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Abstract: Nowadays, the Internet of Things (IoT) concept plays a pivotal role in society and brings
new capabilities to different industries. The number of IoT solutions in areas such as transportation
and healthcare is increasing and new services are under development. In the last decade, society
has experienced a drastic increase in IoT connections. In fact, IoT connections will increase in the
next few years across different areas. Conversely, several challenges still need to be faced to enable
efficient and secure operations (e.g., interoperability, security, and standards). Furthermore, although
efforts have been made to produce datasets composed of attacks against IoT devices, several possible
attacks are not considered. Most existing efforts do not consider an extensive network topology with
real IoT devices. The main goal of this research is to propose a novel and extensive IoT attack dataset
to foster the development of security analytics applications in real IoT operations. To accomplish this,
33 attacks are executed in an IoT topology composed of 105 devices. These attacks are classified into
seven categories, namely DDoS, DoS, Recon, Web-based, brute force, spoofing, and Mirai. Finally, all
attacks are executed by malicious IoT devices targeting other IoT devices. The dataset is available on
the CIC Dataset website.

Keywords: Internet of Things (IoT); dataset; security; machine learning; deep learning; DoS; DDoS;
reconnaissance; web attacks; brute force; spoofing; Mirai

1. Introduction

Nowadays, the Internet of Things (IoT) plays a pivotal role in society and brings new
capabilities to different industries [1–3]. IoT projects in areas such as transportation and
healthcare are becoming increasingly popular, and new applications are under develop-
ment [4,5]. This new paradigm relies on an extensively connected sensors and actuators
network with multiple devices producing network traffic [6–8]. Research and industrial
communities have been evolving this concept for years, and these devices are becoming
more present in our daily lives [9–11].

Several areas have been transformed by this technology. For example, in healthcare
applications, patients can be regularly monitored using IoT technology [12–14]. In trans-
portation, IoT devices have been used to detect and prevent accidents [15–17]. Industrial
IoT (IIoT) has also brought different solutions, such as high reliability and low latency
automated monitoring and collaborative control [18]. IoT applications have also been
developed for areas such as education [19], aviation [20], and forestry [21]. In the last
decade, society has experienced a drastic increase in IoT connections [22]. In fact, IoT
connections will increase in the next few years across different areas [23]. This motivates
the creation and development of business ideas and new concepts that rely on a highly
distributed infrastructure. In addition, various strategies have been proposed to solve
potential problems in IoT operations, i.e., the deployment of new services is leveraged by
the scientific findings achieved in the past few years.
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Conversely, despite these benefits, several challenges still need to be faced to enable
efficient and secure operations (e.g., interoperability, security, standards, and server tech-
nologies) [24–27]. The development of new applications may also bring new requirements
to the systems [28,29]. For example, the Internet of Vehicles (IoV) may require more restric-
tive response times than common IoT applications. Furthermore, detecting and mitigating
attacks performed against IoT devices is challenging due to several factors. For example,
distributed connections and light devices without security mechanisms may harden the
process of detecting and mitigating attacks [30–33].

Furthermore, although efforts have been made to produce datasets composed of at-
tacks against IoT devices, several possible attacks are not considered. In addition, most
efforts do not consider an extensive network topology with real IoT devices. Finally, the
attacks performed against IoT devices are executed by computer systems (i.e., non-IoT de-
vices), highlighting the need for a dataset composed of attacks performed by malicious IoT
devices. To enable the development of security analytics solutions for intrusion detection
in real-world scenarios, the data produced need to (i) include a variety of attacks that can
harm IoT operations, (ii) be collected from an extensive topology with real IoT devices of
different types and brands, and (iii) include attacks performed by malicious IoT devices.

The main goal of this research is to propose a novel and extensive IoT attack dataset
to foster the development of security analytics applications in real IoT operations. To
accomplish this, 33 attacks are executed in an IoT topology composed of 105 devices. These
attacks are classified into seven categories, namely DDoS, DoS, Recon, Web-based, brute
force, spoofing, and Mirai. In addition, all attacks are executed by malicious IoT devices
targeting other IoT devices. This dataset includes multiple attacks not available in other
IoT datasets and enables IoT professionals to develop new security analytics solutions.
Furthermore, the data are available in different formats, allowing researchers to use features
extracted in our evaluation or engineer new features.

The main contributions of this research are:

• We design a new realistic IoT attack dataset, CICIoT2023, using an extensive topology
composed of several real IoT devices acting as either attackers or victims;

• We perform, document, and collect data from 33 attacks divided into 7 classes against
IoT devices and demonstrated how they can be reproduced;

• We evaluate the performance of machine and deep learning algorithms using the
CICIoT2023 dataset to classify and detect IoT network traffic as malicious or benign.

This paper is organized as follows: Section 2 presents an extensive comparison of the
contributions of this research with other works present in the literature. Secondly, Section 3
introduces the CICIoT2023 dataset and presents the steps involved in the data collection.
After that, Section 4 presents the feature extraction process and describes the data. Section 5
presents the machine learning (ML) evaluation in the classification of different attacks using
the CICIoT2023 dataset. Finally, Section 6 presents the conclusion of this research.

2. Related Works

In the past few years, different contributions have been published regarding IoT
security datasets. In fact, data have been produced with different goals and using different
methods and resources. To better understand the characteristics of existing datasets, we
review several initiatives present in the literature and compare them with the proposed
CICIoT2023. The authors in [34] propose a novel network-based dataset for detecting
botnet attacks in the IoT environment called N-BaioT (2018). Mirai and BASHLITE botnets
were used to attack nine commercial IoT devices. Multiple features were extracted from the
network traffic and used by a deep-learning autoencoder for attack detection. In [35], the
authors introduce a host-based IoT dataset composed of data from real IoT devices. This
dataset, called IoTHIDS (2018), is produced based on experiments considering a topology
of three devices infected by Mirai, Hajime, Adira, BASHLITE, Doflo, Tsunami, and Wroba
malware botnets.



Sensors 2023, 23, 5941 3 of 26

IoT-SH (2019) [36] is a dataset composed of captures of twelve attacks (categorized
into four classes) against eight different smart home devices. A three-layer Intrusion
Detection System (IDS) is used considering various combinations of rule-based and machine
learning approaches to classify the attacks. BoT-Iot (2019) is introduced in [37] as a realistic
traffic dataset, produced considering heterogeneous network profiles. Multiple attacks are
performed (e.g., DDoS, DoS, data theft, and scan) against five devices. In the evaluation
process, a set of new features are selected and used based on correlation coefficient and joint
entropy techniques. Various machine and deep learning models are trained to evaluate the
attack detection accuracy.

The authors in [38] introduce the Kitsune (2019) dataset, which is composed of four dif-
ferent categories of attacks executed against nine IoT devices. In the experiments conducted,
a security camera was infected by a real Mirai botnet sample. This dataset is intended to
support the development of plug-and-play Network Intrusion Detection Systems (NIDS)
to detect normal and malicious traffic. Similarly, IoTNIDS (2019) [39] represent an initiative
focused on collecting data from a real-world IoT networking environment based on the
interaction between two IoT devices (speaker and camera). Multiple attacks are analyzed
in this effort, e.g., Mirai, MITM, DoS, and scanning. MedBIoT (2020) [40] is an IoT network
architecture dataset based on using real and emulated devices. The authors evaluated
multiple machine learning techniques using 100 statistical features extracted from the IoT
network traffic. In [41], the authors propose the IoT-23 (2020) dataset. This contribution
refers to a botnet dataset captured composed of real network environment captures of
benign and malicious traffic.

IoTIDs (2020) [42] is proposed as a dataset composed of IoT-related flow-based fea-
tures, selected and ranked by the correlation coefficients technique and the Shapiro–Wilk
algorithm, respectively. In the experiments, the authors performed four different attacks
against two IoT devices (speaker and camera) and recorded the data. Multiple machine
learning methods were used in the evaluation process (e.g., SVM, G-NB, LDA, and LR)
focusing on attack detection and classification. The authors in [43] present the MQTT (2020)
dataset with the primary goal of providing realistic data that include a protocol dedicated
to IoT network scenarios. Furthermore, eight IoT devices were connected to the MQTT
broker and a set of 33 different features were extracted and provided to various machine
learning algorithms. Similarly, MQTT-IoT-IDS (2020) [44] is another contribution focused
on producing a dataset using a lightweight protocol, i.e., MQTT, which is used in IoT
networks. The authors focus on replicating a realistic IoT network by using a camera feed,
twelve MQTT sensors, and a broker. Five scenarios are considered based on the variation in
the attacks performed. Several packet-based, uni-, and bi-flow features are used alongside
six different machine learning algorithms in the evaluation phase.

In [45], the authors proposed a new telemetry-based data-driven IoT/IIoT dataset
called TON-IoT (2020). This heterogeneous dataset comprises both normal and attack
samples captured in different scenarios. Targeting the development of a realistic dataset,
the authors include attack sub-categories, data recorded from operating system logs, and
network traffic. Several machine learning and deep learning algorithms are used in the
evaluation phase and the achieved results are reported in detail. Finally, the Edge-IIoTSet
(2022) dataset is introduced as a realistic cybersecurity resource for IoT and IIoT applica-
tions to enable the development of Intrusion Detection Systems (IDS) in centralized and
distributed applications [46]. Throughout the paper, an in-depth description of the testbed
used is presented. In addition, the authors also describe the dataset generation framework.
Regarding the machine learning evaluation process, centralized and federated learning
considerations are presented.

3. The Proposed CICIoT2023

This section introduces the CICIot2023 dataset. We aim to present an in-depth descrip-
tion of all steps and resources involved in producing this dataset. First, we describe the
CIC IoT Lab. Then, we focus on the IoT topology, listing all IoT and network devices used
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and how they are connected. Then, we present a discussion on all attacks that have been
executed. Finally, we provide insights into how the data were collected for benign and
malicious scenarios.

3.1. IoT Lab

The production of IoT security data that can be used to support real applications is
challenging for several reasons. One of the main problems is having an extensive network
composed of several real IoT devices, similar to topologies of real IoT applications. Many
works adopt simulated or very few IoT devices due to costs, network equipment required
(e.g., switches, routers, and network tap), and personnel dedicated to maintaining such an
infrastructure.

Thereupon, the Canadian Institute for Cybersecurity (CIC) has a distinguished pres-
ence in the cybersecurity ecosystem and a history of high-impact contributions to industry
and academia. Examples are datasets used to develop new cybersecurity applications and
several partnerships with the industry to improve the cybersecurity practice and develop
new solutions. This success enabled CIC to establish an IoT lab with a dedicated network
to foster the development of IoT security solutions. In fact, by sharing the data collected
from this extensive topology, we intend to foster the advancement of IoT security research
and support several initiatives in different IoT security aspects.

Figure 1 shows the IoT lab at the CIC and its devices. Indeed, IoT devices are dis-
tributed across the lab, in which some of them are placed on the table, others on the floor,
and some on the walls. We adopt a local network topology and several power plugs are
available in the lab. Additionally, there are racks and storage rooms in order to organize
the IoT and network devices.

Figure 1. CIC IoT Lab.

3.2. IoT Topology

The IoT topology deployed to produce the CICIoT2023 is illustrated in Figure 2 and
comprises 105 IoT devices. A total of 67 IoT devices were directly involved in the attacks
and other 38 Zigbee and Z-Wave devices were connected to five hubs.

This topology mimics a real-world deployment of IoT products and services in a smart
home environment. The devices list includes smart home devices, cameras, sensors, and
micro-controllers which are connected and configured to enable the execution of several
attacks and capture the corresponding attack traffic. The lab is also equipped with various
tools and software, which enable us to perform several attacks and capture both benign
and malicious attack traffic.

This topology is divided into two parts. In the first part, an ASUS router connects
the network to the Internet and a Windows 10 Desktop computer shares this connectivity.
In addition, a Cisco switch is placed between this computer and a VeraPlus access point
connecting 7 Raspberry Pi devices. These devices are responsible for executing the attacks
and malicious activities in the experiments. Using IoT devices as malicious agents is a
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CICIoT2023 characteristic not found in other efforts. Then, the Cisco switch is connected
to the second part through a Gigamon Network Tap. This network device collects all the
IoT traffic and sends it to two network monitors, which are responsible for storing the
traffic using wireshark [47]. In fact, a network tap is a hardware device that allows for
monitoring and analyzing network traffic by connecting to a network cable and providing
a copy of the traffic to other monitoring and security tools. Network taps are connected in a
way so as not to affect the normal operation and provide a full-duplex, non-intrusive, and
passive way of accessing network traffic, without introducing any latency or affecting the
performance of the network. This device has two network and two monitoring ports and is
placed between the attacking and legitimate devices, connecting one port to the attackers
and the other to the victim networks. Using the monitor ports, we are able to capture the
traffic to and from the IoT network.

Figure 2. IoT network topology used in the experiments.

In the second part, a Netgear Unmanaged Switch is connected to five gateways and
base stations to enable communication with IoT devices with protocols such as Zigbee
and Z-Wave. Furthermore, another VeraPlus controller is connected to the switch. This
controller is also connected to other two Zigbee/Z-Wave hubs and to several devices
considered victims in the attacks performed. The list of all IoT devices used in this dataset
is presented in Table 1. Note that Zigbee and Z-wave devices do not have a MAC address
and are labeled as “Not Applicable” (N/A) for that particular column.
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Table 1. List of IoT devices used to produce the dataset.

Device Name Category MAC Address Device Name Category MAC Address
Amazon Alexa Echo Dot 1 Audio 1C:FE:2B:98:16:DD Lumiman bulb Lighting 84:E3:42:42:ED:0B
Amazon Alexa Echo Dot 2 Audio A0:D0:DC:C4:08:FF Philips Hue Bridge Hub 00:17:88:60:D6:4F
Amazon Alexa Echo Spot Audio 1C:12:B0:9B:0C:EC Smart Board Home Automation 00:02:75:F6:E3:CB

Amazon Alexa Echo Studio Audio 08:7C:39:CE:6E:2A Teckin Light Strip Lighting 18:69:D8:EB:D4:3E
Amazon Echo Show Audio 2C:71:FF:05:F1:15 Teckin Plug 1 Power Outlet D4:A6:51:76:06:64

Google Nest Mini Speaker Audio CC:F4:11:9C:D0:00 Teckin Plug 2 Power Outlet D4:A6:51:78:97:4E
harman kardon (Ampak Technology) Audio B0:F1:EC:D3:E7:98 Wemo smart plug 1 (Wemo id: Wemo.Mini.AD3) Power Outlet 30:23:03:F3:84:2B

Sonos One Speaker Audio 48:A6:B8:F9:1B:88 Wemo smart plug 2 (Wemo id: Wemo.Mini.4A3) Power Outlet 30:23:03:F3:57:CB
AMCREST WiFi Camera Camera 9C:8E:CD:1D:AB:9F Yutron Plug 1 Power Outlet D4:A6:51:20:91:D1

Arlo Base Station Camera 3C:37:86:6F:B9:51 Yutron Plug 2 Power Outlet D4:A6:51:21:6C:29
Arlo Q Indoor Camera Camera 40:5D:82:35:14:C8 LG Smart TV Home Automation AC:F1:08:4E:00:82

Borun/Sichuan-AI Camera Camera C0:E7:BF:0A:79:D1 Netatmo Weather Station Home Automation 70:EE:50:6B:A8:1A
DCS8000LHA1 D-Link Mini Camera Camera B0:C5:54:59:2E:99 Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E6:F4

HeimVision Smart WiFi Camera Camera 44:01:BB:EC:10:4A Raspberry Pi 4—2 GB NextGen DC:A6:32:C9: E4:C6
Home Eye Camera Camera 34:75:63:73:F3:36 Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E5:02

Luohe Cam Dog Camera 7C:A7:B0:CD:18:32 Fibaro Door/Window Sensor 1 Sensor N/A
Nest Indoor Camera Camera 44:BB:3B:00:39:07 Fibaro Door/Window Sensor 2 Sensor N/A

Victms

Netatmo Camera Camera 70:EE:50:68:0E:32 Fibaro Door/Window Sensor 3 Sensor N/A
Rbcior Camera Camera 10:5A:17:97:A5:C6 Fibaro Flood Sensor 1 Sensor N/A

SIMCAM 1S (AMPAKTec) Camera 10:2C:6B:1B:43:BE Fibaro Flood Sensor 2 Sensor N/A
TP-Link Tapo Camera Camera 6C:5A:B0:44:1D:90 Fibaro Motion Sensor 1 Sensor N/A

Wyze Camera Camera 7C:78:B2:86:0D:81 Fibaro Motion Sensor 2 Sensor N/A
Yi Indoor Camera Camera 84:7A:B6:64:62:58 Fibaro Motion Sensor 3 Sensor N/A

Yi Indoor 2 Camera Camera 84:7A:B6:62:3A:6C Fibaro Motion Sensor 4 Sensor N/A
Yi Outdoor Camera Camera 2C:D2:6B:66:D2:87 Fibaro Motion Sensor 5 Sensor N/A
Eufy HomeBase 2 Hub 8C:85:80:6C:B6:47 Fibaro Wall Plug 1 Power Outlet N/A

Amazon Plug Power Outlet B8:5F:98:D0:76:E6 Fibaro Wall Plug 2 Power Outlet N/A
Atomi Coffee Maker Home Automation 68:57:2D:56:AC:47 Ring Alarm Keypad Home Automation N/A

Cocoon Smart HVAC Fan Home Automation 08:3A:F2:1F:BC:68 Ring Range Extender Home Automation N/A
Globe Lamp ESP_B1680C Lighting 50:02:91:B1:68:0C Ring Contact Sensor (1) Sensor N/A

GoSund Bulb Lighting C4:DD:57:13:07:C6 Ring Contact Sensor (2) Sensor N/A
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Table 1. Cont.

Device Name Category MAC Address Device Name Category MAC Address
Gosund Power strip (1) Power Outlet 50:02:91:1A:CE:E1 AeoTec TriSensor Sensor N/A
GoSund Power strip (2) Power Outlet B8:F0:09:03:9A:AF AeoTec Doorbell 6 Home Automation N/A

GoSund Smart plug WP2 (1) Power Outlet B8:F0:09:03:29:79 AeoTec Indoor Siren Home Automation N/A
GoSund Smart Plug WP2 (2) Power Outlet 50:02:91:10:AC:D8 AeoTec Smart Switch 7 Home Automation N/A
GoSund Smart plug WP2 (3) Power Outlet 50:02:91:10:09:8F AeoTec Water Sensor 6 Sensor N/A
GoSund Smart Plug WP3 (1) Power Outlet C4:DD:57:0C:39:94 AeoTec NanoMote Quad Home Automation N/A
Gosund Smart Plug WP3 (2) Power Outlet 24:A1:60:14:7F:F9 AeoTec Door/Window Sensor 7 Pro Sensor N/A

Govee Smart Humidifer Home Automation D4:AD:FC:29:C8:A2 AeoTec Temperature and Humidity Sensor Sensor N/A
HeimVision SmartLife Radio/Lamp Lighting D4:A6:51:30:64:B7 Philips Hue White 1 Lighting N/A

iRobot Roomba Home Automation 50:14:79:37:80:18 Philips Hue White 2 Lighting N/A
LampUX RGB Lighting F4:CF:A2:34:48:6B SmartThings Smart Bulb 1 Lighting N/A

Levoit Air Purifier Home Automation 1C:9D:C2:8C:9A:94 SmartThings Smart Bulb 2 Lighting N/A
LIFX Lightbulb Lighting D0:73:D5:35:FB:C8 Aeotec Button Home Automation N/A

SmartThings Hub Hub 28:6D:97:7A:2B:2D AeoTec Motion Sensor Sensor N/A
AeoTec Smart Home Hub Hub 28:6D:97:9E:F4:D5 AeoTec Multipurpose Sensor Sensor N/A

Sengled Smart Plug 2 Power Outlet N/A AeoTec Water Leak Sensor Sensor N/A
SmartThings Button Home Automation N/A Sengled Smart Plug 1 Power Outlet N/A

SmartThings Smart Bulb 3 Lighting N/A Sonoff Smart Plug 2 Power Outlet N/A
Sonoff Smart Plug 1 Power Outlet N/A Arlo Ultra 2 Outdoor Camera Camera N/A

Raspberry Pi 4—4 GB NextGen E4:5F:01:55:90:C4 Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E4:D5
Raspberry Pi 4—8 GB NextGen DC:A6:32:DC:27:D5 Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E5:EF
Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E4:AB Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E4:90
Raspberry Pi 4—2 GB NextGen DC:A6:32:C9:E5:A4 Ring Base Station Hub B0:09:DA:3E:82:6C

Attackers

Fibaro Home Center Lite Hub AC:17:02:05:34:27 Eufy Doorbell Camera Camera N/A
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3.3. Data Collection of Benign and Malicious Scenarios

As described in Section 3.2, a network tap and two traffic monitors are dedicated to
monitoring the network traffic. Every packet sent through the network is stored in separate
computers. In fact, the network has two different interfaces, which are associated with two
other monitoring ports that send incoming packets to these computers. Hence, the network
traffic is monitored using Wireshark [47] and stored in pcap format. Since two data streams
are stored, mergecap [48] is used to unify pcap files for each experiment.

For each attack, a different experiment is performed targeting all applicable devices.
In all scenarios, the attacks are performed by malicious IoT devices targeting vulnerable IoT
devices. For example, DDoS attacks are executed against all devices, whereas web-based
attacks target devices that support web applications. Table 2 depicts the tools used to
perform all attacks alongside the number of rows generated. In addition, Figures 3 and 4
illustrate the instances count for each attack and category. The values are also presented in
Table 3.

Table 2. CICIoT2023: tools and frameworks used to execute attacks.

Attack Rows Tool
ACK Fragmentation 285,104 hping3 [49]

UDP Flood 5,412,287 udp-flood [50]
SlowLoris 23,426 slowloris [51]

ICMP Flood 7,200,504 hping3 [49]
RSTFIN Flood 4,045,285 hping3 [49]

PSHACK Flood 4,094,755 hping3 [49]
HTTP Flood 28,790 golang-httpflood [52]

UDP Fragmentation 286,925 udp-flood [50]
ICMP Fragmentation 452,489 hping3 [49]

TCP Flood 4,497,667 hping3 [49]
SYN Flood 4,059,190 hping3 [49]

DDoS

SynonymousIP Flood 3,598,138 hping3 [49]
TCP Flood 2,671,445 hping3 [49]

HTTP Flood 71,864 golang-httpflood [52]
SYN Flood 2,028,834 hping3 [49]DoS

UDP Flood 3,318,595 hping3 [49] and udp-flood [50]
Ping Sweep 2262 nmap [53] and fping [54]

OS Scan 98,259 nmap [53]
Vulnerability Scan 37,382 nmap [53] and vulscan [55]

Port Scan 82,284 nmap [53]
Recon

Host Discovery 134,378 nmap [53]
Sql Injection 5245 DVWA [56]

Command Injection 5409 DVWA [56]
Backdoor Malware 3218 DVWA [56] and Remot3d [57]
Uploading Attack 1252 DVWA [56]

XSS 3846 DVWA [56]

Web-Based

Browser Hijacking 5859 Beef [58]
Brute Force Dictionary Brute Force 13,064 nmap [53] and hydra [59]

Arp Spoofing 307,593 ettercap [60]
Spoofing DNS Spoofing 178,911 ettercap [60]

GREIP Flood 751,682 Adapted Mirai Source Code [61]
Greeth Flood 991,866 Adapted Mirai Source Code [61]Mirai

UDPPlain 890,576 Adapted Mirai Source Code [61]
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Table 3. Number of rows for each attack and category.

Attack Rows Attack Rows Category Rows
DDoS-ICMP_Flood 7,200,504 DoS-TCP_Flood 2,671,445 DDoS 33,984,560
DDoS-UDP_Flood 5,412,287 DoS-SYN_Flood 2,028,834 DoS 8,090,738
DDoS-TCP_Flood 4,497,667 BenignTraffic 1,098,195 Mirai 2,634,124

DDoS-PSHACK_Flood 4,094,755 Mirai-greeth_flood 991,866 Benign 1,098,195
DDoS-SYN_Flood 4,059,190 Mirai-udpplain 890,576 Spoofing 486,504

DDoS-RSTFINFlood 4,045,285 Mirai-greip_flood 751,682 Recon 354,565
DDoS-SynonymousIP_Flood 3,598,138 DDoS-ICMP_Fragmentation 452,489 Web 24,829

DoS-UDP_Flood 3,318,595 MITM-ArpSpoofing 307,593 BruteForce 13,064
Recon-PingSweep 2262 Uploading_Attack 1252

DDoS-UDP_Fragmentation 286,925 DDoS-HTTP_Flood 28,790
DDoS-ACK_Fragmentation 285,104 DDoS-SlowLoris 23,426

DNS_Spoofing 178,911 DictionaryBruteForce 13,064
Recon-HostDiscovery 134,378 BrowserHijacking 5859

Recon-OSScan 98,259 CommandInjection 5409
Recon-PortScan 82,284 SqlInjection 5245

DoS-HTTP_Flood 71,864 XSS 3846
VulnerabilityScan 37,382 Backdoor_Malware 3218

Figure 3. Number of rows for each scenario.

Figure 4. Number of rows for each category.

3.3.1. Benign Data Generation

The benign data represent the legitimate use of the IoT network. In this sense, the
main goal of the data-capturing procedure relies on gathering IoT traffic in idle states and
with human interactions (e.g., sensor data, echo dot requests, and accessing video feeds
from smart cameras).

In terms of hardware for capturing, we relied on a network tap combined with two
network monitors. In terms of software used, we adopted Wireshark to capture the entire
traffic. Furthermore, all IoT devices are configured with default parameters and without
malicious or attacking scripts. In this sense, benign data traffic gathering happens when
there are no attacks. This process was conducted over a period of 16 h.
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3.3.2. Executing DoS and DDoS Attacks

These attacks refer to flooding threats to compromise the availability of IoT operations.
In the case of Denial-of-Service (DoS) attacks, one Raspberry Pi is responsible for flooding
IoT devices. Furthermore, multiple Raspberry Pis are used to execute Distributed Denial-
of-Service (DDoS) attacks through an SSH-based master-client configuration. The attacks
executed are:

• ACK Fragmentation: a relatively small number of maximum-sized packets is used
to compromise the network operation. In many cases, these fragmented packets are
successfully sent and handled by routers, firewalls, and intrusion prevention systems,
given that fragmented packets recompilation is not performed [62];

• Slowloris: relies on using partial HTTP requests via open connections to a targeted
Web server focusing on the application layer [63];

• ICMP/HTTP/UDP/TCP Flood: based on overwhelming a targeted device with differ-
ent packet types [64–66];

• RST-FIN Flood: degrades networking capabilities by forwarding continuously RST-
FIN packets towards a specific target [67];

• PSH-ACK Flood: degrades server operation by flooding using PUSH and ACK re-
quests [68];

• UDP Fragmentation: refers to a special UDP flood that consumes more bandwidth
while reducing the number of packets [69];

• ICMP Fragmentation: relies on the use of identical fragmented IP packets containing
a portion of a fragmented ICMP message [70];

• SYN Flood: is a specific type of TCP flood that targets the initial handshake of the
TCP connection. The SYN flood sends a large number of SYN (synchronize) packets
to the targeted server, but it never completes the handshake by sending the final ACK
(acknowledge) packet [71];

• Synonymous IP Flood: an extensive number of manipulated TCP-SYN packets with
source and destination addresses as the targeted address, which leads the server to
use its resources to process the incoming traffic [72].

3.3.3. Gathering Information from the IoT Topology

These attacks gather all possible information about the target. In addition, an attacker
can use a reconnaissance (i.e., scan) attack as a preparation step for other attacks. There
are multiple ways to perform these attacks, and some of the most popular and threatening
variations are:

• Ping Sweep: A ping sweep attack, also known as a ping scan, is a type of reconnais-
sance attack used to identify active hosts on a network. It involves sending a series of
ICMP (Internet Control Message Protocol) Echo Request (ping) packets to a range of
IP addresses on a network, and then analyzing the ICMP Echo Reply (pong) packets
that are returned to identify which hosts are active and responding [73];

• OS Scan: An OS (operating system) scan attack, also known as an operating system
fingerprinting attack, is a type of reconnaissance attack that is used to identify the
type and version of an operating system running on a targeted host. The attacker uses
various techniques to gather information about the targeted host, such as analyzing the
responses to network packets, or examining the behavior of open ports and services,
in order to determine the type and version of the operating system [74];

• Vulnerability Scan: A vulnerability scan attack is a type of network security assess-
ment that involves automated tools to identify potential vulnerabilities in a computer
system or network. The goal of a vulnerability scan is to identify security weaknesses
that could be exploited by an attacker to gain unauthorized access to a system or steal
sensitive information [75];

• Port Scan: A port scan attack is a type of reconnaissance attack that is used to identify
open and active ports on a targeted host. The attacker sends a series of packets to
various ports on the targeted host, attempting to establish a connection. The responses
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to these packets are then analyzed to determine which ports are open, closed, or
filtered [76].

• Host Discovery: A host discovery attack, also known as a host identification or
host enumeration attack, is a type of reconnaissance attack that is used to identify
active hosts on a network. It involves using various techniques to identify the IP
addresses of devices that are connected to a network, and it is the first step in many
cyber-attacks [77].

3.3.4. Exploiting Web-Based Vulnerabilities

When executing these attacks, web services running on IoT devices were targeted.
Web-based attacks are concerned with targeting web services in several ways. These attack
types include injection, hijacking, poisoning, spoofing, and DoS [78]. The web-based attacks
executed in this research are:

• SQL Injection: an attack that targets web applications by injecting malicious SQL
code into the application’s input fields. The goal of an SQL injection attack is to gain
unauthorized access to a database, steal sensitive information, or execute arbitrary
commands on the database server [79];

• Command Injection: an attack that targets web applications by injecting malicious
commands into an input field with the ultimate goal of gaining unauthorized access
to a system, stealing sensitive information, or executing arbitrary commands on the
targeted system [80];

• Backdoor Malware: involves installing malware on a targeted system that allows
the attacker to gain unauthorized access to the system at a later time. The malware,
known as a “backdoor,” creates a hidden entry point into the system that can be
used to bypass security measures and gain access to sensitive information or perform
malicious actions [81];

• Uploading Attack: targets a web application by exploiting vulnerabilities in the ap-
plication’s file upload functionality. The goal of an uploading attack is to upload
malicious files, such as malware, to a targeted system and use them to gain unautho-
rized access or execute arbitrary code on the targeted system;

• Cross-Site Scripting (XSS): allows an attacker to inject malicious code (e.g., a script)
into a web page. The injected script can then be executed by the web browser of any
user with access to the page, allowing the attacker to steal sensitive information (e.g.,
cookies, session tokens, and personal data) or to perform other malicious activities
(e.g., traffic redirection) [82];

• Browser Hijacking: a type of cyber attack in which an attacker modifies a web
browser’s settings, such as the home page, default search engine, or bookmarks in
order to redirect the user to a different website or display unwanted ads. The goal
of a browser hijacking attack is to generate revenue through advertising or to steal
personal information [83].

3.3.5. Spoofing Communication

Spoofing attacks enable malicious actors to operate under the identity of a victim
system and gain illegitimate access to the network traffic. The main focus of such a
procedure includes gaining access to systems, stealing data, and spreading malware [84].
Two of the most popular spoofing attacks are:

• ARP spoofing: relies on the transmission of manipulated ARP (Address Resolution
Protocol) messages to associate the MAC address of the malicious device with the
IP address of some other legitimate device in the network. This enables attackers to
intercept, modify, or block network traffic [85];

• DNS spoofing: relies on the alteration of DNS entries in a DNS server’s cache, redi-
recting users to manipulated or malicious websites. This enables attackers to steal
sensitive information, spread malware, and perform other malicious actions [86].
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3.3.6. Brute-Force Threats

Brute-force attacks consist of the submission of data (e.g., passwords or passphrases) to
eventually gain access to systems [87]. Among the several procedures that can be executed,
a dictionary brute-force attack is a type of attack that attempts to guess a password or
passphrase by repeatedly trying words from a pre-defined list of words obtained from
various sources. The goal of the attack is to find the correct password by trying all the
words in the dictionary [88].

3.3.7. Mirai as an IoT Threat

The Mirai attack is a large-scale DDoS that can target IoT devices. In this paper, we
are conducting different variations of Mirai attacks by using five different raspberries, as
illustrated in Figure 5, alongside the connections considered in the different IoT network
layers. In order to connect to the Internet, a gateway uses a Windows 10 instance to
provide and monitor Internet access. This access is possible through a Netgear unmanaged
switch that connects attackers and general IoT devices. Several tools are used to perform
the attacks and a special Mirai configuration is also adopted. An online IoT supervisor
coordinates the operation of the multiple IoT devices in the topology (e.g., sensors, cameras,
and smart speakers). Finally, some other works do not consider Mirai in their attack set. In
fact, we focus on several attacks that can be executed against IoT devices, and we consider
the analysis and execution of new IoT attacks in the future directions of this research (e.g.,
attacks using future protocols).

Figure 5. Basic attack framework for the dataset.
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This attack infected devices to form a botnet that can flood targeted victims. This threat
can cause disruption in different contexts and some of its most popular variations are:

• GREIP: Within the GRE packet, this attack floods the target system with encapsulated
packets. The internal data comprise random IPs and ports, whereas the external layer
contains actual IPs [89];

• GREETH: This attack presents a similar procedure to GREIP. However, the main focus
is on the packet encapsulation approach, which is based on the ethernet header [89];

• UDP Plain: This threat focuses on flooding targeted victim systems with UDP packets
considering a repeated packet segment. However, the payload sent is different for
each packet [89].

4. Feature Extraction and Data Description

The CICIoT2023 dataset is available in two different file formats: pcap and csv. Pcap
files comprise the original data generated and collected in the CIC IoT network in different
scenarios. These files contain all packets sent and can be used to extract and engineer
other features. Furthermore, csv files present a simpler way of loading and using the data.
Those files are composed of features extracted from the original pcap files summarized by
a fixed-size packet window. In other words, the features are extracted from a sequence of
packets carrying information between two hosts.

The method adopted to produce the dataset is illustrated in Figure 6. Firstly, the data
are generated (i.e., captured), extracted, and labeled. This refers to the initial step, in which
the actual attacks are executed against IoT devices. Then, the data are processed in a way
to enable researchers to access the data generated easily. Finally, we conduct a machine
learning (ML) evaluation to show how classification capabilities can be leveraged by the
proposed dataset.

Figure 6. Method adopted to produce the dataset.

Figure 7 illustrates how the data generation, extraction, and labeling are conducted
for each attack scenario (and benign scenario). The first phase relies on the use of different
tools presented in Table 2 to execute attacks against IoT devices in the network. After that,
the network traffic is captured in pcap format using Wireshark. Finally, for each attack
executed, the entire traffic captured is labeled as belonging to that particular attack.

Figure 7. Method adopted to produce the dataset.

Regarding the data processing step, illustrated in Figure 8, the network traffic data
composed of captures of all attacks alongside benign traffic are used. As it represents
about 548 GB worth of traffic data, we split it into smaller chunks of 10 MB to perform
the conversion in parallel. This process is conducted using TCPDUMP [90]. After that, a
parallel procedure is executed to extract several features using the DPKT package [91] and
store them in separate csv files. These features are described in Table 4. In this process,
DPKT is used to enable a flexible feature extraction procedure considering important
attributes of the IoT operation highlighted in previous works. Conversely, other tools
can also be used to extract features, e.g., CICFlowMeter [92] and Nfstream [93]. In this
stage, we also perform the data cleaning by removing incomplete packets (i.e., packets that
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present null features). In our experiments, we only remove the timestamp from the list
since it does not illustrate the network behavior—instead, it is used for sorting. In this case,
all other features are directly used to evaluate how different ML models perform in such
circumstances.

Figure 8. Data processing: converting pcap files to csv.

These features are extracted based on proposals present in the literature regarding
IoT security [8,46]. In fact, although these features have been used and validated in other
efforts, our main goal is to present a flexible approach to training ML models with multiple
features. Thus, several other features can be extracted or engineered based on the scripts
used in this research as well as the raw network traffic (i.e., pcap files).

With the extracted features, we group the values captured in window sizes of 10 (i.e.,
Backdoor Malware, Benign Traffic, Browser Hijacking, Command Injection, Dictionary
brute force, DNS spoofing, MITM ARP spoofing, Host Discovery, OS Scan, Ping Sweep,
Port Scan, SQL Injection, Uploading Attack, Vulnerability Scan, and XSS) and 100 (DDoS
ACK Fragmentation, DDoS HTTP Flood, DDoS ICMP Flood, DDoS ICMP Fragmentation,
DDoS PSHACK Flood, DDoS RSTFIN Flood, DDoS SlowLoris, DDoS SYN Flood, DDoS
SynonymousIP Flood, DDoS TCP Flood, DDoS UDP Flood, DDoS UDP Fragmentation, DoS
HTTP Flood, DoS SYN Flood, DoS TCP Flood, DoS UDP Flood, Mirai GREIP Flood, Mirai
Greeth Flood, and Mirai UDPPlain) packets to mitigate data size discrepancy (e.g., DDoS
and CommandInjection) and calculate their mean values using Pandas [94] and Numpy [95].
Finally, we combine all subfiles into a processed csv dataset using Pandas. Thereupon, the
resulting csv datasets represent the combination of features of each data chunk.

Moreover, each attack conducted in this research presents different characteristics. For
example, the network traffic generated by a DDoS attack tends to be larger than the network
traffic generated by a spoofing attack. Indeed, these differences can also be observed in
other features of the dataset. Table 4 lists all features provided in the dataset, which Table 5
presents the characteristics of these features. For each feature in the entire dataset, we
present the mean, standard deviation (std), minimum (min), 25th percentile (25%), median
(50%), 75th percentile (75%), and maximum (max) values.
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Table 4. Features extracted from the network traffic.

# Feature Description
1 ts Timestamp
2 flow duration Duration of the packet’s flow
3 Header Length Header Length
4 Protocol Type IP, UDP, TCP, IGMP, ICMP, Unknown (Integers)
5 Duration Time-to-Live (ttl)
6 Rate Rate of packet transmission in a flow
7 Srate Rate of outbound packets transmission in a flow
8 Drate, Rate of inbound packets transmission in a flow
9 fin flag number Fin flag value

10 syn flag number Syn flag value
11 rst flag number Rst flag value
12 psh flag numbe Psh flag value
13 ack flag number Ack flag value
14 ece flag numbe Ece flag value
15 cwr flag number Cwr flag value
16 ack count Number of packets with ack flag set in the same flow
17 syn count Number of packets with syn flag set in the same flow
18 fin count Number of packets with fin flag set in the same flow
19 urg coun Number of packets with urg flag set in the same flow
20 rst count Number of packets with rst flag set in the same flow
21 HTTP Indicates if the application layer protocol is HTTP
22 HTTPS Indicates if the application layer protocol is HTTPS
23 DNS Indicates if the application layer protocol is DNS
24 Telnet Indicates if the application layer protocol is Telnet
25 SMTP Indicates if the application layer protocol is SMTP
26 SSH Indicates if the application layer protocol is SSH
27 IRC Indicates if the application layer protocol is IRC
28 TCP Indicates if the transport layer protocol is TCP
29 UDP Indicates if the transport layer protocol is UDP
30 DHCP Indicates if the application layer protocol is DHCP
31 ARP Indicates if the link layer protocol is ARP
32 ICMP Indicates if the network layer protocol is ICMP
33 IPv Indicates if the network layer protocol is IP
34 LLC Indicates if the link layer protocol is LLC
35 Tot sum Summation of packets lengths in flow
36 Min Minimum packet length in the flow
37 Max Maximumpacket length in the flow
38 AVG Average packet length in the flow
39 Std Standard deviation of packet length in the flow
40 Tot size Packet’s length
41 IAT The time difference with the previous packet
42 Number The number of packets in the flow

43 Magnitude
(Average of the lengths of incoming packets in the flow +
average of the lengths of outgoing packets in the flow)0.5

44 Radius
(Variance of the lengths of incoming packets in the flow +
variance of the lengths of outgoing packets in the flow)0.5

45 Covariance Covariance of the lengths of incoming and outgoing packets

46 Variance
Variance of the lengths of incoming packets in the flow/
variance of the lengths of outgoing packets in the flow

47 Weight Number of incoming packets × Number of outgoing packets
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Table 5. Dataset description.

Feature Mean Std Min 25% 50% 75% Max
flow_duration 5.76544939 285.034171 0 0 0 0.10513809 394,357.207

Header_Length 76,705.9637 461,331.747 0 54 54 280.555 9,907,147.75
Protocol Type 9.06568989 8.94553292 0 6 6 14.33 47

Duration 66.3507169 14.0191881 0 64 64 64 255
Rate 9064.05724 99,562.4906 0 2.09185589 15.7542308 117.384754 8,388,608
Srate 9064.05724 99,562.4906 0 2.09185589 15.7542308 117.384754 8,388,608
Drate 5.46 × 10−6 0.00725077 0 0 0 0 29.7152249

fin_flag_number 0.08657207 0.28120696 0 0 0 0 1
syn_flag_number 0.20733528 0.40539779 0 0 0 0 1
rst_flag_number 0.09050473 0.28690351 0 0 0 0 1

psh_flag_number 0.08775006 0.28293106 0 0 0 0 1
ack_flag_number 0.12343168 0.32893207 0 0 0 0 1
ece_flag_number 1.48 × 10−6 0.00121571 0 0 0 0 1
cwr_flag_number 7.28 × 10−7 0.00085338 0 0 0 0 1

ack_count 0.09054283 0.28643144 0 0 0 0 7.7
syn_count 0.33035785 0.6635354 0 0 0 0.06 12.87
fin_count 0.09907672 0.32711642 0 0 0 0 248.32
urg_count 6.23982356 71.8524536 0 0 0 0 4401.7
rst_count 38.4681213 325.384658 0 0 0 0.01 9613

HTTP 0.04823423 0.21426079 0 0 0 0 1
HTTPS 0.05509922 0.22817383 0 0 0 0 1

DNS 0.00013068 0.01143079 0 0 0 0 1
Telnet 2.14 × 10−8 0.00014635 0 0 0 0 1
SMTP 6.43 × 10−8 0.00025349 0 0 0 0 1
SSH 4.09 × 10−5 0.00639772 0 0 0 0 1
IRC 1.50 × 10−7 0.00038722 0 0 0 0 1
TCP 0.57383427 0.49451846 0 0 1 1 1
UDP 0.21191758 0.40866676 0 0 0 0 1

DHCP 1.71 × 10−6 0.00130903 0 0 0 0 1
ARP 6.62 × 10−5 0.00813521 0 0 0 0 1

ICMP 0.16372157 0.37002273 0 0 0 0 1
IPv 0.99988731 0.01061485 0 1 1 1 1
LLC 0.99988731 0.01061485 0 1 1 1 1

Tot sum 1308.32257 2613.30273 42 525 567 567.54 127,335.8
Min 91.6073456 139.695326 42 50 54 54 13,583
Max 181.963418 524.030902 42 50 54 55.26 49,014
AVG 124.668815 240.991485 42 50 54 54.0497296 13,583
Std 33.3248065 160.335722 0 0 0 0.37190955 12,385.2391

Tot size 124.691567 241.549341 42 50 54 54.06 135,83
IAT 83,182,525.9 17,047,351.7 0 83,071,566 83,124,522.4 83,343,908 167,639,436

Number 9.49848933 0.81915318 1 9.5 9.5 9.5 15
Magnitue 13.12182 8.62857895 9.16515139 10 10.3923048 10.3967148 164.821115

Radius 47.0949848 226.769647 0 0 0 0.50592128 17,551.2708
Covariance 30,724.3565 323,710.68 0 0 0 1.34421569 154,902,159

Variance 0.0964376 0.233001 0 0 0 0.08 1
Weight 141.51237 21.0683073 1 141.55 141.55 141.55 244.6

5. Machine Learning (ML) Evaluation

In order to demonstrate how the CICIoT2023 dataset can be used to train machine
learning (ML)-based attack detection and classification methods, Figure 9 illustrates the
ML evaluation pipeline adopted in this research. Firstly, we combine all datasets produced
following the procedure presented in Figure 8. In this sense, malicious and benign traffics
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are combined and shuffled into a single dataset (i.e., blended dataset) using PySpark [96].
Once the data are integrated, we evaluate ML performance from three different perspec-
tives: (i) multiclass classification, focussing on classifying 33 individual attacks; (ii) grouped
classification, considering 7 attack groups (e.g., DDoS and DoS); and (iii) binary classifica-
tion (i.e., malicious and benign traffic classification). In each case, the dataset is divided
into the train (80%) and test (20%) sets, which are normalized using the StandardScaler
method [97] before the actual training process. Finally, the results obtained are summarized
as integrated results.

Figure 9. Machine learning (ML) evaluation pipeline adopted in this research.

5.1. Metrics

The evaluation of different ML models and configurations is conducted based on
evaluation metrics. Given that TP represents the True Positives, TN the True Negatives, FP
the False Positive, and FN the False Negatives, the metrics used in this research are [98]:

• Accuracy: responsible for evaluating the classification models by depicting the propor-
tion of correct predictions in a given dataset and is based on the following expression:

Acc =
TP + TN

TP + TN + FP + FN
(1)

• Recall: the ratio of correctly identified labels to the total number of occurrences of that
particular label:

Rec =
TP

TP + FN
(2)

• Precision: the ratio of correctly identified labels to the total number of positive classi-
fications:

Pre =
TP

TP + FP
(3)

• F1-Score: geometric average of precision and recall:

F1 = 2 × Pre × Rec
Pre + Rec

(4)

5.2. Evaluation

In the evaluation process, we adopted five ML methods that have been successfully
used in different applications, including cybersecurity: Logistic Regression [99], Percep-
tron [100], Adaboost [101–103], Random Forest [104], and Deep Neural Network [105].
Figure 10 illustrates the performance of all methods when framing the classification prob-
lem as binary (i.e., malicious and benign), multiclass with 8 classes (i.e., benign and attack
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categories), and multiclass with 34 classes (i.e., benign and all individual attacks). These
results are also depicted in Table 6.

Figure 10. Results obtained in the classification process conducted using different machine learn-
ing models.

For the binary classification, the results show that all methods present high perfor-
mance, whereas accuracy is a metric that all methods reach over 98%, and the F1-score
highlights the difference among these approaches. For example, Perceptron achieves 81%,
showing that it suffers since the minority class (i.e., benign) is misclassified more often. In
the classification of attack groups (i.e., eight classes), the overall performance is degraded
since the classification task becomes more challenging. The Logistic Regression, Perceptron,
and Adaboost methods show a significant decrease in accuracy. This impact is even more
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perceptible for F1-score. However, both Random Forest and Deep Neural Network are
able to maintain high accuracy and F-1 score. These methods also present a decrease in
performance but are capable of achieving F1 scores of 70%.

Table 6. Results obtained in the classification process conducted using different machine learning
models (illustrated in Figure 10).

Metric
Logistic

Regression
Perceptron Adaboost

Random Forest
(RF)

Deep Neural
Network (DNN)

Accuracy 0.80231507 0.8195961 0.607888 0.99164365 0.986118011
Recall 0.59520185 0.507506 0.607675 0.831586401 0.731868794

Precision 0.486752461 0.454634 0.479621 0.704492066 0.665295126
34 classes

F1-score 0.49388408 0.4472933 0.473498 0.714021981 0.672346883
Accuracy 0.831674188 0.8663152 0.351357 0.994368173 0.991147043

Recall 0.696055597 0.6591315 0.487789 0.91001105 0.906642708
Precision 0.512409686 0.5239188 0.464924 0.705407564 0.679434746

8 classes

F1-score 0.539424048 0.5551339 0.368663 0.71928904 0.69726491
Accuracy 0.989023188 0.9817525 0.995899 0.99680798 0.994422814

Recall 0.890400624 0.7970288 0.947303 0.965163906 0.933277496
Precision 0.863157959 0.825432 0.965631 0.965395244 0.947579486

2 classes

F1-score 0.876258983 0.8105374 0.956273 0.965279544 0.940305998

Finally, the most challenging classification task is represented by a multiclass classifi-
cation of individual attacks (i.e., 34 classes). In this scenario, both Random Forest and Deep
Neural Network could maintain high accuracy with very similar results. The same applies
to F1-score since a slight reduction was perceived (around 1%) compared to the eight-class
challenge. Furthermore, this case study shows that the Logistic Regression, Perceptron, and
Adaboost methods are not able to categorize attacks as efficiently, given that the average
accuracy is below 80% and F1-score is less than 50% in all cases.

These results show how ML methods can be used to classify attacks against IoT opera-
tions. In fact, this is a starting point that can be considered in any ML-based cybersecurity
solutions for IoT operations. This effort not only highlights that the use of other ML
methods is possible (e.g., optimized methods), but also enables the adoption of similar
strategies to solve IoT-specific problems. Finally, although we are focussing on 33 different
attacks, future directions could also be tailored to address issues related to individual
attacks or categories.

5.3. Discussion

To illustrate how these models are performing for each class, Tables 7 and 8 show the
confusion matrix for Random Forest and Deep Neural Networks in the case of multiclass
classification (eight classes).

Table 7. Confusion matrix for Deep Neural Network in the case of multiclass classification (8 classes).

Benign Brute Force DDoS DoS Mirai Recon Spoofing Web

Benign 230,229 1 7 2 0 9270 3812 1
Brute Force 1054 438 3 0 0 1216 271 1

DDoS 23 0 7,523,853 1012 545 653 65 0
DoS 15 0 4933 1,787,065 60 61 33 0

Mirai 10 0 258 41 583,283 64 21 0
Recon 18,517 2 968 30 1 55,656 3455 1

Spoofing 30,485 0 17 0 15 10,021 67,257 3
Web 1976 0 1 0 0 2028 1221 207
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Table 8. Confusion matrix for Random Forest in the case of multiclass classification (8 classes).

Benign Brute Force DDoS DoS Mirai Recon Spoofing Web
Benign 234,929 4 24 2 4 3192 5159 8

.Brute Force 1342 169 1 0 0 844 626 1
DDoS 15 0 7,525,049 557 18 339 173 0
DoS 7 0 1088 1,790,979 34 12 47 0

Mirai 5 0 603 18 582,921 100 30 0
Recon 11,565 6 1418 11 16 60,006 5591 17

Spoofing 14,618 1 18 6 11 4743 88,371 30
Web 1140 1 3 1 1 1265 2792 230

In both cases, it is possible to observe that some classes are very well classified, mainly
those with a large number of occurrences in the dataset. For example, the misclassification
rates for DDoS, DoS, and Mirai are very small, followed by Recon and spoofing.

However, these models face challenges in classifying other attacks. For example,
web-based attacks are usually classified as benign, Recon, or spoofing. The same occurs in
the brute force classification. Although the similarities in the data patterns lead the models
to make these mistakes, the classification is successful in most cases, leading to the results
depicted in Figure 10. In fact, the results show that the multiclass classification performance
degrades for three classes (Benign, Recon, and spoofing). The underlying traffic for those
scenarios can be similar, and we intend to explore this phenomenon in future works further.

Finally, Tables 9 and 10 compare all datasets reviewed with the proposed CICIoT2023
dataset. These tables focus on presenting an analysis of attacks executed in this research
as well as its main contributions, i.e., these datasets may include attacks other than those
shown in these tables.
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Table 9. Comparison CICIoT2023 with existing IoT security datasets.

Attack IoTHIDS N-BaIoT Kitsune IoTNIDS IoT-SH BoT-IoT MedBIoT IoT-23 (2020) IoTIDS MQTT MQTT-IoT-IDS X-IIoTID WUSTL-IIoT Edge-IIoTSet CICIoT2023
ACK

Fragmentation - - - - - - - - - - - - - -

UDP Flood - - - - - - - - - -
SlowLoris - - - - - - - - - - - - - -

ICMP Flood - - - - - - - - - - - - -
RSTFIN Flood - - - - - - - - - - - - - -

PSHACK Flood - - - - - - - - - - - - - -
HTTP Flood - - - - - - - - - -

UDP
Fragmentation - - - - - - - - - - - - - -

ICMP
Fragmentation - - - - - - - - - - - - - -

TCP Flood - - - - - - - - - - - -
SYN Flood - - - - - - - - - - - -

DDoS

SynonymousIP
Flood - - - - - - - - - - - - - -

TCP Flood - - - - - - - - -
HTTP Flood - - - - - - - - - - -
SYN Flood - - - - - - - - - -DoS

UDP Flood - - - - - - - - - -
Ping Sweep - - - - - - - - - - - - - -

OS Scan - - - - - -
Vulnerability

Scan - - - - - - - - - -

Port Scan - - - - - -
Recon

Host Discovery - - - - - - - - - - - -
Sql Injection - - - - - - - - - - - -

Command Injection - - - - - - - - - - - - - -
Backdoor Malware - - - - - - - - - - - -
Uploading Attack - - - - - - - - - - - - -

XSS - - - - - - - - - - - -
Web-Based

Browser
Hijacking - - - - - - - - - - - - - -

Brute
Force

Dictionary
Brute
Force

- - - - - - - - -

Arp Spoofing - - - -Spoofing DNS Spoofing - - - - - - - - - - - -
GREIP Flood - - - - -
Greeth Flood - - - - - - -Mirai

UDPPlain - - - - - - -
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Table 10. Comparison CICIoT2023 contributions with existing IoT security datasets.

Extensive
Topology

(>100 Devices)

Execution of
33 Attacks

Divided into
7 Classes

Machine Learning
and

Deep Learning
Evaluation

IoTHIDS
N-BaIoT
Kitsune

IoTNIDS
IoT-SH
BoT-IoT

MedBIoT
IoT-23 (2020)

IoTIDS
MQTT

MQTT-IoT-IDS
X-IIoTID

WUSTL-IIoT
Edge-IIoTSet
CICIoT2023

6. Conclusions

Nowadays, IoT is becoming increasingly important for society. In this context, the
development of security solutions is pivotal to enabling efficient, secure, and dependable
IoT operations. This research introduced a novel and extensive IoT attack dataset to
foster the development of security analytics applications in real IoT operations. In this
process, 33 attacks are executed in an IoT topology composed of 105 devices. These
attacks are classified into seven categories (i.e., DDoS, DoS, Recon, Web-based, brute force,
spoofing, and Mirai) and all attacks are executed by malicious IoT devices targeting other
IoT devices. Furthermore, this dataset includes multiple attacks not available in other
IoT datasets and enables IoT professionals to develop new security analytics solutions
using data in different formats. The dataset is available through the CIC Dataset website
(https://www.unb.ca/cic/datasets/index.html, accessed on 19 June 2023).

Compared to the state-of-the-art publications, the CICIoT2023 dataset extends existing
IoT security insights by using an extensive topology with a variety of IoT devices, executing
several attacks never present in a single IoT security dataset, and analyzing how widely-
used machine learning (ML) methods perform in different classification scenarios.

Finally, this work enables the development of several future works, e.g., the optimiza-
tion of ML models, the analysis of features and how they influence different ML models, the
interpretation of classifications, and the analysis of transferability based on the comparison
to other datasets.
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10. Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues.
Comput. Netw. 2018, 144, 17–39. [CrossRef]

11. Safi, M.; Kaur, B.; Dadkhah, S.; Shoeleh, F.; Lashkari, A.H.; Molyneaux, H.; Ghorbani, A.A. Behavioural Monitoring and Security
Profiling in the Internet of Things (IoT). In Proceedings of the 2021 IEEE 23rd Int Conf on High Performance Computing &
Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in
Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, China, 20–22 December 2021;
pp. 1203–1210.

12. Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci.
2020, 2, 139. [CrossRef]
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