
Citation: Li, H.; Liu, X.; Zhao, W.

Research on Lightweight

Microservice Composition

Technology in Cloud-Edge

Device Scenarios. Sensors 2023, 23,

5939. https://doi.org/10.3390/

s23135939

Academic Editor: Claudia Campolo

Received: 31 May 2023

Revised: 22 June 2023

Accepted: 23 June 2023

Published: 26 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Lightweight Microservice Composition Technology
in Cloud-Edge Device Scenarios
Hanqi Li , Xianhui Liu * and Weidong Zhao

School of Electronics and Information Engineering, Tongji University, Shanghai 200092, China;
lihanqi0717@icloud.com (H.L.); wd@tongji.edu.cn (W.Z.)
* Correspondence: lxh@tongji.edu.cn

Abstract: In recent years, cloud-native technology has become popular among Internet companies.
Microservice architecture solves the complexity problem for multiple service methods by decom-
posing a single application so that each service can be independently developed, independently
deployed, and independently expanded. At the same time, domestic industrial Internet construction
is still in its infancy, and small and medium-sized enterprises still face many problems in the process
of digital transformation, such as difficult resource integration, complex control equipment workflow,
slow development and deployment process, and shortage of operation and maintenance personnel.
The existing traditional workflow architecture is mainly aimed at the cloud scenario, which consumes
a lot of resources and cannot be used in resource-limited scenarios at the edge. Moreover, traditional
workflow is not efficient enough to transfer data and often needs to rely on various storage mecha-
nisms. In this article, a lightweight and efficient workflow architecture is proposed to optimize the
defects of these traditional workflows by combining cloud-edge scene. By orchestrating a lightweight
workflow engine with a Kubernetes Operator, the architecture can significantly reduce workflow
execution time and unify data flow between cloud microservices and edge devices.

Keywords: workflow; microservice; workflow engine; industrial internet; edge computing; cloud
edge combination

1. Introduction

With the rapid development of technologies, such as cloud-native [1] and the Internet
of Things, users have increasingly diverse demands for software systems. A service-
oriented architecture [2] needs to strike a balance between stable service integration and
flexible adaptation to user requirements. Therefore, microservices [3,4], which can run as
independent processes and be deployed independently [5], have emerged as a promis-
ing solution.

At the same time, industrial microservices has been the carriers of IIoT (Industrial
Internet of Things) platforms, which are software architectures based on modular combina-
tions of single-function components to achieve “loose coupling” application development.
A microservice is a small, independently deployable application that is designed to perform
a single function. By combining multiple isolated microservices with different functions as
needed [6] and enabling them to communicate with each other through APIs [7], a complete
large-scale application system [8,9] can be constructed.

Currently, the construction of the IIoT in China is still in a stage of rapid development.
However, small and medium-sized enterprises face certain challenges in the process of
digital transformation and accessing the industrial Internet.

Firstly, when facing small and medium-sized enterprises in different vertical industries,
few IIoT platforms can provide comprehensive solutions tailored to specific industries.
Secondly, current IIoT applications are generally based on microservice architectures,
which have complex installation processes and are difficult to apply quickly in small and

Sensors 2023, 23, 5939. https://doi.org/10.3390/s23135939 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135939
https://doi.org/10.3390/s23135939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0006-1689-686X
https://orcid.org/0000-0002-2097-4561
https://doi.org/10.3390/s23135939
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135939?type=check_update&version=2

Sensors 2023, 23, 5939 2 of 16

medium-sized enterprises. Thirdly, the batch deployment and maintenance of microservice
applications are challenging and require a large number of personnel with relevant mi-
croservice expertise, which may be unaffordable for small and medium-sized enterprises.
Fourthly, edge devices come in various forms and have complex protocols, making it diffi-
cult to combine them with cloud applications. In conclusion, microservice composition is
the core problem that needs to be solved for the rapid implementation of IIoT applications,
and there is not yet enough in-depth research in this area.

In this context, this article proposes a cloud-edge combined lightweight microser-
vice composition solution aimed at addressing process control [10]. The solution aims to
integrate independent industrial microservice devices, including hardware devices and
intelligent sensor terminals, with cloud microservice applications using cloud-native oper-
ating system extension technology [11]. The solution manages a self-developed lightweight
microservice composition engine [12] and builds a cloud-edge combined microservice com-
position platform to address the pain points of slow development, complicated deployment,
and complex maintenance in small and medium-sized enterprises’ digital transformation in
the IIoT. The design of this article fully considers the limited conditions of edge resources,
treats workflow as a resource, reduces workflow nodes from containers to user-level
threads, and efficiently connects cloud services and edge devices in cloud-edge scenarios.

2. Related Work
2.1. Cloud-Edge Integration

Cloud-edge integration refers to the ability to monitor and manage distributed cloud,
edge, and endpoint resources on a unified platform based on resource integration. It
enables a unified perspective on operation and maintenance capabilities, simplifies user
operations to the greatest extent possible, and enables intelligent inspection, alarm, upgrade,
governance, and other capabilities for terminal devices, effectively reducing costs.

Research by Qiang Du and others [13] explores the concept, architecture framework,
related technologies, and future development directions of cloud-edge integration. In
cloud-edge integration, achieving efficient resource management and coordination, as well
as innovative and optimized business models, are essential challenges.

2.2. Business Composition Modes

In cloud-native and distributed scenarios, more applications are split into multiple
independent microservices that can be independently deployed, scaled, and updated [14,15].
However, dispersed microservices can also bring problems in terms of protocols, communi-
cation, and orchestration [16–18]. In this context, exploring a concise and efficient business
composition mode has become a vital issue in the application orchestration field.

In the joint announcement of the Open Application Model (OAM) by Alibaba Cloud
and Microsoft, a design concept of separation of concerns is proposed. The goal is for
platform architects to quickly encapsulate the platform’s operation and maintenance ca-
pabilities into reusable components, allowing the application’s developers to focus on
integrating these operation and maintenance components with their code. Based on this
goal, the OAM standard proposes concepts such as application components, application
deployment configuration files, and features for application operation and maintenance to
define a platform-independent, highly scalable application description capability.

Based on the design concept of separation of concerns, we constructed a set of applica-
tion deployment and release composition systems, attempting to shield the complexities of
the underlying infrastructure operating environment and provide a concise and efficient
microservice composition application management experience.

2.3. Workflow Composition Model

Currently, mainstream cloud-native workflows are based on native CICD
(Continuous Integration and Continuous Delivery) workflows [19]. Cloud-native CICD
workflows are used for building and deploying applications in a cloud-native architecture.

Sensors 2023, 23, 5939 3 of 16

To ensure that different applications do not interfere with each other, each workflow node
often spins up a separate container. This design has many advantages in a continuous inte-
gration environment, but when it comes to the combination of applications and processes,
spinning up and recycling containers can consume a lot of machine resources, leading to
slow workflow execution. Therefore, this CICD workflow composition model has severe
performance defects in application composition execution.

2.4. Optimization for Cloud Edge Scenarios

Research by Prohim Tam and others [20] mainly focuses on optimizing the offloading
process of multi-service tasks in federated learning. The authors propose an intelligent
agent based on deep reinforcement learning, which combines software-defined networking
and network function virtualization to offload tasks to edge computing nodes in order to
improve the efficiency of federated learning in edge environments. The article introduces
the system model, including communication and computation aspects, and proposes an
optimized multi-service task offloading method. By considering factors such as completion
time, energy consumption, and round communications, the article designs a reward mech-
anism to optimize the construction of the global model. Experimental results show that the
method achieves significant effects in reducing communication overhead and improving
system performance.

Research by Caihong Kai and others [21] presents a collaborative cloud-edge-end
computing framework for improving the efficiency of task processing in mobile-edge com-
puting networks. The proposed framework involves the partial processing of computation-
intensive and latency-sensitive tasks at terminals, edge servers, and the cloud. To address
the optimization problem of minimizing the sum latency of all mobile devices, a pipeline-
based offloading scheme is introduced. The non-convex problem is transformed into a
convex one using the SCA (successive convex approximation) approach. Simulation results
demonstrate that the collaborative offloading scheme with the pipeline strategy outper-
forms other offloading schemes in terms of efficiency. Additionally, the article highlights
the need for further optimization and updates of conventional approaches such as power al-
location, computation offloading/allocation, handover, and subcarrier allocation to support
future environment requirements in mobile-edge computing networks.

3. Business Framework

Based on the design concepts of separation of concerns, lightweight, and scalability, we
proposed a workflow model based on user-level threads and message channels, separating
the process control module from the control plane and deploying it as a separate workflow
composition engine to the data plane to connect various services. This reduces the time
required for starting and recycling each process container and the execution efficiency is
equivalent to that of native systems. The framework is shown in Figure 1.

The functional components of the industrial microservice composition business frame-
work include application construction, application store, component repository, etc. The
functional architecture is shown in Figure 2.

The service objects of the industrial microservice composition business framework
include developers and operational service providers. Different entry points need to be
set for different purposes of service objects. We provided a user-friendly and easy-to-use
front-end workflow drawing interface. The component repository is the foundation for
the enterprise development of microservice applications. Enterprises can retrieve the
latest industrial Internet components from the component repository and combine them
into the desired application on the workflow drawing interface while also supporting
edge device registration and adding to the workflow. After the enterprise completes
the workflow-based application construction, it can be published in the customer-facing
application store. Customers can download and deploy the corresponding application
from the application store.

Sensors 2023, 23, 5939 4 of 16Sensors 2023, 23, x FOR PEER REVIEW 4 of 18

Figure 1. Lightweight workflow composition model.

The functional components of the industrial microservice composition business

framework include application construction, application store, component repository, etc.

The functional architecture is shown in Figure 2.

Figure 2. Industrial microservices portfolio business framework.

The service objects of the industrial microservice composition business framework

include developers and operational service providers. Different entry points need to be

set for different purposes of service objects. We provided a user-friendly and easy-to-use

front-end workflow drawing interface. The component repository is the foundation for

the enterprise development of microservice applications. Enterprises can retrieve the lat-

est industrial Internet components from the component repository and combine them into

the desired application on the workflow drawing interface while also supporting edge

device registration and adding to the workflow. After the enterprise completes the work-

flow-based application construction, it can be published in the customer-facing applica-

tion store. Customers can download and deploy the corresponding application from the

application store.

Figure 1. Lightweight workflow composition model.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 18

Figure 1. Lightweight workflow composition model.

The functional components of the industrial microservice composition business

framework include application construction, application store, component repository, etc.

The functional architecture is shown in Figure 2.

Figure 2. Industrial microservices portfolio business framework.

The service objects of the industrial microservice composition business framework

include developers and operational service providers. Different entry points need to be

set for different purposes of service objects. We provided a user-friendly and easy-to-use

front-end workflow drawing interface. The component repository is the foundation for

the enterprise development of microservice applications. Enterprises can retrieve the lat-

est industrial Internet components from the component repository and combine them into

the desired application on the workflow drawing interface while also supporting edge

device registration and adding to the workflow. After the enterprise completes the work-

flow-based application construction, it can be published in the customer-facing applica-

tion store. Customers can download and deploy the corresponding application from the

application store.

Figure 2. Industrial microservices portfolio business framework.

4. Technical Architecture

In response to various problems arising from the combination of Kubernetes clusters
in cloud and edge, we proposed a lightweight microservice workflow platform architecture
(indicated by the black dotted box in Figure 3). The main components are the workflow
drawing front, control plane, and data plane. The implementation of this architecture is
shown in Appendix A.

Sensors 2023, 23, 5939 5 of 16

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18

4. Technical Architecture

In response to various problems arising from the combination of Kubernetes clusters

in cloud and edge, we proposed a lightweight microservice workflow platform architec-

ture (indicated by the black dotted box in Figure 3). The main components are the work-

flow drawing front, control plane, and data plane. The implementation of this architecture

is shown in Appendix A.

Firstly, in response to the demand for an all-in-one solution for industrial Internet

platforms and the existing problems, this architecture solves them by extending the con-

trol plane in the form of plugins. By accessing cloud databases, log management modules

and monitoring modules, it ensures the data security and stability of the platform. Harbor

is used as the image repository to manage private images used in the workflow. Secondly,

to solve the problem of complex platform installation and deployment, this architecture

uses Helm as the deployment tool, which can deploy all controllers and dependencies

with one click. Thirdly, to address the problem of complex workflow application mainte-

nance, Kubernetes native CRD (Custom Resource Definition) is used as the orchestration

unit, and the lifecycle of all applications is managed through the mature Kubernetes sys-

tem, increasing the usability and reliability of application maintenance. Finally, in re-

sponse to the problem of edge device management and cloud microservice integration,

this architecture combines open-source device access frameworks to deploy device data

synchronization controllers in the edge, synchronizing device data to cloud CRDs for us-

ers to manage devices in a cloud-native way. The Astermule workflow engine is used to

unify the data flow between the cloud and the edge, filling the data gap between the cloud

and the edge.

The lightweight microservice composition technology architecture we proposed in

this article is shown in Figure 3.

Figure 3. Cloud-edge combination of lightweight micro-service composite platform architecture.
Figure 3. Cloud-edge combination of lightweight micro-service composite platform architecture.

Firstly, in response to the demand for an all-in-one solution for industrial Internet
platforms and the existing problems, this architecture solves them by extending the control
plane in the form of plugins. By accessing cloud databases, log management modules and
monitoring modules, it ensures the data security and stability of the platform. Harbor is
used as the image repository to manage private images used in the workflow. Secondly,
to solve the problem of complex platform installation and deployment, this architecture
uses Helm as the deployment tool, which can deploy all controllers and dependencies with
one click. Thirdly, to address the problem of complex workflow application maintenance,
Kubernetes native CRD (Custom Resource Definition) is used as the orchestration unit,
and the lifecycle of all applications is managed through the mature Kubernetes system,
increasing the usability and reliability of application maintenance. Finally, in response to the
problem of edge device management and cloud microservice integration, this architecture
combines open-source device access frameworks to deploy device data synchronization
controllers in the edge, synchronizing device data to cloud CRDs for users to manage
devices in a cloud-native way. The Astermule workflow engine is used to unify the data
flow between the cloud and the edge, filling the data gap between the cloud and the edge.

The lightweight microservice composition technology architecture we proposed in
this article is shown in Figure 3.

The workflow drawing front end is responsible for providing users with a friendly
workflow design interface, making it easy for users to draw microservice workflows like
flowcharts and providing essential workflow management functions such as deployment,
saving, and loading.

The control plane project, named Astertower, integrates components such as backend
service gateways, workflow application management, private image management, and
workflow engine controllers. The backend service gateway provides essential access control
functions for backend applications. The workflow application management integrates cloud
databases to store workflow information. The private image management component,
which is called Harbor, provides users with a private image repository to develop their
own private microservice applications. The workflow engine controller is the core of the

Sensors 2023, 23, 5939 6 of 16

entire control plane, responsible for deploying specific workflow application nodes and
controlling Astermule (the self-developed workflow engine of this platform), which is used
to manage the deployment and execution of workflows.

The data plane consists of multiple services that correspond to multiple workflows
and multiple Astermule workflow engines. Each workflow’s services correspond to an
Astermule. Astermule exists in the form of containers and is injected with the correspond-
ing workflow information and bound to the workflow by the workflow engine controller in
Astertower when it starts. Afterwards, Astermule is responsible for the data flow commu-
nication between various microservices and devices during the execution of the workflow.

4.1. Business Process Model

Based on BPMN (Business Process Model and Notation), this article proposes a mi-
croservice workflow design framework that is based on BPMN 2.0. BPMN is a standard
symbols and notation language used for business process modeling. Using BPMN can
clarify business processes, facilitate communication and collaboration, improve efficiency,
optimize business processes, and support automation. This tool can help enterprises bet-
ter manage and optimize their business processes, improve efficiency, reduce costs, and
increase customer satisfaction.

4.2. Astertower Control Plane

In the control layer, we designed and developed the Astertower control plane. The
Astertower control plane mainly serves as the backend and Kubernetes controller, and its
core is the orchestration of resources required for workflow execution. The Astertower
control plane takes on the tasks of workflow parsing and node deployment while also
creating an Astermule workflow engine with a corresponding mode that is deployed as a
Kubernetes Pod instance.

4.2.1. Building Backend Services and Parsing Workflows

As the backend, Astertower is responsible for converting the workflow description
file sent by the front end into a yaml format file. During the parsing process, it checks
the correctness of the workflow (whether there are loops in the diagram describing the
workflow, whether the workflow nodes have duplicate names, etc.). In addition, it is also
responsible for functions such as saving and loading workflows.

Astertower registers a custom resource called Astro with Kubernetes, which corre-
sponds to each workflow. The goal of the backend service for parsing workflows is to create
Astro resource files. The definition of an Astro resource file is shown in Figure 4.

4.2.2. Astertower Controller

The core function of the Astertower control plane is to register the custom resource
Astro (which is a Kubernetes custom resource that describes workflows and follows the
Kubernetes API extension standard) and the custom controller with Kubernetes and man-
age the orchestration of workflows in a native Kubernetes way. The controller architecture
is shown in Figure 5.

Before starting the Astermule workflow engine, the Astertower control plane must
ensure that all required microservices and edge devices are ready. The edge devices are
synchronized as Kubernetes custom resources by OpenYurt, and the Astermule engine
shown Figure 5 accesses the API server to obtain the necessary device information. There-
fore, each time the Astertower controller creates an Astro workflow resource, it creates a
Deployment instance and a Service corresponding to the workflow node in Kubernetes and
adds an Owner Reference to enable Kubernetes to perform garbage collection when the
workflow is deleted.

In the design of the execution process of the controller, we propose seven phases of
the controller. These seven stages are listed in Table 1.

Sensors 2023, 23, 5939 7 of 16Sensors 2023, 23, x FOR PEER REVIEW 7 of 18

Figure 4. Definition of Astro custom resources.

4.2.2. Astertower Controller

The core function of the Astertower control plane is to register the custom resource

Astro (which is a Kubernetes custom resource that describes workflows and follows the

Kubernetes API extension standard) and the custom controller with Kubernetes and man-

age the orchestration of workflows in a native Kubernetes way. The controller architecture

is shown in Figure 5.

Figure 5. Astertower controller.

Figure 4. Definition of Astro custom resources.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18

Figure 4. Definition of Astro custom resources.

4.2.2. Astertower Controller

The core function of the Astertower control plane is to register the custom resource

Astro (which is a Kubernetes custom resource that describes workflows and follows the

Kubernetes API extension standard) and the custom controller with Kubernetes and man-

age the orchestration of workflows in a native Kubernetes way. The controller architecture

is shown in Figure 5.

Figure 5. Astertower controller.
Figure 5. Astertower controller.

Sensors 2023, 23, 5939 8 of 16

Table 1. The phase definition of Astro CRD.

Phase Definition

Initialized Astro CRD Reconciling for the first time
Waited Wait for the required deployment and service to be deployed

DeployFailed The required deployment and service deployment failed
EngineFailed Astermule engine deployment failed

Ready The required resources and engines are deployed successfully. Wait for the
controller to send a request to the engine

Success The workflow engine Astermule executed successfully and the result was
written to the result field of the Astro CRD

Wrong Astermule workflow engine execution failure

These seven phases contain all the control logic executed by a workflow. The Astertower
controller obtains the current phase of Astro by accessing the phase field of Astro CRD and
executes different logic according to different phases, as shown in Figure 6 and Algorithm 1.

Algorithm 1. Astertower controller reconciling process

Input: The key to getting the astro needed reconciling
Output: A reconciling completed

Initialization:
Register Astro CRD with Kubernetes.

Register with kube-apiserver to monitor Astro resources, Deployment resources, and Service resources.
Launch the Astertower controller as a Pod in Kubernetes. The controller applies for multiple Go threads as workers.
Each change of watched resources causes the Astro to enter a rate-limiting queue, waiting to be picked up and executed

by an idle worker.
The following code is the logic for each worker’s execution.

1. A change event occurred and Astro that needs to be synchronized was obtained
2. namespace, name:=cache.SplitMetaNamespaceKey(key)

Get an Astro object (workflow object) information from the waiting queue using key

3. astro, err:=c.astroLister.Astros(namespace).Get(name)

Use this information to get the real object from the kube-apiserver

4. if (astro.DeletionTimestamp.IsNotZero()) then
5. delete(astro)
6. end if

Each deleted Astro object is time-stamped and scheduled to the worker to perform the actual deletion action

7. else if (astro.HasFinalizer(AstroFinalizer)) then
8. switch astro.status.phase
9. case AstroPhaseInitialized:
10. if all status of resources is Ready then
11. astro.status.phase = AstroPhaseWaited
12. else
13. astro.status.phase = AstroPhaseDeployFailed
14. end if

In the initialization phase, it is necessary to check whether the deployment and service corresponding to all nodes are
completed. If they are completed, they can enter the Wait phase

15. case AstroPhaseWaited:
16. if (astro.status.AstermuleRef.name.isNil()) then
17. astro.status.astermuleRef = newAstermule(astro.namespace,astro.name)
18. else
19. pod = GetPod (astermuleRef.name)
20. if pod.status.phase = corev1.PodRunning then
21. astro.status.phase = AstroPhaseReady
22. else if pod.status.phase = corev1.PodFailed then
23. astro.status.phase = AstroPhaseEngineFailed
24. end if
25. end if

The waiting phase starts the workflow engine as a pod

26. case AstroPhaseDeployFailed:
27. HandleDeployError()

Deploy error occurred, error handling

Sensors 2023, 23, 5939 9 of 16

28. case AstroPhaseEngineFailed:
29. HandleEngineError()

Engine error occurred, error handling

30. case AstroPhaseReady:
31. astermule = astro.status.astermuleRef
32. pod = GetPod(astermuleRef.name)
33. url = makeURL(pod.status.PodIP)
34. astro.status.result = sendCommand(url)
35. if astro.result.health = true then
36. astro.status.phase = AstroPhaseSuccess
37. else
38. astro.status.phase = AstroPhaseWrong
39. end if

Entering the Ready phase means that all the dependent resources and the workflow engine have been deployed. We need
to find and send a request to the startup URL of the astermule workflow engine, which will then return the result to us

40. else
41. create(astro)
42. for each deployment in astro.spec do
43. if (NotExists(deployment)) then
44. create(deployment)
45. end if
46. end for
47. for each service in astro.spec do
48. if (NotExists(service)) then
49. create(service)
50. end if
51. end for
52. astro.status.phase = AstroPhaseInitialized
53. AddFinalizer(astro)

The first Astro creation goes into this branch and sends the deployment commands for all the required resources to
Kubernetes

54. end if

4.3. Astermule Workflow Engine

At the data plane, we designed and developed Astermule workflow engines, each of
which exists in a Pod instance form for each specific workflow. After receiving a request
from the control plane, the Astermule engine accesses the corresponding Service for each
Deployment concurrently according to the process and returns the final execution result to
the control layer.

4.3.1. Lightweight and High-Concurrency Design

Based on the lightweight design philosophy, the Astermule workflow engine aims to
minimize additional overhead during workflow execution. In traditional CICD workflows,
a separate Pod is started for each node, which results in significant performance overhead
in the context of service composition. Therefore, Astermule uses a single-process model to
perform service composition, starting only one goroutine for each node (A–D in Figure 7).
The goroutine accesses the corresponding microservice data and device data, and data
is passed between goroutines using Go channels, which are used to pass data in the Go
language’s concurrency mechanism. The design of the Astermule workflow engine is
shown in Figure 7.

Sensors 2023, 23, 5939 10 of 16

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18

51. end for

52. astro.status.phase = AstroPhaseInitialized

53. AddFinalizer(astro)

The first Astro creation goes into this branch and sends the deployment commands for all the re-

quired resources to Kubernetes

54. end if

Figure 6. Astertower controller reconciling flowchart.

4.3. Astermule Workflow Engine

At the data plane, we designed and developed Astermule workflow engines, each of

which exists in a Pod instance form for each specific workflow. After receiving a request

from the control plane, the Astermule engine accesses the corresponding Service for each

Deployment concurrently according to the process and returns the final execution result

to the control layer.

4.3.1. Lightweight and High-Concurrency Design

Based on the lightweight design philosophy, the Astermule workflow engine aims to

minimize additional overhead during workflow execution. In traditional CICD work-

flows, a separate Pod is started for each node, which results in significant performance

overhead in the context of service composition. Therefore, Astermule uses a single-process

Figure 6. Astertower controller reconciling flowchart.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 18

model to perform service composition, starting only one goroutine for each node (A–D in

Figure 7). The goroutine accesses the corresponding microservice data and device data,

and data is passed between goroutines using Go channels, which are used to pass data in

the Go language’s concurrency mechanism. The design of the Astermule workflow engine

is shown in Figure 7.

Figure 7. Astermule Lightweight workflow engine architecture.

To handle errors that may occur when each goroutine accesses its corresponding mi-

croservice as a client, Astermule uses an error propagation mechanism. The data passed

to each goroutine after the data is processed indicates whether the current node’s access

was successful. If the following goroutine finds out that the previous goroutine’s access

was not successful, it will propagate this information to its successor goroutine. This way,

when the workflow is completed, it will be known whether the execution has failed.

4.3.2. Astermule Execution Process

The data plane consists of many Pod instances of the Astermule components, each of

which corresponds to a workflow and is the core component for data transmission during

workflow execution. It is also a key component for lightweight microservice composition

in this platform. The design architecture of the Astermule component does not depend on

Kubernetes or any specific environment. It is an independent component whose behavior

pattern involves receiving a json file containing node relationships and the address of the

corresponding node service as command-line parameters. After reading the file, it

switches to server mode and waits for an instruction. When it receives the corresponding

instruction, it starts accessing each node in order according to the topology and ensures

that the data from the previous node can be accurately sent to the next node. The Aster-

mule engine execution logic is shown in Figure 8 and Algorithm 2.

Figure 7. Astermule Lightweight workflow engine architecture.

Sensors 2023, 23, 5939 11 of 16

To handle errors that may occur when each goroutine accesses its corresponding
microservice as a client, Astermule uses an error propagation mechanism. The data passed
to each goroutine after the data is processed indicates whether the current node’s access
was successful. If the following goroutine finds out that the previous goroutine’s access
was not successful, it will propagate this information to its successor goroutine. This way,
when the workflow is completed, it will be known whether the execution has failed.

4.3.2. Astermule Execution Process

The data plane consists of many Pod instances of the Astermule components, each of
which corresponds to a workflow and is the core component for data transmission during
workflow execution. It is also a key component for lightweight microservice composition
in this platform. The design architecture of the Astermule component does not depend on
Kubernetes or any specific environment. It is an independent component whose behavior
pattern involves receiving a json file containing node relationships and the address of the
corresponding node service as command-line parameters. After reading the file, it switches
to server mode and waits for an instruction. When it receives the corresponding instruction,
it starts accessing each node in order according to the topology and ensures that the data
from the previous node can be accurately sent to the next node. The Astermule engine
execution logic is shown in Figure 8 and Algorithm 2.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 18

Figure 8. Astermule workflow engine execution flowchart.

Figure 8. Astermule workflow engine execution flowchart.

Sensors 2023, 23, 5939 12 of 16

Algorithm 2. Astermule workflow engine execution process

Input: Node information, deployment and service information for each cloud node, and metadata
information of each device node
Output: Workflow execution result

Initialization:
After startup, wait until the controller sends a request to start executing the following logic.

1. type Message struct {
2. Status Status ‘json:”status”’
3. Data string ‘json:”data”’
4. }

Defines a Message structure for passing state and data between nodes

5. for each node in nodes do
6. for each dep in node.dependencies do
7. ch:=make(chan Message)
8. channelGroup[dep.name].WriteChannel = append(channelGroup[dep.name].WriteChannel,ch)
9. channelGroup[node.name].ReadChannel = append(channelGroup[dep.name].ReadChannel,ch)
10. end for
11. end for

Build a directed edge between nodes, putting read-only channels and writing-only channels into both ends of the directed
edge

12. functionSet:=make([]func())
13. for each node in nodes do
14. chGrp:=channelGroup[node.name]
15. function:=func() {
16. msgs:=make([]Message)
17. for each readChannel in chGrp.ReadChannel do
18. msg:=<-readChannel
19. msgs = append(msgs,msg)
20. end for

A node must read data from all read-only channels to ensure that all of its predecessor nodes are executed

21. mergeMsg:=&Message{}
22. for each msg in msgs do
23. msg.DeepMergeInto(mergeMsg)
24. end for

Data from multiple precursor nodes needs to be merged

25. sendMsg:=&Message{}
26. sendMsg.status.health = true
27. res,err:=Send(node.action,node.url,mergeMsg.data)

Send a request to the url of the current node and send the combined data as input to obtain the data of the current node.
In the specific code, the Send function needs to distinguish whether the local node is a device node. If it is a device node, it
needs to obtain the information from the corresponding device address

28. if (err! = nil) then
29. sendMsg.status.health = false
30. else
31. sendMsg.data = res
32. end if

An error propagation mechanism that propagates an error down a node if an error occurs

33. for each writeChannel in chGrp.WriteChannel do
34. writeChannel<-*sendMsg
35. end for

Sends message to all successor nodes

36. }
37. functionSet = append(functionSet, function)

Each node corresponds to a function object, and the entire graph is constructed as a set of function objects

38. end for
39. execution(functionSet)

Assign each function to a coroutine and start it

40. sendMsgToInitNode()

Sending messages to the channel of nodes that have no precursor launches the entire graph

After creating all the Deployments and Services mentioned above, the Astertower
controller uses Kubernetes’ list-watch function to monitor these resources, ensuring that all
corresponding Service ClusterIPs (used by Kubernetes to load-balance internal services,

Sensors 2023, 23, 5939 13 of 16

where the IP of the Service is the entry point to the corresponding service) are collected
only when all resources are ready. These Service IPs, together with the port and target of
each node described in the Astro resource in Figure 5, are combined into URLs for each
node service. These URLs are then deployed as startup parameters for Astermule so that it
can access the entry points of all service nodes.

For device nodes, the process of obtaining URLs is slightly different. Device nodes
exist in the OpenYurt cluster as custom resources called “Device,” so the corresponding
path of the Device resource in Kubernetes only needs to be specified when filling in the
URL. With RBAC (Kubernetes’ role-based access control) configured, Astermule can access
the kube-apiserver (Kubernetes’ API server) to retrieve device data.

4.3.3. Workflow Engine Model

In the traditional CICD workflow, there are mainly three stages. Firstly, the container
of the node to be executed is started, assuming that the time consumed by this operation is
Ts. After the container is started, the specific logic of the node is executed, assuming that
the time consumed by this stage is Tp. Finally, the node needs to be destroyed and the time
occupied by resource recycling is Te. Therefore, the time for executing n nodes in the CICD
workflow is:

n ×
(
Ts + Tp + Te

)
(1)

In the workflow execution model of the Astermule engine, since the startup and
destruction of workflow nodes are uniformly managed by the Operator, the startup and
destruction of all nodes can be concurrent. In the ideal state, the time for n nodes to
start and destroy containers only needs Ts + Te. For the processing of specific node logic,
Astermule uses Golang coroutines and channels for control. Assuming that the time to
create and destroy these coroutines is Tg and Tc, the time for Astermule workflow engine
to execute n nodes is:

Ts + Te + n ∗ Tp + Tg + Tc (2)

In summary, the optimization of Astermule engine for workflow execution is:

n ×
(
Ts + Te − Tg − Tc

)
(3)

It is known that at the operating system level, the operations performed to create and
destroy containers are much greater than those performed to create and destroy coroutines.
Therefore, Ts + Te >> Tg + Tc. The optimization of Astermule for execution time is
theoretically very significant, and it will achieve a tremendous improvement in the case of
a large number of nodes.

5. Results

To test the effectiveness of the Astertower platform in achieving lightweight and
efficient workflow execution, this article designed the following three test scenarios for
four-node, six-node, and ten-node workflows.

This test uses an Alibaba Cloud server with a 4-core CPU and 4GB of memory, running
the Ubuntu 22.04 operating system. The Kubernetes cluster used in the test was simulated
using the Kind tool, which included one master node and two worker nodes. In the
nine scenarios of three different node counts and three different workflow concurrency
levels, the platform was used to execute the workflows. For this experiment, test nodes
were written for each node, and each node started a service on http://localhost:8000/test,
(accessed on 30 May 2023). that accepted any form of JSON. The service increased the
JSON’s hostname as the name field. The configurations required for this experiment are
shown in Table 2.

http://localhost:8000/test

Sensors 2023, 23, 5939 14 of 16

Table 2. Test environment setting list.

Environment Settings

Cloud Platform Alibaba Cloud Server
CPU 4-core (sharing type)

Memory 4 GB
Operating System Ubuntu 22.04

Kind v0.17.0
Kubernetes v1.22.15
Node Image kasterism/test_a:latest (dockerhub)

Astertower Version v0.1.0
Astermule Version v0.1.0

We chose Argo-Workflow as our baseline. Argo Workflows is a well-known open-
source container-native workflow engine for orchestrating parallel jobs on Kubernetes. The
results were compared by running each workflow ten times and taking the average. Since
the workflows were executed on a single-node simulated cluster, the execution time was
relatively long, so the time data was rounded off, as shown in Table 3 and Figure 9.

Table 3. Workflow execution time comparison table.

Workflow Platform
Number of
Workflow

Concurrent

Four
Nodes

Six
Nodes

Ten
Nodes

Argo-Workflow
1 89.054s 116.756s 185.976s
3 304.430s 347.973s 623.936s
5 495.875s 578.931s 1037.808s

Astertower and Astermule
1 33.294s 47.472s 75.689s
3 103.485s 122.734s 214.324s
5 175.878s 201.846s 366.149s

Sensors 2023, 23, x FOR PEER REVIEW 16 of 18

Figure 9. The efficiency line chart of the two workflow engines.

According to the data in the table, it can be seen that compared to the baseline of

Argo-Workflow that requires starting a Pod for each node, the workflows executed by

Astertower and Astermule had much shorter execution times, and this advantage be-

comes more pronounced as the number of nodes increases.

6. Conclusions

This article is mainly based on the concept of lightweight microservice composition

to explore the architecture design of a lightweight microservice composition platform for

cloud-edge integration. With the ability to access devices, a lightweight workload engine

and corresponding controller were developed for cloud-edge scenarios. Using the exten-

sibility of Kubernetes custom resources, the workflow execution process is orchestrated

and monitored in Kubernetes. A front-end visual microservice workflow design interface

was implemented to make the platform easy to use and manage while fully integrating

Internet resources and industrial manufacturing resources.

Compared to traditional industrial internet integration, which faces difficulties in re-

source integration, complex interfaces, and difficulty in accessing edge devices, this article

presents a design for a control plane and data plane (workflow engine) specifically tai-

lored for cloud-edge scenarios. And by stripping heavy container runtimes at the edge,

tasks are executed on highly concurrent user-level threads instead, resulting in a light-

weight and efficient architecture that achieves a significant time advantage over tradi-

tional CICD workflows. This design can bridge the gap between cloud and edge work-

flows and achieve a more efficient and unified orchestration system.

Author Contributions: Conceptualization, H.L. and X.L.; methodology, X.L.; software, H.L.; valida-

tion, H.L., X.L. and W.Z.; formal analysis, H.L.; investigation, H.L.; resources, W.Z.; data curation,

W.Z.; writing—original draft preparation, H.L.; writing—review and editing, H.L.; visualization,

H.L.; supervision, X.L.; project administration, H.L.; funding acquisition, X.L. All authors have read

and agreed to the published version of the manuscript.

Funding: This work was supported by National Key R&D Program of China (No. 2022YFB330570)

and Shanghai Science Innovation Action Plan (No. 21511104302).

Data Availability Statement: The experiment in this article does not require specific data. Please

refer to Appendix A for code and environment.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 9. The efficiency line chart of the two workflow engines.

According to the data in the table, it can be seen that compared to the baseline of
Argo-Workflow that requires starting a Pod for each node, the workflows executed by
Astertower and Astermule had much shorter execution times, and this advantage becomes
more pronounced as the number of nodes increases.

Sensors 2023, 23, 5939 15 of 16

6. Conclusions

This article is mainly based on the concept of lightweight microservice composition
to explore the architecture design of a lightweight microservice composition platform for
cloud-edge integration. With the ability to access devices, a lightweight workload engine
and corresponding controller were developed for cloud-edge scenarios. Using the extensi-
bility of Kubernetes custom resources, the workflow execution process is orchestrated and
monitored in Kubernetes. A front-end visual microservice workflow design interface was
implemented to make the platform easy to use and manage while fully integrating Internet
resources and industrial manufacturing resources.

Compared to traditional industrial internet integration, which faces difficulties in
resource integration, complex interfaces, and difficulty in accessing edge devices, this
article presents a design for a control plane and data plane (workflow engine) specifically
tailored for cloud-edge scenarios. And by stripping heavy container runtimes at the edge,
tasks are executed on highly concurrent user-level threads instead, resulting in a lightweight
and efficient architecture that achieves a significant time advantage over traditional CICD
workflows. This design can bridge the gap between cloud and edge workflows and achieve
a more efficient and unified orchestration system.

Author Contributions: Conceptualization, H.L. and X.L.; methodology, X.L.; software, H.L.; valida-
tion, H.L., X.L. and W.Z.; formal analysis, H.L.; investigation, H.L.; resources, W.Z.; data curation,
W.Z.; writing—original draft preparation, H.L.; writing—review and editing, H.L.; visualization,
H.L.; supervision, X.L.; project administration, H.L.; funding acquisition, X.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by National Key R&D Program of China (No. 2022YFB330570)
and Shanghai Science Innovation Action Plan (No. 21511104302).

Data Availability Statement: The experiment in this article does not require specific data. Please
refer to Appendix A for code and environment.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviature Expansion
IIoT Industrial Internet of Things
IoT Internet of Things
OAM Open Application Model
CICD Continuous Integration and Continuous Delivery
CRD Custom Resource Definition
BPMN Business Process Model and Notation

Appendix A

The repositories link implemented by the code of the framework designed in this
article is shown in Table A1.

Table A1. Repositories List.

Repository Name Link

Astertower https://github.com/kasterism/astertower (accessed on 30 May 2023)
Astermule https://github.com/kasterism/astermule (accessed on 30 May 2023)

https://github.com/kasterism/astertower
https://github.com/kasterism/astermule

Sensors 2023, 23, 5939 16 of 16

References
1. Dobies, J.; Wood, J. Kubernetes Operators: Automating the Container Orchestration Platform; O’Reilly Media: Sebastopol, CA, USA, 2020.
2. Burns, B.; Grant, B.; Oppenheimer, D.; Brewer, E.; Wilkes, J. Borg, omega, and kubernetes. Commun. ACM 2016, 59, 50–57.

[CrossRef]
3. Moreno, P.; Pireddu, L.; Roger, P.; Goonasekera, N.; Afgan, E.; Van Den Beek, M.; He, S.; Larsson, A.; Schober, D.; Ruttkies, C.;

et al. Galaxy-Kubernetes Integration: Scaling bioinformatics workflows in the cloud. bioRxiv 2019, 488643.
4. Sayfan, G. Mastering Kubernetes; Packt Publishing Ltd.: Birmingham, UK, 2017.
5. Georgakopoulos, D.; Hornick, M.; Sheth, A. An overview of workflow management: From process modeling to workflow

automation infrastructure. Distrib. Parallel Databases 1995, 3, 119–153. [CrossRef]
6. Pandey, S.; Karunamoorthy, D.; Buyya, R. Workflow engine for clouds. Cloud Comput. Princ. Paradig. 2011, 87, 321–344.
7. Mohamed, H.; El-Gayar, O. End-to-End Latency Prediction of Microservices Workflow on Kubernetes: A Comparative Evaluation

of Machine Learning Models and Resource Metrics. In Proceedings of the 54th Hawaii International Conference on System
Sciences, Kauai, HI, USA, 5 January 2021; p. 1717.

8. Bisong, E. Kubeflow and Kubeflow Pipelines. In Building Machine Learning and Deep Learning Models on Google Cloud Platform;
Apress: Berkeley, CA, USA, 2019; pp. 671–685.

9. Mitchell, R.; Pottier, L.; Jacobs, S.; da Silva, R.F.; Rynge, M.; Vahi, K.; Deelman, E. Exploration of workflow management systems
emerging features from users perspectives. In Proceedings of the 2019 IEEE International Conference on Big Data, (Big Data),
Los Angeles, CA, USA, 9–12 December 2019; pp. 4537–4544.

10. Lorist, M.M.; Klein, M.; Nieuwenhuis, S.; De Jong, R.; Mulder, G.; Meijman, T.F. Mental fatigue and task control: Planning and
preparation. Psychophysiology 2000, 37, 614–625. [CrossRef] [PubMed]

11. Yilmaz, O. Extending the Kubernetes Api. In Extending Kubernetes; Apress: Berkeley, CA, USA, 2021; pp. 99–141.
12. Yukun, L. Research and Application of Workflow Engine Based on Microservices. Ph.D. Thesis, Beijing University of Posts and

Telecommunications, Beijing, China, 2021.
13. Duan, Q.; Wang, S.; Ansari, N. Convergence of networking and cloud/edge computing: Status, challenges, and opportunities.

IEEE Netw. 2020, 34, 148–155. [CrossRef]
14. Jiao, Q.; Xu, B.; Fan, Y. Design of Cloud Native Application Architecture Based on Kubernetes. In Proceedings of the 2021 IEEE

International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence
and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Virtual, 25–28 October 2021; pp. 494–499.

15. Mondal, S.K.; Pan, R.; Kabir, H.D.; Tian, T.; Dai, H.N. Kubernetes in IT administration and serverless computing: An empirical
study and research challenges. J. Supercomput. 2022, 78, 2937–2987. [CrossRef]

16. Pietzuch, P.R.; Shand, B.; Bacon, J. A framework for event composition in distributed systems. In Proceedings of the Mid-
dleware 2003: ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil, 16–20 June 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 62–82.

17. Coria, J.A.G.; Castellanos-Garzón, J.A.; Corchado, J.M. Intelligent business processes composition based on multi-agent systems.
Expert Syst. Appl. 2014, 41, 1189–1205. [CrossRef]

18. López, P.G.; Sánchez-Artigas, M.; París, G.; Pons, D.B.; Ollobarren, Á.R.; Pinto, D.A. Comparison of FaaS orchestration systems.
In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion),
Zurich, Switzerland, 17–20 December 2018; pp. 148–153.

19. Mahboob, J.; Coffman, J. A kubernetes ci/cd pipeline with asylo as a trusted execution environment abstraction framework. In
Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
27–30 January 2021; pp. 0529–0535.

20. Tam, P.; Math, S.; Kim, S. Optimized Multi-Service Tasks Offloading for Federated Learning in Edge Virtualization. IEEE Trans.
Netw. Sci. Eng. 2022, 9, 4363–4378. [CrossRef]

21. Kai, C.; Zhou, H.; Yi, Y.; Huang, W. Collaborative Cloud-Edge-End Task Offloading in Mobile-Edge Computing Networks with
Limited Communication Capability. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 624–634. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/2890784
https://doi.org/10.1007/BF01277643
https://doi.org/10.1111/1469-8986.3750614
https://www.ncbi.nlm.nih.gov/pubmed/11037038
https://doi.org/10.1109/MNET.011.2000089
https://doi.org/10.1007/s11227-021-03982-3
https://doi.org/10.1016/j.eswa.2013.08.003
https://doi.org/10.1109/TNSE.2022.3200057
https://doi.org/10.1109/TCCN.2020.3018159

	Introduction
	Related Work
	Cloud-Edge Integration
	Business Composition Modes
	Workflow Composition Model
	Optimization for Cloud Edge Scenarios

	Business Framework
	Technical Architecture
	Business Process Model
	Astertower Control Plane
	Building Backend Services and Parsing Workflows
	Astertower Controller

	Astermule Workflow Engine
	Lightweight and High-Concurrency Design
	Astermule Execution Process
	Workflow Engine Model

	Results
	Conclusions
	
	References

