Slice3

Rmin=0.5Mb/s

Rmax=1.5Mb/s

Delay=1ms

Reliability indicators

Slicing Load

Core Network

Figure 2. Access control schematic.

Thus, the requests in the system can be represented as having a large number of fuzzy
user requests and a small number of extreme user requests. In this paper, we assume that
there are a large number of fuzzy users in the system, i.e., there are multiple slices in the
system that can satisfy the QoS demand of those fuzzy users, but each user can only access
one of the slices. First, the slices select the users that can be satisfied based on their QoS
requirements. However, when the slice is relatively low in available resources, the user
accesses the slice with relatively low resource utilization that can meet its QoS need.

Considering the whole system, in order to provide access to as many users as possible,
reasonable access control for users is required; namely, the system must determine which
slices can create the maximum number of users accessing the system while ensuring the
relative load balance of slices in the system under the condition of ensuring the QoS re-
quirements of users. The label of different types of slices is denoted by N = {1, 2, 3, . . . , N},
the number of users in the system is defined as U = {1, 2, . . . , u}, and the user attribute
characteristics are modeled as tu = (Ru, εu, Tu), where Ru is the data rate request of users,
εu is the reliability requirement of users, and Tu is the delay requirement of users.

4. QoS Demand Model

This section describes the delay, rate and reliability metrics of fuzzy users. First, the
fuzzy users are defined; eMBB, URLLC, and mMTC are the three main types of services in
5G. In the 5G large-scale IoT scenario, some requests belong to both mMTC services and
URLLC services: that is, the mMTC service and URLLC service have an intersection of
QoS. Here, we consider users at the intersection of multiple service QoS as fuzzy users. For
example, the QoS attribute interval of a slice n1 is denoted as Ω1, the QoS attribute interval
of slice n2 is denoted as Ω2, and so on. Additionally, the intersection of attributes between
slices is denoted as ∆ = Ω1 ∩Ω2∩. . .∩Ωn. The QoS request of user u is denoted as reqestu.
Then, if Formula (1) is satisfied,

requestu ∈ ∆, ∃u ∈ U, (1)
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user u is defined as a fuzzy user. If Equation (1) is not satisfied, then user u is grouped with
other users, where ∆ is denoted as the intersection part of QoS attributes between any two
or more slices.

Assuming that the number of resources in different slices is represented as a set
M = {M1, M2, . . . , MN}. The user request is not served immediately and may even be
denied due to the network state. In this case, the user will choose to re-initiate the request
after a random delay or join the queue for queuing. To ensure fairness [23], this paper uses
queuing to describe the delay when the user does not have immediate access to the network.
Considering that an excessively long queue can lead to a long queuing delay—which causes
some users to regret joining the queue or leave it, resulting in queue instability—this paper
considers reducing the queue length as much as possible, which means it allows users to
access other slices that can satisfy their QoS requests when the slice resources are limited.

We assume that the arrival of user requests obeys a Poisson process and that the time
of user services is exponentially distributed, and, considering that users have multiple
choices of access slices, we consider M/M/n queuing to model this process.

Assuming that user requests obey a Poisson distribution with parameter λ, the proba-
bility that the number of tasks generated in time interval T is defined by Formula (2).

P(k) = (λT)ke−λT/k! (2)

where λ is the average number of tasks arriving per unit of time. The service time for each
request obeys an exponential distribution, with parameter γ as

P{t < t} = 1− exp(−λt) (3)

It is assumed that the arrival of the request and the receipt of the service by the user
are independent of each other. We assume that ηu,n denotes the service efficiency of user u
on slice n. Thus, the service rate of the whole system is ∑n ηn, which denotes the average
number of users that can be served per unit of time. When a user request arrives, it can
choose between the slices that can satisfy its QoS to be served.

The delay, rate and reliability issues for users are modeled separately below.

4.1. Time Delay

The user’s latency is mainly composed of transmission latency, queuing latency,
processing latency and frame allocation latency [9]. The transmission delay Tt

u,n is the time
required for user packet transmission and can be measured by the user’s packet size as
well as the user’s transmission rate. In this study, it is assumed that the packets should be
transmitted within one scheduling time slot, so the transmission delay is the size of one
scheduling time slot. Queuing delay Wu,n refers to the time interval from when a packet
arrives in the queue buffer to when the packet is served. Processing delay Tp

u,n refers to the
processing delay of slices and users, which mainly depends on the processing capacity of
users and slices. The frame allocation delay T f

u,k depends on the load of the network and is
usually between 0 and 1 symbol length [24]. The transmission delay of the task is:

Tt
u,n = Lu/Bu (4)

where Lu is the packet size of user u and Bu is the rate assigned to user u.
As the computing power of the base station and the terminal increases, the processing

delay is short compared to the transmission delay and can be ignored. The transmission
delay and processing delay are expressed as the service delay of the service. Since the
average service rate of user u in slice n is ηu,n, the second-order moment of the average
service delay of a user u in slice n is as defined in Equation (5).

X2
u,n = E{X2

u,n} =
1

η2
u,n

(5)
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According to the Pollaczek–Khinchine (P-K) theorem, the average queuing delay of
service packets of a user u for transmission on the n-th slice is:

Wu,n =
λX2

u,n

2(1− ρu,n)
=

ρu,n

2ηu,n(1− ρu,n)
(6)

where ρu,n can be expressed as ρu,n = λ/ηu,n. Thus, the user’s time delay can be ex-
pressed as:

Tu = Tt
u.n+Wu,n + T f

u,k (7)

To ensure QoS for users, the user’s latency should be no greater than the upper limit
of his/her tolerable latency:

Tu ≤ τmax (8)

where τmax denotes the upper limit of tolerable delay for slices accessed by users.

4.2. User Rate

The rate requested by user u is represented by Ru. According to Shannon’s formula,
the bandwidth that can be allocated to user u’s access to slice n is:

Bu,n =
Ru

log(1 + SINR)
(9)

where Ru denotes the transmission rate required by the user and SINR denotes the signal-
to-noise ratio. When the user accesses slice n, according to the user’s QoS demand, slice n
immediately allocates a certain resource Bu,n to user u and ensure that the resource allocated
by slice n does not exceed its resource limit Mn, denoted as:

∑
u∈n

Bu,n ≤ Mn, ∀n ∈ N (10)

4.3. Reliability

Since communication is mainly considered in terms of message validity and reliability,
validity is related to the data rate in Section 4.2. Therefore, this subsection mainly considers
the modeling of reliability. For simplicity, only reliability modeling without secondary
retransmission is considered in this paper.

For the reliability requirements of the service, two main factors are considered: the
failure of task completion due to the violation of the delay constraint or failure caused by
the instability of the channel state [25]. According to [26], the reliability of the delay is
measured by (1− ε

q
u,n), where ε

q
u,n is the probability of delay violation, denoted as:

ε
q
u,n = Pr(D∞ > Dq,max

u,n ) ≈ e−θu,nBu,nDq,max
u,n (11)

where Dq,max
u,n is the upper limit of queuing delay that can guarantee the service demand,

Bu,n is the bandwidth allocated to the user, and θu,n is the QoS metric of a user u on slice n,
denoted as:

θu,n = ln(
ln(1/ε

q
u,n)

λuDq,max
u,n

+ 1) (12)

We assume that the reliability threshold of the user is ε
g
u. To ensure the reliability

requirements of the user, that is, to meet that the user’s error rate is not greater than his/her
maximum tolerable error rate, the conditions that need to be met are:

ε
q
u,n ≤ ε

g
u (13)
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5. Problem Modeling

It is assumed that users accessing the slice will not leave or drop during a period of
time T. Access control is performed with guaranteed user QoS. We denote the access of a
user u to slice n by the binary variable αu,n as

αu,n =

{
1, if user u access slice n
0, otherwise

(14)

The performance indicators of the user include data rate β, delay τ and reliability ε. The
slice also has corresponding performance indicators, and when the performance indicators
of the slice include the performance indicators of the user, that is, when Equation (1) is
satisfied, it means that the slice can meet the QoS demand of the user, and the slice can be
used as one of the access choices of the user at that time. The QoS index interval of the slice
is expressed as follows:

{(βmin, βmax), (τmin, τmax), (εmin, εmax)} (15)

Since only three indices of data rate β, delay τ and reliability ε are considered in this
paper, the QoS metric is a three-dimensional matrix of U × 3× 3 in a network of U users.
The performance index of user u can be described as:

QoSu =


f (βu, τu, αu)|βu ∈ (βmin, βmax),
τu ∈ (τmin, τmax),
εu ∈ (εmin, εmax)

 (16)

All slices that can satisfy Equation (17) can be used as one of the access options for
users. At the same time, to ensure the load balancing of slices, access control selection
needs to be based on the remaining available resource status of slices when access control
is performed.

Assume that the total resources of a slice remain constant over its lifetime. Denote
the total bandwidth of slice n as Mn. Describe the remaining resource state of slice n at
moment t as the current state of the slice based on the queue situation of the slice and the
current resource occupation:

γn =
∑
u

Bu

Mn
(17)

where ∑
u

Bu denotes the bandwidth resource occupied by slice n at the current moment.

Based on the current degree of resource utilization of slices and the QoS requirements
of users, access control is applied to users, and as many users as possible are provided
access by optimizing the access control policy π. The number of users provided access
in the system is the sum of binary variables for each user in the system as defined in
Equation (18).

Atotal = ∑
u∈U

∑
n∈N

αu,n (18)

Considering that the resources of each slice are limited, to ensure that more users are
provided access, it is necessary to allocate the minimum bandwidth Bu that can satisfy the
QoS demand of users after they are provided access to the slice so that more resources
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are left to provide access to more users. Therefore, the objective function is expressed as
maximizing the number of users Atotal as

max
π,Bu

Atotal

s.t.c1 :γu ≥ γthr, ∀u ∈ U

c2 : Tu ≤ τmax, ∀u ∈ U

c3 :εu,n ≤ ε
g
u, ∀u ∈ U, ∀n ∈ N

c4 : ∑
u∈U

Bu ≤ Mn, ∀u ∈ U, ∀n ∈ N

c5 :αu,n ∈ {0, 1}

(19)

where the constraint c1 indicates that a user can be provided access when the remaining
available resources of the slice can satisfy the user’s QoS request, c2 means that slice n
can satisfy the delay requirement of the user, c3 represents that the slice can satisfy the
reliability requirement of user u, c4 denotes that the sum of the bandwidth allocated to
all users cannot exceed the total bandwidth of slice n, and c5 is a constraint on the access
variables to ensure that a user u can access at most one slice at a time.

6. Methodology

Considering that users have multiple choices of slice access but that only one slice can
be associated with a user in the end, a suitable user access policy is needed to ensure the
maximum number of users that can be provided access in the system. Meanwhile, the load
of the slices is relatively balanced. In this section, a preference-based access control policy
is considered. First, the set of users preferred by a slice is selected based on the load of the
slice. Secondly, the set of slices from which users are provided access is selected based on
their QoS requirements. Finally, a set of user slices is selected for access.

6.1. User Multi-Access Inference

According to Table 1, the following inferences can be drawn: requests in the network
have different requirements for bandwidth, latency and reliability and can be sliced sepa-
rately for eMBB services (e.g., video conferencing) and URLLC services (e.g., autonomous
driving), but for applications such as e-commerce and partial immersion, both eMBB and
URLLC slices can be accessed. Such users who have multiple access options are defined as
fuzzy users in the slice scenario, but each user can eventually be served by only one slice.
Therefore, access control for fuzzy users is required.

Table 1. QoS metrics [27,28].

Business Type Speed PTime Delay Limit Reliability

Video
teleconferencing High speed 50 ms Must be reliably

transmitted

E-commerce Appropriate speed 100 ms Must be reliably
transmitted

Email Low speed NA Do your best

HTML web browsing Variable speed
requirements NA Do your best

Autopilot >100 Mbps <10 ms Must be reliably
transmitted

AR High speed <20 ms \
Primary immersion 20 Mbps >40 ms \
Partial immersion 100 Mbps–1 Gbps <30 ms \
Deep immersion 1–4 Gps <13 ms \
Total immersion >4 Gps <8 ms \
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6.2. Time Delay

In the scenario considered in this paper, it is difficult to decide whether a certain user
request belongs to a definite type of slice and not another type because it belongs to a
certain type of slice to some extent; that is, each type of task request belongs to one of
the fuzzy subsets in the slice set. There exists a large number of fuzzy users and a small
number of other users. Other users do not need to make access control decisions because
they have only one access choice. Therefore, the set of fuzzy users that need to make access
decisions should be selected first.

The set of users U = {1, 2, . . . , u} is a finite set, and the u users are classified into n
classes, which are represented by the fuzzy matrix of n× u as:

X =


x11,x12, · · · , x1u
x21,x22, · · · , x2u
· · ·
· · ·
xn1,xn2, · · · , xnu

 (20)

where xnu denotes the degree of affiliation of user u to different slice types n, which is
calculated by the affiliation function Fn(x). Since this paper considers users with three
QoS attributes, the affiliation function is expressed as:

Fn(x) =
Fn(βu) +Fn(τu) +Fn(εu)

3
(21)

where Fn(βu),Fn(τu),Fn(εu) denote the affiliation functions of data rate, delay and re-
liability, respectively, of user u to slice n. Their affiliation functions can be calculated by
Equations (22)–(24), respectively.

Fn(βu) =


0, βu ≤ βn

min
∪ βu ≥ βn

max

βu−βn
min

βn
max−βn

min
, βn

min
< βu < βn

max

(22)

Fn(τu) =

 0, τu ≤ τn
min
∪ τu ≥ τn

max

τu−τn
min

τn
max−τn

min
, τn

min
< τu < τn

max

(23)

Fn(εu) =

 0, εu ≤ εn
min
∪ εu ≥ εn

max

εu−εn
min

εn
max−εn

min
, εn

min
< εu < εn

max

(24)

By calculating the affiliation functionsFn(βu),Fn(τu),Fn(εu), we get a four-dimensional
matrix of affiliation functions of U ×U ×U ×U. For user u, his/her three corresponding
affiliation functions are not zero, which means that user u has affiliation degree Fn(x) to
slice n. For each column of the fuzzy matrix X, if there is only one non-zero value, it means
that the user is not a fuzzy user. Conversely, if there is more than one non-zero value, it
implies that the user is a fuzzy user, and thus, the fuzzy user is filtered out.

6.3. Slicing Preference

In order to provide access to more users, according to the bandwidth required by users,
slices are more inclined to provide access to users with small bandwidth requirements.
However, according to Equation (9), the actual bandwidth allocated to a user is related
to the user’s requested rate and channel conditions [29]. When a user has poor channel
conditions, more bandwidth resources need to be consumed to compensate to meet his/her
rate requirements. This affects the access of users with better channel conditions. Therefore,
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the preference for slicing is related to the bandwidth consumed by the user. The preference
matrix of slicing can be expressed as a one-dimensional matrix Φ′:

Φ′ = [ϕ1, ϕ2, ..., ϕu] (25)

where ϕu denotes the degree of preference of slice n over user u and ϕu−1 > ϕu denotes
the degree of preference of slice n of user u− 1 over user u.

Since the preference for slicing is related to the bandwidth consumed by the access user,
the one-dimensional preference matrix Φ′ can be ranked according to the bandwidth, i.e.,

ϕu ∼ arg min
u∈{u,...U}

Bu (26)

Equation (26) indicates that the user with the least bandwidth required from the u-th
user to the U-th user is selected and ranked in position n in the preference matrix of slice ϕu.

6.4. User Preference

Denote the multiple access selection policies of a user u as ffu = (αu,1, , αu,2, . . . , αu,n).
Consider the acceptance or rejection of user requests in different remaining available
resource states of slices as a binary variable αu,n. Since the user can only access one of the
slices, ||ffu|| ≤ 1. However, the users’ preferences for different slices are different, and we
denote the preference matrix of user u as Φ′′:

Φ′′ = [Φ1, Φ2, . . . , ΦN ] (27)

where Φn indicates the degree of preference of user u for slice n. The higher the value is,
the higher the preference.

Each user attribute corresponds to a set of acceptable slice resource states, and the
remaining resource state is denoted as Υ = {γ1, γ2, ..., γn}. Under different slice states, user
preferences for slices differ according to the access policy π and are related to the user’s
QoS requirements and the remaining available resource state of the slice:

Φn = [Φ1, Φ2, ..., ΦΥ, ]

=



ϕ1,1, ϕ1,2, ..., ϕ1,Υ
ϕ2,1, ϕ2,2, ..., ϕ2,Υ
...
...
...
ϕN,1, ϕN,2, ..., ϕN,Υ


(28)

where column i indicates the preference of user u for different slices when the remaining
resources of the slice are in state γi. Row n indicates the degree of preference of user u for
slice n in different resource states. Equation (28) indicates that the user selects the slice that
can satisfy his/her QoS according to the attributes of the slice, and if the resource state of
the slice cannot satisfy the QoS demand, then the user’s preference degree ϕn,γ = 0 for
slice n.

The user’s preference for slices is related to the affiliation degree Fn(x) between the
user’s QoS requirements and the QoS attributes of slices, and the larger the affiliation
degree, the higher the value of the user’s preference for slices. However, the degree of
affiliation is only the preference for QoS attributes, and the remaining resource state of the
slice should be fully considered to ensure the QoS requirements of users. The preference
degree ϕn,γ of user u for slice n as a whole is expressed as:{

ϕn,γ ∼ Fn(x), Remaining resource of slice n meets user QoS
ϕn,γ = 0, Otherwise

(29)
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Equation (29) indicates that users have a corresponding preference value for slices
that can satisfy their QoS needs. It implies that user u prefers slices with a QoS similar
to his/her demand, but as the user is provided access, the preference value changes to
0 when the remaining resources of the slice are insufficient to satisfy his/her QoS. The
preference value can be updated by calculating the user’s preference value for each slice
and the remaining resource status of each slice.

6.5. Slice–User Association Strategy

Based on the slice preferences and user preferences, a set of slice–user association
schemes are designed. There are multiple slices preferring the same user in this association
scheme, and the final slice–user association decision is related to the remaining resource
status of the slice itself, considering the load balancing of the achieved slices. The resource
utilization status of the slice is used as the criterion for user access and is denoted as:

µ = min{γ1, . . . , γn} (30)

In the case of multiple slices associated with the same user, Equation (30) indicates
that the slice with the lowest resource utilization among them is selected for user access.

7. Simulation Analysis

In this paper, we use the Python 3.7 simulation platform to validate the preference-
aware user access control policy. A C-RAN system consisting of one RRH, two network
slices, one BBU pool and an optical forwarding network is considered, and 100 users with
different QoS requirements are randomly generated. We compare our results with the
QoS-guaranteed user access control strategy [30], greedy-based access control strategy
and random-based access control strategy to maximize the number of users accessed. The
simulation parameters are shown in Table 2.

Table 2. Simulation parameter settings.

Parameter Settings Parameter Values

Transmitting power 1 W
Noise power 10−13 W

Number of users 100
Number of slices 2

Packet size 0.2–0.5 M
Average arrival rate 2000 pps

User rate interval [40, 100] Mb/s
User time delay interval [130, 160] ms

Figure 3 shows the user’s degree of affiliation to different slices. The horizontal axis
indicates the bandwidth interval of the slice, and the vertical axis indicates the user’s
degree of affiliation. It can be seen that the subscriber’s affiliation level decreases as the
required bandwidth approaches the upper limit that can be satisfied by the slice. This
is because users prefer slices that can provide higher bandwidth to ensure their QoS is
satisfied. For the overlapping area of the bandwidth of Slice 1 and Slice 2 in the figure, it
can be seen that users have different preferences for the same bandwidth because the lower
limit of bandwidth that can be provided by different slices is different, which is related to
the affiliation function.

Figure 4 shows the degree of affiliation of users with joint consideration of delay and
bandwidth. It can be seen that the degree of user affiliation decreases with the increase
in required bandwidth and increases with the increase in required delay. This is due to
the instability of the channel state and the need to guarantee the minimum delay required
for the users. Therefore, the smaller the minimum delay that can be satisfied for a slice,
the higher the user’s degree of preference. Therefore, for a certain slice QoS interval,
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the less delay-sensitive and less bandwidth-demanding users have a higher degree of
affiliation with the slice. In addition, due to the variability of QoS between slices, the degree
of affiliation of the same user to different slices also varies. For example, a user with a
bandwidth requirement of 78 Mb and a latency requirement of 150 ms has a joint affiliation
of about 0.7 for Slice 1, while the joint affiliation for Slice 2 is only 0.56.
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Figure 3. Degree of affiliation: (a) Slice 1 and (b) Slice 2.
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Figure 4. User affiliation with joint consideration of bandwidth and latency: (a) Slice 1 and (b) Slice 2.

Figure 5 shows the effect of different fuzzy user percentages on the number of users
provided access in the system. It can be seen that as the percentage of fuzzy users increases,
more users are provided access by the proposed algorithm that considers fuzzy users, which
can provide access to 20.2% more users than the QoS-guaranteed user access algorithm
when the number of fuzzy users is 60% of the total users in the system. The QoS-guaranteed
user access algorithm allocates more resources to users to ensure their quality of service,
while the algorithm proposed in this paper allocates resources to users to satisfy their QoS
to provide access to more users, so that there are more remaining resources to provide
access to more users. In the algorithm that does not consider fuzzy users, the number of
accessed users decreases gradually as the proportion of fuzzy users increases because fuzzy
users account for a certain proportion in the QoS interval of slices, and not considering
fuzzy users leads to some users not being able to access the slices, and thus, the number
of users provided access decreases. We also find that the performance of our proposed
algorithm that considers fuzzy users is much higher than greedy-based and random-based
access control strategies.

Figure 6 shows the number of subscribers who are provided access at different signal-
to-noise ratios. It can be seen that as the S/N ratio increases, the overall trend of the number
of users provided access increases. This is because the S/N ratio increases and users have
less bandwidth to make up for channel consumption, i.e., users can use less bandwidth to
meet the data rate demand. Therefore, more surplus resources can be available to provide
access to more users. When considering 40% fuzzy users and a signal-to-noise ratio of
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25 dB, the proposed algorithm in this paper can provide access to 42.46% more users
than the QoS-guaranteed user access algorithm. It can also be seen from Figure 6 that the
performance of our proposed method is better than the greedy-based and random-based
access control algorithms for both 40% and 20% fuzzy users. Among them, the performance
based on greedy is slightly better than that based on random.
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Figure 5. Impact of different numbers of fuzzy users on user access.

5 1 0 1 5 2 0 2 5 3 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

To
tal 

num
ber

 us
ers

 ac
ces

sed

S i g n a l  t o  N o i s e  R a t i o  S I N R ( d B )

 o u r -  4 0 %  f u z z y  u s e r s
 o u r -  2 0 %  f u z z y  u s e r s
 Q o s  g u a r a n t e e d  -  2 0 %  f u z z y  u s e r s
 Q o s  g u a r a n t e e d  -  4 0 %  f u z z y  u s e r s
 g r e e d y - b a s e d  -  2 0 %  f u z z y  u s e r s
 r a n d o m - b a s e d  -  2 0 %  f u z z y  u s e r s

Figure 6. Impact of different numbers of fuzzy users on user access.

Figure 7 shows the slice loadings under different signal-to-noise ratios. In the case of a
small signal-to-noise ratio, the slice load situation of the proposed algorithm is relatively
balanced. At a signal-to-noise ratio of nine, the difference between the load of Slice 1 and
Slice 2 in the proposed algorithm is 9.1%, while the difference between the load of Slice 1
and Slice 2 in the comparison algorithm is 50%. When the S/N ratio is greater than nine, it
can be seen that the number of users provided access by Slice 1 increases slowly, which is
related to the QoS requests of users in the system, indicating that the number of users that
can be satisfied by Slice 1 has reached the upper limit.
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Figure 7. Impact of different numbers of fuzzy users on user access.

8. Conclusions

To solve the problem of multiple access for a single service for IoT, this paper proposes
a preference-aware user access control strategy. Firstly, a fuzzy user selection strategy is
proposed by establishing user QoS requirements and slice QoS intervals and affiliation
functions. Then, a user access control strategy is designed, and user–slice grouping is
performed based on the slice preference, the user preference matrix and the load of the
slice. Simulation results show that the proposed algorithm can increase the number of
users who are provided access to the system while ensuring user QoS. The flexibility of
network slicing and the mobility of users increases the difficulty of resource management.
Traditional network models have difficulty making optimization decisions, and artificial
intelligence is usually used to solve complex problems. Therefore, artificial intelligence
algorithms can be applied to C-RAN network slice resource management strategies in the
future to improve the accuracy and flexibility of resource management.
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