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Abstract: In this paper, a framework for authorization and personal image protection that applies
user accounts, passwords, and personal I-vectors as the keys for ciphering the image content was
developed and connected. There were two main systems in this framework. The first involved a
speaker verification system, wherein the user entered their account information and password to
log into the system and provided a short voice sample for identification, and then the algorithm
transferred the user’s voice (biometric) features, along with their account and password details, to a
second image encryption system. For the image encryption process, the account name and password
presented by the user were applied to produce the initial conditions for hyper-chaotic systems to
generate private keys for image-shuffling and ciphering. In the final stage, the biometric features
were also applied to protect the content of the image, so the encryption technology would be more
robust. The final results of the encryption system were acceptable, as a lower correlation was obtained
in the cipher images. The voice database we applied was the Pitch Tracking Database from the
Graz University of Technology (PTDB-TUG), which provided the microphone and laryngoscope
signals of 20 native English speakers. For image processing, four standard testing images from the
University of Southern California–Signal and Image Processing Institute (USC-SIPI), including Lena,
F-16, Mandrill, and Peppers, were presented to further demonstrate the effectiveness and efficiency
of the smart image encryption algorithm.

Keywords: novel image encryption; speaker verification; hyper-chaotic system; authorization

1. Introduction

In recent years, people have become accustomed to using online services, such as
food delivery and rideshare services (e.g., Uber Eats and Lyft), social media (e.g., Facebook
and Twitter), and so on. With convenient and rapid online services, people can exchange
their information quickly, but using these services can include many potential risks, such
as through the misappropriation of financial transactions and personal information leaks,
making the protection of personal information vital and impossible to ignore.

The significance of data protection has escalated across all sectors of society. The recent
prevalence of server data breaches has impacted large companies in particular, resulting in
the disclosure of users’ personal information. Despite the various measures implemented
to process and safeguard data in order to avert attacks and secure digital assets, these
measures have often been inadequate to guarantee security, thus posing a critical chal-
lenge to privacy and cybersecurity. Data encryption has, therefore, emerged as a critical
solution to address this issue. Encryption is a vital technique that transforms readable
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data into an unreadable format, thereby protecting sensitive information from unautho-
rized access. The most widely used applications today are centered around sharing and
storing images online, making image encryption a crucial tool in the current digital land-
scape. The intrinsic features of a digital image, including bulk data, high pixel correlation,
and redundancy, make image encryption essential for safeguarding sensitive information.
Various image encryption schemes have been proposed and studied, including optical
transformation [1,2], cellular automata [3,4], DNA coding [5,6], data encryption standards
(DESs) [7–9], advanced encryption standards (AESs) [10,11], and so on. However, the final
three were designed primarily for textual information and may not be suitable for securing
digital images.

In 1989, Matthews, a British mathematician, developed the first-ever chaos-based
encryption algorithm, which used a logistic map as a key generator [12]. Chaotic behavior
can be determined by non-linear dynamic systems, where even a small initial deviation
can be exponentially amplified. The intrinsic properties of chaotic systems, such as er-
godicity, the sensitive dependence on initial conditions, random-like behaviors, and the
mixing effect, have created a natural relationship and structural similarity between chaos
and cryptography. This was a significant milestone in the development of chaos-based
encryption technology.

Later, in 1998, Fridrich introduced the first general architecture for a chaos-based
image cipher [13], which consisted of permutation and diffusion. In the first stage, a
two-dimensional area-preserving chaotic map was used to permute the pixels. Then, a
discretized chaotic map was employed via the diffusion procedure to modify the pixel
values. This architecture has become the most widely adopted structure in chaos-based
image encryption algorithms. For example, Chen et al. [14] used a 3D Arnold’s cat map
for substitution and Chen’s chaotic system for the diffusion process. In [15], an image
encryption algorithm with a permutation–diffusion structure was introduced, and a tent
map was used to shuffle the positions of the image pixels. Then, delayed coupled map
lattices (DCML) were used to confuse the relationship between the plain and cipher images.
In [16], an encryption algorithm based on chaotic technology was introduced that used a
logistic map to generate keys. Later, ref. [17] proposed a two-stage encryption structure
comprising permutation and diffusion that used chaos-based methods to cipher an image.
This architecture has been widely adopted by many image encryption algorithms, based on
chaos, and has become the most popular structure. To enhance the two-stage permutation–
diffusion architecture, a three-stage architecture was proposed in [18–24].

Several researchers have proposed modifications to the two-stage encryption architec-
ture, such as the introduction of a one-stage structure [19]. In [19], a one-stage encryption
algorithm was suggested that combined both the permutation and diffusion stages. The
plain image was divided into multiple blocks that could be permutated individually. An-
other algorithm was proposed in [20], where the permutation and diffusion stages were
processed simultaneously, but the computing unit was the pixels of the image. Furthermore,
to prevent attackers from cracking ciphered images using the order of the image pixels,
several image encryption algorithms utilizing bit-level permutations were proposed. A
novel image encryption algorithm using chaotic maps was introduced in [21], where piece-
wise linear chaotic maps (PWLCMs) and bit-level permutations were employed. In [22],
an image encryption technique based on both Arnold’s cat and logistic maps, as well as
using bit-level permutations, was proposed. In [23], a secure chaos-based image encryption
algorithm was developed, utilizing a new 2D-LSM with complex chaotic behaviors, and
it had good chaotic performance. In [24], a one-stage image protection strategy with a
multi-shuffling process was developed, where the permutation stage was strengthened
instead of adopting the classical diffusion process. Finally, in [25], an image encryption
technique utilizing a 2D logistic-adjusted-sine map was proposed that could perform both
confusion and diffusion operations at the bit-level. Furthermore, blockchain techniques
have provided decentralized image encryption for smart industries, ensuring cryptographic
security, immutability, and data integrity. With its peer-to-peer communication and smart



Sensors 2023, 23, 5906 3 of 23

contract functionality, it revolutionized image encryption in the industrial internet of things
(IIoT) [26–28].

In advanced approaches, image encryption by applying personal information [29–32],
such as user account information and passwords, along with voice, fingerprint, iris, etc.,
data, has been applied to create biometric keys for protecting personal information. For
example, in [29], an encryption technology for personal images was applied, where the
user account information and passwords were employed to further generate the required
initial condition to drive different chaotic sequences for the keys of permutation as well
as for diffusion stages. In [30], an image encryption algorithm was proposed using frac-
tional transforms and scrambling, along with multimodal biometric keys, and it used
both iris and fingerprint binary codes for the XOR operation to establish image protection.
In [31], voice keys and chaotic maps were used for image encryption, where time-domain
and frequency-domain features of the user’s voice were extracted to generate a voice key.
In addition, a medical image encryption scheme for secure fingerprint-based authenti-
cated transmission was developed in [32], and a doctor’s fingerprint could be utilized for
authenticated transmissions.

In this paper, the combination of a speaker verification system and an image encryption
system was proposed, where the speaker verification was used as the user authorization
system. When users attempted to access the system by inputting their own user account
information and passwords, the proposed system asked users to further verify their identi-
fication, using I-vectors applied to the image encryption system. This enabled a personal
image to be encrypted and protected before the data could be transmitted using their
unique keys. The dataset we used was the Pitch Tracking Database from the Graz Uni-
versity of Technology (PTDB-TUG) [33]. The dataset was from the TIMIT corpus (The
DARPA TIMIT Acoustic–Phonetic Continuous Speech Corpus), which consisted of 20 En-
glish native speakers reading 2342 phonetically rich sentences. A comprehensive flowchart
of the proposed system is provided in Figure 1, with the plain image on the left-hand side,
and the cipher (encrypted) image on the right-hand side. The proposed plain personal
image was divided into several sub-images using a sliding window through appropriate
selection. Furthermore, each sub-image was processed using a two-stage encryption proce-
dure with the first process, shuffling, and with the second process, diffusion, where there
were three-level encryption processes developed in the diffusion stage. In addition, user
account information, passwords, and biometric features (called I-vectors) were employed
to generate the corresponding initial conditions for the chaotic system and to generate the
necessary chaotic keys for the shuffling and diffusion processes.
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This paper is organized as follows: In Section 2, the speaker verification system is
described, the proposed image encryption system is introduced in Section 3, and in Section 4,
the experimental results and analysis were obtained using the PTDB-TUG database. Finally,
the conclusion and related work are discussed in Section 5.

2. Speaker Verification System

In this study, there were three stages: the first stage was training, the second stage
was enrollment, and the third stage was verification. In the training stage, there were four
steps: (2.1) data pre-processing, (2.2) modeling, (2.3) feature-vector extraction, and (2.4)
normalization and projection. In (2.1), the feature extraction of the dataset was calculated,
and then, in (2.2), the system modeled the features data of 20 people, called the universal
background models (UBM). The UBM’s parameters were used to train the total variabilities
space (T), and then, in (2.3), T was used to extract the identity vectors (I-vectors). Next,
in (2.4), the system normalized and modified the vector space by these two statistical
method: within-class covariance normalization (WCCN) and linear discriminant analysis
(LDA). The second stage was enrollment, where the user input 15 utterances, and each
utterance was 5~7 s, but the user account information and password were also needed.
According to user input, the system built a voice model of the user by adjusting the UBM
and calculating the I-vector of each user’s voice model. The third stage was verification,
during which the test speaker input the user account information and an utterance, and
then the system built a test speaker model and compared that to the user’s voice model
using cosine similarity: If the similarity between the test speaker model and the user’s
voice model passed the threshold, then the system gave the speaker access.

2.1. Mel-Frequency Cepstral Coefficients

An important technique in voice recognition is the feature-vector extraction. In order
to extract the key information in the dataset, the row data must be transformed by signal
processing, and to yield a better performance, critical characteristics include being easily
measurable, having high robustness to environmental noise, having a minimal effect on
the health of the speaker, and being difficult for impostors to mimic. Therefore, the Mel-
frequency cepstral coefficients (MFCCs) have been the most general technique used for
feature extraction [9]. In our operation, the features extracted using a Hamming window
in 25 ms and 20 MFCCs per 10 ms with log energy were calculated [34], and the related
MFCC feature extraction flowchart is provided in Figure 2.
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2.2. Universal Background Models

Identity vectors (I-vectors) were inspired by joint factor analysis (JFA). In the JFA, the
supervector (M) represented the speaker utterance and was composed of the speaker, the
channel, and the session subspace, and was expressed by λ = {ωi, µi, Σi},i = 1, . . . , M,
where {ωi, µi, Σi} XX means weight, means, and covariance, respectively, and C is the
number of Gaussian components.

2.3. Identity Vectors

Though the Gaussian mixture model (GMM) has been widely used in the speaker
verification field, it requires significant computing resources to calculate statistical parame-
ters that converge. Therefore, the universal background model (UBM) was proposed [35],
and the authors used a single and speaker-independent background model to represent
a dataset that comprised a large group of people. The whole UBM was composed of two
gender-dependent UBMs, and there were 10 males and 10 females. In order to achieve a
higher accuracy when modeling the features and better distinguish the differences between
speaker models, we used 2048 Gaussian components to train the whole UBM. Gaussian
function was defined as follows:

M = m + Vy + Ux + Dz (1)

where m is a speaker- and session-independent supervector from the UBM. The speaker
subspace was defined by V and D, where V was the eigenvoice matrix and D was the
diagonal residual. The session subspace was defined by U, where U was the eigenchannel
matrix. The vectors x, y, and z were random variables, and they were speaker- and session-
dependent factors in their subspace.

As compared to JFA, the approach of I-vectors in [36] was to replace the speaker- and
channel- subspace with only one subspace that contained speaker and channel variabilities
simultaneously. The new subspace was referred to as a “total variability space”. It defined
a new GMM super vector that depended upon the speaker and vocal track. The total
variability matrix contained an eigenvector that had the largest eigenvalue in the total
variability covariance matrix (2).

M = m + Tω (2)

where M is a parameter that is assumed to be normally distributed with mean vector m, ω
is a random vector with a standard normal distribution, and T is a rectangular matrix of
low rank. The ω was the total factor that had a hidden variable, referred to as the I-vector.
To find the I-vector, we needed an important statistic: the posterior distribution of the
Baum–Welch statistic for the provided utterance, as this defined ω. Because the posterior
distribution was a Gaussian distribution mathematically, the I-vector corresponded exactly
to the means of the posterior distribution. The statistics of Baum–Welch, extracted using
UBM, were also mentioned in [30]. Suppose we had a UBM Ω consisting of a sequence of L
frames {y1, y2, . . . , yL} and C mixed components, and then these components were defined
in the feature space of dimension F. When we input a provided speech pronunciation using
the Baum–Welch statistics, we could acquire the I-vector.

Nc =
L

∑
t=1

P(c|yt, Ω) (3)

Fc =
L

∑
t=1

P(c|yt, Ω)yt (4)
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First-order Baum–Welch statistics were applied to estimate the I-vector, and we needed
these parameters: UBM mean-mixture components, c and P, where c = 1, . . . , C and
P(c|yt, Ω):

F =
L

∑
t=1

P(c|yt, Ω)(yt −mc) (5)

where the mean value, m, is calculated and c is a mixture component of UBM. Then, a
provided utterance was input using Equation (6), and the I-vector could be obtained.

ω = (I + TtΣ−1N(u)T)
−1

TtΣ−1 F̃(u) (6)

where Σ is a diagonal covariance matrix that models the residual variability that was
overlooked by the total variability matrix, T; N(u) is defined as a diagonal matrix of
dimension CF× CF, and F(u) is a supervector of dimension CF× 1. These two parameters
could be obtained by first-order Baum–Welch statistics, F̃c, with a provided utterance u.

2.4. WCCN and LDA

After the feature extraction was completed, we analyzed its feature vector and found
that because we had used different channels, the feature extraction had unnecessary effects.
There were two ways to eliminate these effects and compensate for the signal, within-class
covariance normalization (WCCN) or linear discriminate analysis (LDA). LDA analyzes the
feature space of the data and defines a new axis to narrow the differences within the classes
and maximize the differences between the classes, so that the data is on a well-classified
axis and unnecessary directions are eliminated. The purpose of WCCN was to normalize
the within-class covariance, so that we could achieve the regional optimal solution more
smoothly during the process of convergence.

The WCCN intra-class covariance normalization is a statistical numerical method. The
core concept of this method is to linearly separate the imposter and the target speaker, and
it has been widely used in SVM modeling. In simple terms, WCCN defines a set of upper
limits for classification error metrics and can be expected to minimize the false acceptance
and false rejection rates in the training step of an SVM. Once these upper bounds had been
minimized, we could find the best solution to this problem, and non-class errors would be
minimized accordingly. This allowed us to optimize the hard-margin-separation formalism
in SVM. Then, the generalized linear kernel Equation (7) could identify the solution:

k(ω1, ω2) = ωt
1Rω2 (7)

where W is the intra-class covariance matrix calculated by all imposters in the training
background, and R is a symmetric positive semi-definite matrix. The optimized normalized
kernel matrix was R = W−1, and we assumed that all speech fragments of a provided
speaker belonged to the same category. The calculation of the intra-class covariance matrix
used Equation (8) to calculate the following:

W =
1
S

S

∑
s=1

1
ns

ns

∑
i=1

(ωs
i −vs)(ω

s
i −vs)

t (8)

where S is the number of speakers and ns is the number of speech fragments for each

speaker, S, where vs = ( 1
ns
)

ns
∑

i=1
ωs

i is the average of each speaker’s I-vector. In order to

preserve the inner product form of the cosine kernel, the feature mapping function, ϕ, was
defined as Equation (9), as follows:

ϕ(ω) = Btω (9)
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We applied the WCCN algorithm to the cosine kernel from the matrix B obtained
by the Cholesky decomposition, W−1 = BBt. The updated cosine kernel could then be
calculated by Equation (10):

k(ω1, ω2) =
(Btω1)

t
(Btω2)√

(Btω1)
t(Btω1)

√
(Btω2)

t(Btω2)
(10)

In order to compensate for the variability between sessions, the WCCN algorithm
normalized the cosine kernel function by using the intra-class covariance matrix, while
ensuring the conservation of the spatial direction.

LDA has been widely used in the field of machine learning to analyze data and redefine
new axes. It maximizes the difference between data and minimizes the difference within
data categories, while achieving the goals of dimensionality reduction and classification.
After modeling through I-vector, we treated each category as though they were composed
recordings by the same speaker. We then defined the Rayleigh quotient (11) of LDA:

J(v) =
vtsbv
vtsωv

(11)

where Sb is the difference between classes and Sω is the difference within classes, assuming
that in the spatial direction, v, we could find the maximized Rayleigh quotient by calculating
the ratio between them, (12), (13), as follows:

Sb =
S

∑
s=1

(ωs −v)(ωs −v)t (12)

Sω =
S

∑
s=1

1
ns

ns

∑
i=1

(ωs
i −vs)(ω

s
i −vs)

t (13)

where S is the number of speakers, and the overall average vector of the speakers is equal to

the empty vector. However, its average value was zero, in which vs = ( 1
ns
)

ns
∑

i=1
ωs

i was the

average of the I-vector of each speaker, and ns is the number of speech fragments for each
speaker, S. When we find the maximized Rayleigh quotient, we can define the projection
matrix composed of the eigenvector with the largest eigenvalue. As shown in (14):

Sbv = λSωv (14)

where A is the projection matrix we obtained, and λ is the diagonal matrix of eigenvalues.
We then introduced the I-vector into projection matrix A for calculation, and these two,
ω1, ω2, were I-vectors, and the new cosine kernel between them could be calculated by
Equation (15):

k(ω1, ω2) =
(Atω1)

t
(Atω2)√

(Atω1)
t(Atω1)

√
(Atω2)

t(Atω2)
(15)

3. Image Encryption System

The classic image encryption system has a two-stage encryption. The first stage was
rearrangement. The position of the pixels was rearranged (i.e., shuffled). The purpose of
this was to eliminate the correlations between the pixels, making them harder to identify.
The second stage was diffusion, which changed the pixel values, resulting in encryption.
The pixel value distribution of the encrypted image was uniform, and the pixel value
distributions of the encrypted image after this stage were very similar, making the image
impossible to identify and improving the encryption security. For the two-stage encryption
structure during the first stage, we input an image, converted the photo to grayscale (0~255),
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and then converted the pixels to a binary system and stored them as a matrix, M. To use
the position matrix, M, we transferred the values to the position matrix, Ms, to rearrange
them, and therefore the first stage of shuffling was complete. Next, we converted the two
sets of data from the hyper-chaotic system (Lorenz system, Chen’s system) into a binary
system, and XOR with Ms. The result of the unimodal mapping was subjected to a second
XOR, and finally the biometric features were applied as the keys for the third XOR process.
A two-level encryption procedure was carried out, and the two-stage encryption process
(Figure 3) was also complete (diffusion).
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3.1. Biometric Key and Initial Conditions

In this part, the user enters their account information, their password, and their input
vocal signal. The system then converts the account password to the initial conditions
through RFC 4648 Base32, as listed in Table 1; the input digits for the account information
and password were limited to 10 and 16 bits, respectively. After the RFC 4648 Base32
conversion, Ui referred to a 4-byte value that was derived by dividing the encoded user
account into eight equal parts, with each part consisting of 2 bytes. The numerical equiv-
alent of Base 32 was then used to represent this value. However, Pi represented a 6-byte
value obtained by dividing the encoded password into eight equal parts, with each part
consisting of 3 bytes. The two most recent bytes in the last part of the password represented
the remainders, which were denoted as R. Similar to Ui, the numerical equivalent of Base
32 was used to represent both Pi and R. The initial conditions were then used to drive the
logistic map and hyper-chaotic system in order to iteratively generate values. The equation
that produced the initial conditions could be expressed as follows:

ICi =
Ui

Pi × R
, i = 1, . . . , 8 (16)

Table 1. RFC 4648 base32 conversion table.

Value Symbol Value Symbol Value Symbol

0 A 11 L 22 W
1 B 12 M 23 X
2 C 13 N 24 Y
3 D 14 O 25 Z
4 E 15 P 26 02
5 F 16 Q 27 03
6 G 17 R 28 04
7 H 18 S 29 05
8 I 19 T 30 06
9 J 20 U 31 07
10 K 21 V
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RFC 4648 Base32 is an encoding mechanism that can convert data into symbols and
numbers. This encoding system included base16, base32, base64, etc. Among them, base32
used 26 English letters, A–Z, numbers 2–7, and a total of 32 codes. RFC 4648 Base32 is
considered the most widely used. The conversion table is shown in Table 1.

3.2. Logistic Map and Hyper-Chaotic System

The logistic map was an iterative function, which began with the initial value, xi, of the
variable and generated a series of values such as x2x3, . . . . Chaotic behavior could be gen-
erated by a very simple non-linear dynamic equation, such as that shown in Equation (17):

xi+1 = rxi(1− xi) (17)

where i = 0, 1, . . . , ∞, xi is a number between 0 and 1 that will oscillate continuously, and
the value exhibits non-linear behavior, making xi difficult to predict, and r = 4. Figure 4a
shows its chaotic behavior.
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Furthermore, in this study, we utilized the classical Lorenz system and Chen’s system
as hyper-chaotic systems. These systems generate chaotic sequences with various combina-
tions, which can then be utilized to introduce randomness into the encryption process. The
classical Lorenz system can be described as follows:
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.
x1 = σ(x2 − x1),.
x2 = −x1x3 + ρx1 − x2,
.
x3 = x1x2 − βx3,

(18)

where x1, x2, and x3 are system states; σ, ρ, and β are system parameters; and when
σ = 10, ρ = 28, and β = 8/3, the system reveals chaotic behavior, as shown in Figure 4b.
Furthermore, Chen’s system can be expressed as Equation (19):

.
x4 = a(x5 − x4),.
x5 = (c− a)x4 − x4x6 + cx5,
.
x6 = x4x5 − bx6,

(19)

where x4, x5, and x6 are system states, a, b, and c are system parameters; and when a = 35,
b = 3, and c = 28, chaos attractors are stimulated, which are provided in Figure 4c.

Hyper-chaotic systems are very sensitive to initial conditions. Even if the initial
conditions are only slightly different, they will have a significant impact on the iteration
results. Non-linear systems are also difficult to predict, but as long as they have the correct
initial conditions, they can have the same iterative results and can, therefore, be used to
generate the most encrypted data with high security.

3.3. Bit-Shuffling with Sliding Window

One of the significant properties of the images was the high correlation between
adjacent pixels, which posed a challenge for image encryption. The shuffling stage of
image encryption was responsible for eliminating these correlations by shuffling the pixel
locations at the bit-level, in both horizontal and vertical directions. However, performing
this operation on the entire image required substantial computational time and resources.
To address this issue, we proposed a method of dividing the image into smaller sub-images
using a sliding window size of M × N (in this study, we used a size of 16 × 4 pixels)
and shuffling the content of each sub-image individually. This approach allowed for a
more efficient generation of limited new locations for each bit number. The gray values
of each pixel in the sliding window were transformed from decimal to binary, creating an
M × N × 8 bit-level sub-image. After the shuffling process, the sub-image was transformed
back to the decimal values, and a new set of gray values for each pixel with low correlations
to the adjacent pixels was obtained. This approach effectively eliminated the correlations
between adjacent pixels while minimizing computational time and resources. A schematic
diagram is provided in Figure 5.
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To shuffle the pixel locations at the bit-level, we employed the logistic map in Equa-
tion (17) to generate new position matrices in the rows and columns. The system parameter
for the logistic map was set at r = 4. By utilizing the logistic map, we were able to effec-
tively generate the necessary new position matrices for the bit-level relocations, thereby
enhancing the security of the encryption process. The shuffling process could be operated
in the row direction and column direction separately, as discussed below:

(1). For column-shuffling, Equation (20) was applied via using the logistic map in Equa-
tion (17):

Scolumn = mod
(

f loor
(

xn × 1014
)

, M
)
+ 1. (20)

where xn is the state of the logistic map and Scolumn ε [1, M] is the new position for
each binary number, which is a column vector with M× 1. This column vector, Scolumn,
could be generated for each column-shuffling process, until all the binary numbers
had been rearranged. As a consequence, the total number of Scolumn was N × 8.

(2). For row-shuffling, Equation (21) was applied using the logistic map in Equation (17),
as follows:

Srow = mod
(

f loor
(

xn × 1014
)

, N × 8
)
+ 1. (21)

where xn is the state of the logistic map and Srow ε [1, N × 8] is the new position for
each binary number, which is a row vector with 1 × (N × 8). This row vector, Srow,
could be generated for each row-shuffling process, until all the binary numbers had
been rearranged. Moreover, the total number of Srow was M.

3.4. Multi-Level Encryption Stage with Biometric Key and Selection Mechanism

The shuffling images had been obtained during the preceding stages, and then the
diffusion step, which constituted the encryption, could be executed. In this step, a three-
level encryption process was performed, as shown in Figure 6.
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The first-level process was obtained by iterating the initial conditions using the hyper-
chaotic system in Equations (18) and (19), resulting in a total of 15 groups. A set of values
was generated by using the logistic map in Equation (17), and one of the 15 groups was
selected based on the generated values. The generated serial numbers (SNs) were within
0–14 and could be obtained by Equation (22), as follows:

SN = mod
(

f loor
(

xn × 1014
)

, 14
)

(22)

The different state combinations associated with the proposed 15 groups are provided
in Table 2. The image was then processed using XOR, along with this set of results.
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Table 2. Different state combinations of the proposed 15 groups.

Serial Number Combination of States Serial Number Combination of States

0 (x1, x2, x3, x4) 8 (x1, x3, x5, x6)
1 (x1, x2, x3, x5) 9 (x1, x4, x5, x6)
2 (x1, x2, x3, x6) 10 (x2, x3, x4, x5)
3 (x1, x2, x4, x5) 11 (x2, x3, x4, x6)
4 (x1, x2, x4, x6) 12 (x2, x3, x5, x6)
5 (x1, x2, x3, x4) 13 (x2, x4, x5, x6)
6 (x1, x3, x4, x5) 14 (x3, x4, x5, x6)
7 (x2, x3, x4, x6)

In accordance with the selected combinations in Equation (22), the first-level ciphering
data generated via the two hyper-chaotic systems were obtained by Equation (23):

P1i = mod
(

f loor
(
(|xi| − f loor(|xi|))× 1014

)
, 255

)
(23)

where i = 1, 2, 3, 4 represent the four selected states, and |xi| returns the absolute value
of xi. Floor(xi) returned the value of xi to the nearest integer less than or equal to xi, and
mod returned the remainder after division. Finally, P1i ε [0, 255] referred to the enciphering
values applied during the first-level encryption process.

Furthermore, the values generated by the logistic map in the first-level process served
as the key for the second encryption phase, which was the second-level encryption. Finally,
for the third-level encryption, a user’s biometric features, or I-vectors, were employed for
final image ciphering. The second- and the third-level encryption processes can be obtained
via Equations (24) and (25), as follows:

P2i = mod
(

f loor
(

xn × 1014
)

, 255
)

(24)

P3i = mod
(

f loor
(
|ωi| × 1014

)
, 255

)
(25)

The encryption process could be concluded via conducting an XOR operation on the
image pixels shuffled by the permutation stage with the generated keys, which can be
summarized as Equation (26), as follows:

Ci = Si ⊕ P1i ⊕ P2i ⊕ P3i (26)

where i = 1, 2, 3, 4, P1i, P2i, P3i are the keys produced from the first-, second-, and third-level
encryption processes, and Si is the image provided by the shuffling process. As shown in
the selected machoism, as mentioned in Table 2, four pixels were ciphered in each round
until all the content of the image had been protected. The process needed to be executed
several times to encrypt the entire image. These iterations were performed via a selected
16 × 4 sliding window, and each initial condition was updated with the final results of
each interaction.

3.5. Decryption Process

The decryption process in the proposed system closely mirrored the encryption algo-
rithm, wherein the inverse operation was applied to the encrypted image to retrieve the
plain image. It is worth noting that, in all stages of decryption, identical initial conditions
and parameters had to be employed to achieve a successful decryption.

4. Experiment and Results Discussion

We used the voice database Pitch Tracking Database from the Graz University of
Technology (PTDB-TUG) [26], which provided the microphone and laryngoscope signals
of 20 native English speakers and the extracted pitch trajectory as a reference. The subjects
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read 2342 vocally rich sentences in the existing Massachusetts Institute of Technology Texas
Instruments (TIMIT) corpus. We extracted the sound signals as the experimental database.
The USC-SIPI image database is a collection of digitized images. It has primarily been used
to assist in the research of image processing, image analysis, and machine vision. The first
version of the USC-SIPI image database was released in 1977, and since then many new
images have been added. We used four standard test charts, including Lena, F-16, Mandrill,
and Peppers, as the smart images for image processing in this study.

4.1. Experiment Results of Speaker Verification System

After creating a program in MATLAB, we input a set of sound signals, S, with a length
of approximately 4 s, a sampling frequency of 16,000 Hz per second, a total of 63,488 data
points, a sound frame length of 10 microseconds, and a sound frame number of 394. In the
first step, we used MFCC to acquire the 15th order; the matrix dimension was 394 × 15.
After the first Delta, the matrix increased by 394 × 15, and then the Delta matrix was
increased by 394 × 15. After the logarithmic energy, 394 × 15 was added and the MFCC
process had finished. We obtained 60 dimensional features, as shown in Figure 7.
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Figure 7. Input signal spectrum.

Next, we used GMM to test the modeling function and extracted 2 dimensions from
the 60-dimensional feature matrix completed by MFCC, in order to observe the modeling
function. We used GMM to synthesize and model the parameters, so we could ascertain
visually whether the established model was reasonable. The other lines were single Gaus-
sian, and the thick black lines were the sum of multiple single Gaussians, as shown in
Figures 8 and 9. Through the different Gaussian components used to build acoustic models,
we observed a phenomenon: the more Gaussian components, the more advantageous it
was for building acoustic models, as the model was able to be more accurately fit to the
data, as shown in [3]. The recommended number of Gaussian components was 2048, and
the Gaussian component parameter of our next experiment was set to 2048.

Next, we analyzed the error rates of the speaker authentication system and observed
the changes in the error rates by adjusting the discrimination criteria. After observing the
changes, we could adjust our classifiers according to different application scenarios, such
as authentication on mobile phones, which could be used frequently. If the classifier was
too strict, it would result in ongoing access errors and reduced convenience. However, if it
was applied in financial-related aspects, the classifier would need to be highly accurate in
order to ensure that the registrant and the tester were the same person.
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mixture model of coefficient 2 mixed with 512 Gaussian model components. (d) Gaussian mixture
model of coefficient 2 mixed with 1024 Gaussian model components. (e) Gaussian mixture model of
coefficient 2 mixed with 2048 Gaussian model components.
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The false rejection rate indicated that the registered speaker and the test speaker were
actually the same person, but the system mistakenly rejected the user’s authentication.
The false acceptance rate referred to the scenario where the registered speaker and the
test speaker were actually different people, but the system misjudged them as the same
person. The equal error rate (EER) was determined when FRR and FAR were equal, and
their intersection was the EER, which indicated that by adjusting the boundary, the FRR
and FAR of the system could be changed according to the boundary to find the EER. The
principle was that when the threshold was lowered (i.e., the degree of similarity between the
registrant and the tester’s I-vector, cosine similarity), that is, less strict, the false acceptance
rate increased. If the threshold was raised, which was equivalent to the authentication
system becoming stricter, the false acceptance rate would decrease, but the false rejection
rate would increase. Therefore, we hoped to identify the ideal compromise to determine
the EER, where the false rejection rate would be equal to the false acceptance rate. We could
adjust the EER to optimize the user experience. For example, in environments that require
absolute security, we expected this system to be rigorous. However, in other scenarios
when the security did not need to be as high, such as in situations involving frequent use,
the authentication system could be less strict.

4.2. Experiment Results of Image Encryption System

In the classic two-stage encryption system, the first step was to shuffle. In the process
of rearrangement, we transferred the image to the 8-bit binary system for rearrangement.
Then, we set the gray value of the image back to 10 in the carry system, which could
also be changed by observing the image with the naked eye and statistically analyzing its
pixel composition. The second stage was diffusion. In this stage, we applied XOR to the
image through the hyper-chaotic system, along with the value generated by the unimodal
mapping, which directly changed the pixel values due to the pseudo-random system we
used. Therefore, the values we had generated were uniformly randomly distributed, and
the encrypted results also showed uniformly random results, which could also be obtained
by observing the image with the naked eye and performing a statistical analysis of the gray
values. Next, in order to ensure that the encryption system was sufficient, we calculated
and encrypted photos with different structures and then observed and analyzed the results.
We used the standard test chart of image processing. The source of the images used was
a total of three sets of data as a comparison. The images were Lena, F-16, Mandrill, and
Peppers. The simulation results are provided in Figure 10.

We analyzed the correlational coefficients based on the encrypted results of the four
images with different structures, as shown in Figure 11. The purpose of the shuffle was
to eliminate the relationships between adjacent pixels, so that the information of the plain
image would remain hidden. We analyzed the correlations between two adjacent pixels in
three directions. When the correlation was lower, the relationship between the pixels was
weaker, and the effect of the rearrangement and encryption was better. The three directions
were vertical, horizontal, and diagonal. Table 3 is based on the correlational coefficient
analysis of the four images. We observed that the pixels, before encryption, had strong
associations with each other, but after encryption, the relationship between the pixels was
destroyed and the correlational coefficient was very low. No information could be obtained
from the encrypted image, so the encryption effect was very good, as shown in Table 3.
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was weaker, and the effect of the rearrangement and encryption was better. The three di-
rections were vertical, horizontal, and diagonal. Table 3 is based on the correlational coef-
ficient analysis of the four images. We observed that the pixels, before encryption, had 
strong associations with each other, but after encryption, the relationship between the pix-
els was destroyed and the correlational coefficient was very low. No information could be 
obtained from the encrypted image, so the encryption effect was very good, as shown in 
Table 3. 

Figure 10. (a) Lena’s plain image and histogram of gray value. (b) Lena’s ciphered image and
histogram of gray value. (c) F-16’s plain image and histogram of gray value. (d) F-16’s ciphered image
and histogram of gray value. (e) Mandrill’s plain image and histogram of gray value. (f) Mandrill’s
ciphered image and histogram of gray value. (g) Peppers’ plain image and histogram of gray value.
(h) Peppers’ ciphered image and histogram of gray value.
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Figure 11. (a) Lena’s plain image and cipher image similarity in three directions. (b) F-16’s plain
image and cipher image similarity in three directions. (c) Mandrill’s plain image and cipher image
similarity in three directions. (d) Peppers’ plain image and cipher image similarity in three directions.
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Table 3. Four standard test images, Lena, F-16, Mandrill, and Peppers, plain images and ciphered
images after a correlational coefficient analysis.

Correlational Coefficient

Name Image Type Horizontal Vertical Diagonal

Lena
Plain image 0.967504 0.973323 0.958654

Ciphered image 0.050908 −0.019047 0.039765

F16
Plain image 0.962689 0.975145 0.934036

Ciphered image 0.035941 0.009310 −0.021671

Mandrill
Plain image 0.819316 0.776839 0.728311

Ciphered image 0.000468 −0.020855 0.012727

Peppers Plain image 0.977299 0.984698 0.960850
Ciphered image −0.011531 0.021001 0.017306

In addition, we conducted a comparative analysis of our proposed method with other
algorithms that had been previously proposed in the literature, using the Lena image as
a reference. The results of this comparison are presented in Table 4, which shows that
our proposed system was able to completely eliminate the correlations between adjacent
pixels. Furthermore, we extended our analysis to include larger images in order to explore
the feasibility of our approach on images of varying sizes. The results indicated that our
method was successful in achieving the main objective of eliminating the correlations
between pixels, with values approaching zero for both small and large images.

Table 4. Comparison results of the correlational coefficient test (Lena).

Correlational Coefficient

Name Image Type Horizontal Vertical Diagonal

Our Method
Plain image 0.967504 0.973323 0.958654

Ciphered image 0.050908 −0.019047 0.039765

Ref. [37]
Plain image 0.967504 0.973323 0.958654

Ciphered image −0.079639 0.016615 0.003277

Ref. [38]
Plain image 0.967504 0.973323 0.958654

Ciphered image 0.001400 0.017100 0.005400

Ref. [39]
Plain image 0.967504 0.973323 0.958654

Ciphered image 0.001906 0.003817 −0.001948

5. Discussion and Limitations

In this article, a framework for authentication and personal image protection aimed to
connect personal information with data security and utilized voice samples to verify the
user. Personal information, such as user account information, password, and voice, were
applied to further generate the related key for image encryption, according to a classical
two-stage encryption process. The simulation results showed that the proposed image
encryption process was effective for ciphering the contents of an image, and the high
correlations between different adjacent pixel pairs were also destroyed.

For more information, the current version was an independent version that could only
be realized for personal usage. For example, a user could register the proposed system
for their user account information, password, and unique voice print, and the image they
upload into a system could then be protected. However, the current version did not have
integration mechanisms for users to transmit their uploaded images to other users securely,
and the encryption and decryption processes for transmission and receiving need to be
redesigned. This would require more complicated processes being developed. For example,
a safe channel should be constructed, and the biometric keys from the two different users
would have to be combined and employed simultaneously. In addition, the possibilities of
the practical application of this framework for interoperability and messaging patterns [40]
should be considered and explored in the future.
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6. Conclusions and Future Directions

In this article, we presented a framework for authentication and personal image protec-
tion that aimed to connect personal information with data security. The main contributions
of this work were the following:

(1) Development of a framework for the authorization and protection of personal images:
We presented a comprehensive framework that combined user account information,
passwords, and personal I-vectors as keys for encrypting image content. We estab-
lished a connection between personal information and data security.

(2) Integration of speaker verification system and image encryption system: The frame-
work incorporated two main systems. The speaker verification system prompted the
user to provide a short voice sample for speaker identification. The personal voice
features, along with user account information and passwords, were then transferred to
the image encryption system. This integration enhanced the security and robustness
of the encryption process.

(3) Utilization of biometrics and hyper-chaotic systems for image encryption: The user’s
account information and passwords were utilized to generate the initial conditions
for hyper-chaotic systems, which produced private keys for image-shuffling and
ciphering. Furthermore, biometric features, such as voice biometrics, were employed
to enhance the robustness of the encryption process.

(4) Demonstrated effectiveness and efficiency: The proposed smart image encryption
algorithm was evaluated using standard test images, and the results showed ac-
ceptable lower correlations in the ciphered images. The framework demonstrated
its effectiveness for protecting image content while maintaining efficiency in the
encryption process.

The proposed method for using a speaker-verification system to drive image encryp-
tion and decryption may have potential applications in different fields where the security
and privacy of personal data are crucial. For example, this method could be used to protect
classified information and prevent unauthorized access to sensitive data. In financial insti-
tutions, it could be used to secure customer information and transactions. In healthcare,
it could be used to protect patient data and maintain confidentiality. Additionally, this
method could be implemented on personal devices, such as smartphones and laptops, to
secure personal information and prevent theft or misuse. The proposed method offers a
new layer of security that relies on the uniqueness of a user’s voiceprint, making it difficult
for unauthorized users to access encrypted data, and we will continue to improve the
proposed system in future work.
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