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Abstract: Detecting dense text in scene images is a challenging task due to the high variability,
complexity, and overlapping of text areas. To adequately distinguish text instances with high density
in scenes, we propose an efficient approach called DenseTextPVT. We first generated high-resolution
features at different levels to enable accurate dense text detection, which is essential for dense
prediction tasks. Additionally, to enhance the feature representation, we designed the Deep Multi-
scale Feature Refinement Network (DMFRN), which effectively detects texts of varying sizes, shapes,
and fonts, including small-scale texts. DenseTextPVT, then, is inspired by Pixel Aggregation (PA)
similarity vector algorithms to cluster text pixels into correct text kernels in the post-processing step.
In this way, our proposed method enhances the precision of text detection and effectively reduces
overlapping between text regions under dense adjacent text in natural images. The comprehensive
experiments indicate the effectiveness of our method on the TotalText, CTW1500, and ICDAR-2015
benchmark datasets in comparison to existing methods.

Keywords: scene text detection; pyramid vision transformer; dense adjacent text

1. Introduction

Scene text detection has made significant progress in computer vision and plays a cru-
cial role in various practical applications such as scene understanding, scene reading, and
autonomous driving. The application of deep learning has led to remarkable achievements
in detecting text in natural scenes [1–15].

Recent methods in scene text detection have extensively utilized deep neural networks
(DNNs) to extract features and achieve impressive performance on benchmark datasets [16–18].
Despite these advancements, scene text detection remains a challenging task, primarily due to
the irregular shapes, diverse scales, and high density of text instances in scenes (as illustrated
in Figure 1). Existing methods like SegLink++ [13] and MSR [19] have shown effectiveness
in handling text lines and accommodating variations in text line length. However, they have
still faced difficulties in dealing with overlapping dense text regions, especially in small-scale
texts. Following that, methods like PAN [1], TextSnake [20], and CT [12] aim to address overlap
phenomena by expanding text regions from text kernels, but they fall short in achieving
competitive results in scene text detection.

To overcome these challenges, our approach explores a multi-scale strategy with
three different kernel filters and attention mechanisms, namely, Deep Multi-scale Feature
Refinement Network (DMFRN). This method generates and fuses the multi-level features
that provide comprehensive representations for scene text instances.

Moreover, this study is inspired by the merits of Transformer [21–26], which has been
employed to eliminate the complex and understand spatial arrangement and contextual
information in manually designed procedures of object detection. Transformer models like
DETR [22] tackle the object detection task in a fully end-to-end manner, eliminating the need
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for complex handcrafted components such as anchor generation, region proposal networks,
and non-maximum suppression. However, they are not capable of effectively extracting
low-level visual features at a local level effectively, and they also struggle to detect small
objects. Although ViT [24] employs a self-attention mechanism within Transformer to
model the interactions between patches, enabling the model to capture both local and
global contextual information, ViT has struggled to achieve pixel-level dense prediction.

Figure 1. Sample of inaccurate dense predictions in previous works.

In this work, we propose a solution to accurately predict dense text by employing the
PvTv2 versatile backbone [26], which is designed to achieve high output resolution for
dense prediction tasks in object detection while reducing resource consumption through a
progressive shrinking pyramid. Unlike the original backbone, we added a channel attention
module (CAM) and spatial attention module (SAM) between feature levels to effectively
capture and leverage informative features in both the channel-wise and spatial dimensions.
This work leads to enlarging the receptive fields and preserving high-resolution features,
which is crucial for the dense prediction task.

To further enhance the quality of the feature representation, we incorporated a post-
processing step based on PAN [1]. This step is designed to reduce the overlap between
text regions. By applying this post-processing technique, we can improve the accuracy and
clarity of the detected text regions, leading to more reliable results.

Our core contributions are as follows:

1. We propose an effective approach, called DenseTextPVT, which incorporates the
advantages of dense prediction backbone in object detection tasks, Pyramid Vision
Transformer (PvTv2) [26], with a channel attention module (CAM) [27] and spatial
attention module (SAM) [27] to obtain high-resolution features that make our model
well suited for dense text prediction in natural scene images.

2. We employed a Deep Multi-scale Feature Refinement Network (DMFRN) using three
kernel filters simultaneously (3× 3, 5× 5, 7× 7) with CBAM [27] at each feature.
This allows for adaptive feature refinement, enabling our model to enrich feature
representations with different scales, including small representations.

The paper consists of the following sections: Section 2 provides a summary of related
works in scene text detection and Transformer. Section 3 describes the architecture of the
proposed method in detail. Section 4 presents experimental results. Finally, Section 5
concludes the paper and discusses future work.

2. Related Work
2.1. Scene Text Detection

The regression-based method [8–11,15,28] directly adopts bounding boxes annotation
regarding text as an object. He et al. [15] proposed a method for detecting multi-oriented
text in scene images using a deep regression network. They utilized semantic segmentation
at the pixel level to classify the text and directly calculated offsets between a pixel point
and the corresponding box vertices to determine the text quadrangle. SegLink++ [13]
presented an approach to detect dense and arbitrarily shaped text in scene images using a
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network that leverages instance-aware component grouping (ICG). EAST [8] predicted the
multi-orientation of text lines or words within the full image directly by employing a fully
convolutional network (FCN). FCE [28] formulated text contours in the Fourier domain
and represented these arbitrarily shaped texts as compact signatures. Despite their ability
to handle text instances with arbitrary shapes, they may struggle with text lines that are
challenging to orient and tiny texts.

The segmentation-based method [1–3,6,7] mainly focuses on pixel-level feature rep-
resentations [1–3,7,29], or segment-level [11,20] or contour-level segmentation [9,30,31].
Typically, these methods usually first segment text kernels and then cluster them into
text instances via post-processing. For instance, PSENet [7] utilized a progressive scale
algorithm to create a variety of kernels for each text instance and expand, bit by bit, the
kernel to cover the entire text instance. Similarly, CT [12] predicted text instances by using
text kernels and centripetal shifts, which were used to aggregate pixels, and then directing
external text pixels towards the internal text kernels. PAN [1] implemented a clustering
approach to precisely aggregate text pixels to exact text kernels based on the similarity vec-
tors. DB++ [2] is an extension of the previous work on differentiable binarization (DB) [29],
which incorporated the binarization process into a segmentation network for more accurate
results. [32] employed an effective central text region mask and adjusted the expanding
ratio from the central text region to the full text instance. However, the performance of
these methods is heavily influenced by the quality of the segmentation accuracy.

2.2. Transformer

Transformer has become an increasingly popular topic of research in computer vision.
Ref. [21] was the accredited father of Transformer, which was based solely on attention
modules. Inspired by this architecture, refs. [21–26,33–35] utilized Transformer-based archi-
tecture to approach object detection as a problem of predicting sets. Transformer introduced
a simple end-to-end framework that eliminated the need for intricate, hand-crafted anchor
generation and post-processing steps. ViT [24] is a Transformer architecture specifically
designed for computer vision tasks, and has demonstrated outstanding performance on
image classification tasks by directly applying the Transformer to sequences of image
patches. DeiT [25] was an extension of ViT that used a new distillation approach to train
transformers more efficiently for image classification tasks. It required less data and com-
puting resources than the original ViT model. PvTv2 [26], which was expanded from
PVT [35], proposed a flexible backbone that could achieve high output resolution for vari-
ous vision tasks, particularly dense prediction tasks, while also reducing time consumption
by inheriting the advantages of both CNNs and Transformers.

In addition, ref. [33] utilized a Transformer-based architecture to address the problem
of detecting multi-oriented texts in images using rotated bounding boxes, but it does not
work well in curved text cases. Ref. [34] proposed an end-to-end trainable framework using
Transformers (DETR) to predict polygon points or Bezier control points for determining
the localization of text instances. Additionally, in [36], point coordinates were directly
utilized to generate position queries and progressively updated while also enhancing
the spatial awareness of non-local self-attention in the Transformer. Despite significant
advancements, methods utilizing the Transformer approach have still faced challenges in
accurately detecting small and dense adjacent texts.

Developing robust representations is crucial for a successful scene text detector, as it
necessitates the learning of discriminative features that can detect accurately text regions.
As previously noted, PvTv2 [26] has demonstrated great potential as a representation of
dense prediction tasks in various image applications, such as image classification, object
detection, and also semantic segmentation. In this study, we introduce DenseTextPVT,
which employs the PvTv2 architecture to generate improved features for dense text in scene
text detection.



Sensors 2023, 23, 5889 4 of 14

3. Methodology
3.1. Overall Architecture

The overall framework of our proposed method is illustrated in Figure 2. Given a scene
image I (HxWx3), we utilized a PvTv2 backbone to extract pyramid features according
to four stages, F1, F2, F3, and F4, whose strides are 4, 8, 16, and 32 pixels following the
input image I. To refine the feature information with high resolution, we used channel
attention module (CAM) and spatial attention module (SAM) approaches at F1, F2 and
F3, F4 features, respectively. Then, we employed a Deep Multi-scale Feature Refinement
Network (DMFRN) with three irregular kernel filters, 3× 3, 5× 5, and 7× 7, and applied
CBAM [27] at each output feature to produce multi-level features, Fn

1 , Fn
2 , Fn

3 , and Fn
4

(n = 3, 5, 7), with rich information on text contents of various sizes. Afterward, to prepare
for the prediction stage, we scaled up Fn

2 , Fn
3 , and Fn

4 features into Fn
1 size and concatenated

them into a single robust feature map F, as shown in Figure 3. Finally, our detection stage
was inspired by PAN post-processing [1], which is depicted in Figure 4. In this way, our
method can determine which text pixels belong to the correct text kernels, helping us
accurately discriminate and mitigate the overlap phenomena between dense text regions.

Figure 2. The overall framework of our DenseTextPVT approach.

Figure 3. The detail of Deep Multi-scale Feature Refinement Network (DMFRN). The detail of
each upsampling and downsampling feature pyramid enhancement (left), the overall DMFRN
architecture (right).
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Figure 4. Pixel aggregation detection head.

3.2. PvTv2 Backbone

Different from convolutional neural networks such as ResNet or VGG, PvTv2 [26]
serves as a versatile backbone specifically designed for various dense prediction tasks.
This approach adopts the Transformer architecture and incorporates a progressive shrink-
ing algorithm to generate feature maps of different scales using patch-embedding layers.
Following the structure of [26], the algorithm consists of four pyramid stages, each com-
prising an overlapping patch-embedding layer and Transformer encoder layers Li (where i
represents the stage of the process).

In each stage, the input image I is divided into patches of size H
j ×

W
j (where j denotes

the stride sizes: 4, 8, 16, and 32 pixels), as illustrated in Figure 5. These patches are then
flattened and passed through a linear projection, resulting in embedded patches of size
H
j ×

W
j × Ci. PvTv2 employs an Overlapping Patch-Embedding technique by enlarging

the patch window size by half of its area and utilizing convolution with zero paddings
to preserve resolution. In the Transformer encoder layer, to address the computational
cost associated with the attention mechanism, the authors introduced a linear shifted row
attention (linearSRA) as a replacement for the traditional multi-head attention. The SRA
utilizes average pooling to reduce the spatial dimensions (H, W) to a fixed size (P, P). The
linearSRA can be defined as follows, with P set to 7:

linearSRA = 2× H ×W × P× P× C (1)

In addition, PvTv2 introduces a 3× 3 depth-wise convolution layer with a padding
size of 1 between the first fully connected (FC) and GELU layer in the feed-forward network,
as shown in Figure 5. This is to eliminate the fixed-size position encoding.

The construction of feature maps with different resolutions usually loses some de-
tails of context and texture structures. To make robust our algorithm, we used channel
and spatial attention modules (CAM and SAM). In general, CAM [27] captures the most
meaningful and relevant information for the extracted features Fi (i = 1, 2, 3, 4) through the
following process: first, it performs average pooling and max pooling on the global context;
next, it applies them to shared MLP; and finally, it merges feature vectors element-wise to
generate a 1× 1× C feature map MCAM.

MCAM = θ(MLP(AvgPool(Fi)) + MLP(MaxPool(Fi))) (2)

where θ represents the Sigmoid function.
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Similarly, SAM [27] is also designed to extract global contextual information. It first
applies average pooling and max pooling operations along the channel axis, and then it
concatenates the resulting feature maps to generate a 1× H ×W feature map MSAM using
a conv7×7 convolutional filter.

MSAM = θ(conv7×7(AvgPool(Fi), MaxPool(Fi))) (3)

Figure 5. The details of PvTv2 Block. There are two main parts: overlapping patch embedding and
Transformer encoder.

3.3. Deep Multi-Scale Feature Refinement Network

Typically, in a pyramid structure, high-level features contain rich semantic information
but lack precise location details, while low-level features have more details but are filled
with background noise. Combining multi-level features can lead to better feature maps. To
do that, we exploit a DMFRN with different receptive fields to detect effectively small-scale
and dense adjacent texts in images. The features extracted from PvTv2, denoted as F1, F2,
F3, and F4, are fed as inputs to our DMFRN stage, which consists of three convolutional
kernel filters with different sizes (3× 3, 5× 5, and 7× 7). Each block in our DMFRN stage
is a U-shaped module comprising two phases: upsampling and downsampling feature
pyramids, which enhances the depth of the network. By simultaneously learning the
irregular kernel sizes, our model can not only enlarge receptive fields but also capture
multi-level information at varying levels of text in scene images. Fn

1 , Fn
2 , Fn

3 , and Fn
4

(n = 3, 5, 7) are generated by this process. Specifically, to enable the learning of relevant
information in both the channel and spatial dimensions of the extracted features at each
stage in the multi-scale process, we incorporate a convolutional block attention module
(CBAM) [27] at each output feature, which is different from MFEN [36]. This work can
boost the accuracy of the detection of dense and small text in images. Afterwards, we
fuse features {F3

1 , F3
2 , F3

3 , F3
4 }, {F5

1 , F5
2 , F5

3 , F5
4 }, and {F7

1 , F7
2 , F7

3 , F7
4 } via an element-wise sum
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operation, respectively, to generate F f
1 , F f

2 , F f
3 , and F f

4 . Finally, we use upsampling and a
concatenating algorithm to fuse these features into a final enrich feature F.

F = Concate(F f
1 , F f

2 , F f
3 , F f

4 ) (4)

Then, we use F to make predictions by applying PAN [1] post-processing as in Figure 4.
In this stage, we predict text instances by using similarity vectors to cluster correct text
pixels with adequate text kernels.

3.4. Loss Function

The training loss L is the weighted sum of loss segmentation Lseg and loss detection
Ldet. To keep the weights among these losses balanced, we set it to 0.25 experimentally.

L = Lseg + 0.25× Ldet (5)

In detail, we adopt dice loss [37] to classify text/non-text in segmentation, which can
be formulated as:

Lseg =
1
N

N

∑
k=1

(1− 2× (Pk ∩ Gk)

P2
k + G2

k
) (6)

where N denotes the number of text instance samples. Pi and Gi represent the prediction
and ground truth of the kth text instances. The object containing text is labeled as 1 and
non-text is labeled as 0.

Additionally, Ldet represents the loss function of pixel aggregation (PA) in [1] that is
applied to ensure that the text pixels are correctly associated with the appropriate text
regions. This means that the distance between a text pixel and the kernel Dpixl ,Kerl of the
same lth text instance should be minimized.

Dpixl ,Kerl =

{
≤ 6, if pix ∈ (Gl − Kerl)

> 6, otherwise
(7)

where pixl and Kerl define the text pixel and text kernel of lth text sample. Gl is the
ground truth of the lth text instance. The threshold of distance is set to 6 based on the
PAN experiment.

4. Experiments and Results
4.1. Dataset

TotalText [16] comprises 1555 images, divided into 1255 training images and 300 test-
ing images. It contains 11,459 text-bounding boxes, with 3936 and 971 instances of curved
text in the training and testing sets, respectively. The number of annotated clockwise points
varies for each text instance and is not fixed.

CTW1500 [17] contains 1000 training images and 500 testing images, each with long,
dense, and curved text instances. There are 10,751 text instances in total. The scenes in the
dataset are challenging and diverse, and environmental factors such as blur, low resolution,
and perspective distortion are present in the images.

ICDAR 2015 [18] is a collection of incidental scene texts used in Challenge 4 on
the website https://rrc.cvc.uab.es/ (accessed on 12 May 2023). The dataset contains
1000 natural images for the training process and 500 images for the testing set. It is a
popular dataset for scene text detection and includes word-level text instances with multi-
oriented texts, making it a useful resource for researchers in this field.

4.2. Implementations

During the pre-processing step, data augmentation techniques are applied for the
training phase such as random crop, random rotation, random horizontal flip, and random

https://rrc.cvc.uab.es/
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scale, which help our model learn different scales and densities of features, leading to a
better generalization ability during training and inference.

In the training phase, we only utilize the original training images of each dataset, as
well as TotalText, CTW1500, and ICDAR 2015. The short side of the images is set to 640,
640, and 736 in the three datasets above, respectively. We use the PvTv2 backbone, which is
a backbone for dense prediction, with strides of 4, 8, 16, and 32 pixels in input images. All
the networks are optimized by the AdamW, https://pytorch.org/docs/stable/generated/
torch.optim, accessed on 10 May 2023 [37] optimizer. Dice loss [38] and loss function in
post-processing of PAN [1] are applied for optimization. Our model is implemented in
Pytorch and trained scratch with a batch size of 4 on 1 GPU 2080Ti in 600 epochs for 150 k
iterations. We use the “poly” learning rate strategy where the initial learning rate and
power are set to 1× 10−4 and 0.9, respectively.

During the inference stage, we set the batch size to 1 on 1 GPU and maintain the aspect
ratio of the test images as in training phase. This ensures that the images are standardized
and allows for consistent processing.

In scene text detection, regions of blurred text that are labeled as “DO NOT CARE”
(###) in all datasets are commonly ignored. To address hard examples during training,
online hard example mining (OHEM) [39] is utilized, with a negative–positive ratio typically
set to 3. For ICDAR 2015, a minimal-area rectangle and polygon are fitted for each predicted
text instance. The shrink ratio of the kernels is set to 0.7 on TotalText and CTW1500, and 0.5
on ICDAR 2015 to better fit the predicted text instance to the actual text region.

4.3. Evaluation Metrics

To assess the effectiveness of our proposed approach, we utilize standard metrics
such as Precision (P), Recall (R), and F-measure (F). For this purpose, we consider a
rectangular box containing text with a closed bounding box as True Positive (TP), while a
rectangular box without any text inside is considered False Positive (FP). If there is text but
no rectangular box, it is labeled as True Negative (TN), since our method failed to detect it.

In detail, Precision (P) is calculated as the ratio of the correctly identified words by our
proposed method to the sum of correctly and incorrectly recognized words. It assesses the
accuracy of the detected text regions. Recall (R) measures the ratio of the correct recognition
to the total possible recognition at the word level. Briefly, it evaluates the ability of the
method to identify all the text instances in the scene. We calculate these metrics both before
and after restoration to showcase the effectiveness of our proposed approach in terms of
restoring missing information, called F-measure (F). The higher the F-measure, the better
the performance.

Moreover, we apply the Intersection over Union (IoU) ratio, which is used as a thresh-
old for determining whether a predicted outcome is a True Positive (TP) or a False Positive
(FP). In this paper, we set it to 0.5.

The equations of Precision, Recall, and F-measure are described below:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F =
2× (P× R)
(P + R)

(10)

4.4. Results

As presented in Tables 1–3, we compare our proposed DenseTextPVT approach with
existing methods using three benchmark datasets: TotalText [16], CTW1500 [17], and
ICDAR 2015 [18]. To evaluate the effectiveness of our method, we utilize the F-measure

https://pytorch.org/docs/stable/generated/torch.optim
https://pytorch.org/docs/stable/generated/torch.optim
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metric as in Equation (10). The results demonstrate the superior performance of our
DenseTextPVT method when compared to previous algorithms.

Table 1. Quantitative detection results on TotalText. “-”/ “X” means without/within training data.
“P”, “R”, and “F” represent the Precision, Recall, and F-measure, respectively.

Method Ext P R F

EAST [8] - 80.9 76.2 78.5
TextSnake [20] X 82.7 74.5 78.4
MSC [19] X 83.8 74.8 79.0
PSENet [7] - 84.0 78.0 80.9
PAN [1] - 88.0 79.4 83.5
TextRay [30] - 83.5 77.9 80.6
SegLink++ [13] X 82.1 80.9 81.5
LOMO [14] X 87.6 79.3 83.3
SPCNet [40] X 83.0 82.8 82.9
PCR [10] - 86.4 81.5 83.9
CRAFT [27] X 87.6 79.9 83.6
Ours_DenseTextPVT - 89.4 80.1 84.7

Table 2. Quantitative detection results on CTW1500. “-”/ “X” means without/within training data.
“P”, “R”, and “F” represent the Precision, Recall, and F-measure, respectively.

Method Ext P R F

EAST [8] - 78.7 49.1 60.4
PSENet [7] - 80.6 75.6 78.0
PAN [1] - 84.6 77.7 81.0
SegLink++ [13] X 82.8 79.8 81.3
LOMO [14] X 85.7 76.5 80.8
CT [12] - 85.5 79.2 82.2
MSC [19] X 85.0 78.3 81.5
PCE [10] - 85.3 79.8 82.4
TextRay [30] - 82.8 80.4 81.6
DB [29] X 86.9 80.2 83.4
PAN [1] X 86.4 81.2 83.7
CRAFT [27] X 86.0 81.1 83.5
Xiufeng et al. [32] X 84.9 80.3 82.5
Ours_DenseTextPVT - 88.3 79.8 83.9

Table 3. Quantitative detection results on ICDAR 2015. “-”/ “X” means without/within training
data. “P”, “R”, and “F” represent the Precision, Recall, and F-measure, respectively.

Method Ext P R F

EAST [8] - 83.6 73.5 78.2
PSENet [7] - 81.5 79.7 80.6
DPTNet-Tiny [41] X 90.3 77.4 83.3
LOMO [14] X 83.7 80.3 82.0
TextSnake [20] X 84.9 80.4 82.6
Xiufeng et al. [32] - 85.8 79.7 82.6
MFEN [38] - 84.5 79.7 82.0
SegLink++ [13] X 83.7 80.3 82.0
MSC [19] X 86.6 78.4 82.3
PAN [1] - 82.9 77.8 80.3
PAN [1] X 84.0 81.9 82.9
Ours_DenseTextPVT - 87.8 79.4 83.4

Our proposed method’s effectiveness is demonstrated on the curved TotalText dataset
(as shown in Table 1). Although the Recall (R) is lower compared to SegLink++ [13] and
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SPCNet [40], our DenseTextPVT achieves significantly higher Precision (P) and F-measure
(F) scores, 89.4% and 84.7%, respectively, without relying on any external dataset. The
visualization in Figure 6 clearly illustrates that our DenseTextPVT is capable of accurately
detecting dense curved texts.

Figure 6. The visualization samples on TotalText [16]. It is shown that our DenseTextPVT is capable
of accurately detecting dense curved texts.

Similarly, our approach demonstrates strong performance on the long curved CTW1500
benchmark, achieving Precision (P) and F-measure (F) scores of 88.3% and 83.9%, respec-
tively (as depicted in Table 2). While some algorithms, such as TextRay [30], DB [29],
PAN [1], CRAFT [27], and Xiufeng et al. [32], have slightly higher Recall (R) scores, our ap-
proach outperforms the existing algorithms in terms of overall performance. Additionally,
Figure 7 provides visual evidence that our proposed method accurately locates not only
long curved texts but also dense adjacent text instances.

When examining the results on the ICDAR 2015 dataset (as presented in Table 3), it
is observed that our DenseTextPVT does not achieve the highest Precision score, such as
DPTNet-Tiny [41,42] with a score of 90.3%. There is also a slight variation in the Recall score
compared to algorithms like LOMO [14], MFEN [36], TextSnake [20], Xiufeng et al. [32],
SegLink++ [13], and PAN [1]. However, our proposed algorithm demonstrates an impres-
sive overall performance with an F-measure of 83.4% when trained from scratch. The
visualization in Figure 8 demonstrates the effectiveness of our method in detecting dense
adjacent scene texts with multiple orientations.
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Figure 7. Several visualization results on long curved text lines on CTW1500 [17]. It demonstrates the
accurate localization of long curved texts with dense adjacent information by our proposed method.

Figure 8. Samples demonstrate that our DenseTextPVT algorithm is capable of effectively detecting
dense multi-oriented text in scene images on ICDAR 2015 [18].

5. Conclusions

In this study, we introduced a new method, namely, DenseTextPVT, for detecting dense
adjacent scene text. Our method manipulates the PvTv2 backbone with the combination
of channel and spatial attention module for dense prediction, and exploits a Deep Multi-
scale Feature Refinement Network to efficiently learn multi-level feature information.
Afterwards, we inherit a post-processing technique in PAN to reduce overlap phenomena
among text regions. Our results outperform state-of-the-art methods on several popular
benchmark datasets, achieving superior F-measure scores of 84.7% on TotalText, 83.9% on
CTW1500, and 83.4% on ICDAR 2015.

In the future, we plan to explore the possibility of an end-to-end framework for
dense adjacent text detection. Moreover, we aim to investigate the potential of using the
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progressive scale expansion algorithm for segmentation mask in detection tasks, especially
in benchmarks with a high density of object instances.

Author Contributions: Conceptualization, M.-T.D.; Methodology, M.-T.D.; Writing—review and
editing, M.-T.D.; Supervision, D.-J.C. and G.-S.L.; Project administration, G.-S.L.; Funding acquisition,
G.-S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B05049058).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PvTv2 Pyramid Vision Transformer
CAM Channel Attention Module
SAM Spatial Attention Module
CBAM Convolutional Block Attention
DNNs Deep Neural Networks
DMFRN Deep Multi-scale Feature Refinement Network
PA Pixel Aggregation
PAN Pixel Aggregation Network
LinearSRA Linear Shifted Row Attention
FC Fully Connected
FFN Feed Forward Network
P Precision
R Recall
F F-measure

References
1. Wang, W.; Xie, E.; Song, X.; Zang, Y.; Wang, W.; Lu, T.; Yu, G.; Shen, C. Efficient and accurate arbitrary-shaped text detection with

pixel aggregation network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA,
USA, 19–20 June 2019; pp. 8440–8449.

2. Liao, M.; Wan, Z.; Yao, C.; Chen, K.; Bai, X. Real-time scene text detection with differentiable binarization and adaptive scale
fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 919–931. [CrossRef] [PubMed]

3. Zhang, S.X.; Zhu, X.; Chen, L.; Hou, J.B.; Yin, X.C. Arbitrary Shape Text Detection via Segmentation with Probability Map. IEEE
Trans. Pattern Anal. Mach. Intell. 2022, 45, 2736–2750. [CrossRef] [PubMed]

4. Tang, J.; Zhang, W.; Liu, H.; Yang, M.; Jiang, B.; Hu, G.; Bai, X. Few Could Be Better Than All: Feature Sampling and Grouping for
Scene Text Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 20–25
June 2022; pp. 4563–4572.

5. Yin, X.-C.; Yin, X.; Huang, K.; Hao, H.-W. Robust text detection in natural scene images. IEEE Trans. Pattern Anal. Mach. Intell.
2013, 36, 970–983.

6. Chen, Z.; Wang, J.; Wang, W.; Chen, G.; Xie, E.; Luo, P.; Lu, T. FAST: Searching for a Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation. arXiv 2021, arXiv:2111.02394.

7. Wang, W.; Xie, E.; Li, X.; Hou, W.; Lu, T.; Yu, G.; Shao, S. Shape robust text detection with progressive scale expansion network. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 19–20 June 2019;
pp. 9336–9345.

8. Zhou, X.; Yao, C.; Wen, H.; Wang, Y.; Zhou, S.; He, W.; Liang, J. East: An efficient and accurate scene text detector. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5551–5560.

9. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2921–2929.

10. Dai, P.; Zhang, S.; Zhang, H.; Cao, X. Progressive contour regression for arbitrary-shape scene text detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 20–25 June 2021; pp. 7393–7402.

http://doi.org/10.1109/TPAMI.2022.3155612
http://www.ncbi.nlm.nih.gov/pubmed/35239474
http://dx.doi.org/10.1109/TPAMI.2022.3176122
http://www.ncbi.nlm.nih.gov/pubmed/35594227


Sensors 2023, 23, 5889 13 of 14

11. Baek, Y.; Lee, B.; Han, D.; Yun, S.; Lee, H. Character region awareness for text detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9365–9374.

12. Sheng, T.; Chen, J.; Lian, Z. Centripetaltext: An efficient text instance representation for scene text detection. Adv. Neural Inf.
Process. Syst. 2021, 34, 335–346.

13. Shi, B.; Xiang, B.; Serge, B. Detecting oriented text in natural images by linking segments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

14. Zhang, C.; Borong, L.; Zuming, H.; Mengyi, E.; Junyu, H.; Errui, D.; Xinghao, D. Look more than once: An accurate detector for
text of arbitrary shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 10552–10561.

15. He, W.; Zhang, X.-Y.; Yin, F.; Liu, C.-L. Deep direct regression for multi-oriented scene text detection. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 745–753.

16. Kheng, C.C.; Chan, C.S. TotalText: A comprehensive dataset for scene text detection and recognition. In Proceedings of the 2017 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; IEEE: Piscataway,
NJ, USA, 2017; Volume 1.

17. Liu, Y.; Jin, L.; Zhang, S.; Zhang, S. Detecting curve text in the wild: New dataset and new solution. arXiv 2017, arXiv:1712.02170.
18. Karatzas, D.; Gomez-Bigorda, L.; Nicolaou, A.; Ghosh, S.; Bagdanov, A.; Iwamura, M.; Matas, J.; Neumann, L.; Chandrasekhar,

V.R.; Lu, S.; et al. ICDAR 2015 competition on robust reading. In Proceedings of the 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 1156–1160.

19. Xue, C.; Shijian, L.; Wei, Z. MSR: Multi-scale shape regression for scene text detection. arXiv 2019, arXiv:1901.02596.
20. Long, S.; Jiaqiang, R.; Wenjie, Z.; Xin, H.; Wenhao, W.; Cong, Y. Textsnake: A flexible representation for detecting text of arbitrary

shapes. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 20–36.

21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, l30, 5998–6008.

22. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer International Publishing:
Berlin/Heidelberg, Germany, 2020; pp. 213–229.

23. Ze, L.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 20–25 June 2021;
pp. 10012–10022.

24. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. In Proceedings of the International
Conference on Learning Representations, Virtual Event, 3–7 May 2021.

25. Hugo, T.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. Int. Conf. Mach. Learn. 2021, 139, 10347–10357.

26. Wang, W.; Xie, E.; Li, X.; Fan, D.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pvt v2: Improved baselines with pyramid vision
transformer. Comput. Vis. Media 2022, 8, 415–424. [CrossRef]

27. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

28. Zhu, Y.; Chen, J.; Liang, L.; Kuang, Z.; Jin, L.; Zhang, W. Fourier contour embedding for arbitrary-shaped text detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 20–25 June 2021; pp. 3123–3131.

29. Liao, M.; Wan, Z.; Yao, C.; Chen, K.; Bai, X. Real-time scene text detection with differentiable binarization. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11474–11481.

30. Wang, F.; Chen, Y.; Wu, F.; Li, X. Textray: Contour-based geometric modeling for arbitrary-shaped scene text detection. In
Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 111–119.

31. Dang, Q.-V.; Lee, G.-S. Document image binarization with stroke boundary feature guided network. IEEE Access 2021, 9,
36924–36936. [CrossRef]

32. Jiang, X.; Xu, S.; Zhang, S.; Cao, S. Arbitrary-shaped text detection with adaptive text region representation. IEEE Access 2020, 8,
102106–102118. [CrossRef]

33. Zobeir, R.; Naiel, M.A.; Younes, G.; Wardell, S.; Zelek, J.S. Transformer-based text detection in the wild. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 20–25 June 2021; pp. 3162–3171.

34. Zobeir, R.; Younes, G.; Zelek, J. Arbitrary shape text detection using transformers. In Proceedings of the 2022 26th International
Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 3238–3245.

35. Wang, W.; Xie, E.; Li, X.; Fan, D.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Virtual, 20–25 June 2021; pp. 568–578.

36. Dinh, M.-T.; Lee, G.-S. Arbitrary-shaped Scene Text Detection based on Multi-scale Feature Enhancement Network. In Proceedings
of the Korean Information Science Society Conference, Jeju, Korea, 29 June–1 July 2022.

http://dx.doi.org/10.1007/s41095-022-0274-8
http://dx.doi.org/10.1109/ACCESS.2021.3062904
http://dx.doi.org/10.1109/ACCESS.2020.2999069


Sensors 2023, 23, 5889 14 of 14

37. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:
Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017,
Québec City, QC, Canada, 14 September 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 240–248.

38. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
39. Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 761–769.
40. Enze, X.; Zang, Y.; Shao, S.; Yu, G.; Yao, C.; Li, G. Scene text detection with supervised pyramid context network. In Proceedings

of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9038–9045.
41. Lin, J.; Jiang, J.; Yan, Y.; Guo, C.; Wang, H.; Liu, W.; Wang, H. DPTNet: A Dual-Path Transformer Architecture for Scene Text

Detection. arXiv 2022, arXiv:2208.09878.
42. Deng, D.; Liu, H.; Li, X.; Cai, D. Pixellink: Detecting scene text via instance segmentation. In Proceedings of the AAAI Conference

on Artificial Intelligence, New Orleans, LA, USA, 2–3 February 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Scene Text Detection
	Transformer

	Methodology
	Overall Architecture
	PvTv2 Backbone
	Deep Multi-Scale Feature Refinement Network
	Loss Function

	Experiments and Results
	Dataset
	Implementations
	Evaluation Metrics
	Results

	Conclusions
	References

