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Abstract: Nowadays, artificial intelligence is used everywhere in the world and is becoming a
key factor for innovation and progress in many areas of human life. From medicine to industry
to consumer electronics, its influence is ever-expanding and permeates all aspects of our modern
society. This article presents the use of artificial intelligence (prediction) for the control of three
motors used for effector control in a spherical parallel kinematic structure of a designed device.
The kinematic model used was the “Agile eye” which can achieve high dynamics and has three
degrees of freedom. A prototype of this device was designed and built, on which experiments were
carried out in the framework of motor control. As the prototype was created through the means of
the available equipment (3D printing and lathe), the clearances of the kinematic mechanism were
made and then calibrated through prediction. The paper also presents a method for motor control
calibration. On the one hand, using AI is an efficient way to achieve higher precision in positioning
the optical axis of the effector. On the other hand, such calibration would be rendered unnecessary if
the clearances and inaccuracies in the mechanism could be eliminated mechanically. The device was
designed with imperfections such as clearances in mind so the effectiveness of the calibration could
be tested and evaluated. The resulting control of the achieved movements of the axis of the device
(effector) took place when obtaining the exact location of the tracked point. There are several methods
for controlling the motors of mechatronic devices (e.g., Matlab-Simscape). This paper presents an
experiment performed to verify the possibility of controlling the kinematic mechanism through
neural networks and eliminating inaccuracies caused by imprecisely produced mechanical parts.

Keywords: agile eye; prediction; artificial intelligence; neural networks

1. Introduction

Every day, buildings or people are monitored by video surveillance systems. Currently
used security cameras placed on buildings are sometimes able to detect people or animals
in the image through machine vision and even rotate the camera to keep such objects in
view according to the movement of the objects being monitored. Achieving the desired
camera movement is ensured by the motors implemented in the design of the camera
mount. In some applications intrusion detection, a critical component of network security,
may monitor network activities as well as detect intrusions/attacks. The control of the
motors is provided by the camera control unit, which is programmed according to the
specific kinematic structure of the mechanism. According to the kinematic model and the
type of motors used in construction, it is possible to find the dependencies and equations
for the control, according to which the specific movement of the individual motors can be
recalculated for every possible movement [1,2].

Nowadays, various applications of artificial intelligence are becoming more and more
prominent. In particular, applications of machine vision (categorizing objects in a captured
image), prediction (predicting values that may occur), and voice control, based on recog-
nition of spoken commands, are frequently applied in industry. The stated applications
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become an integral part of Industry 4.0 and are suited to be deployed in various indus-
trial applications such as machine manufacturing, packaging, the automotive and food
industries, and many others. The primary significance of integrating machine vision with
predictive capabilities lies in the mitigation of errors caused by human interventions, while
harnessing a sufficient level of accuracy and stability that surpasses the limits attainable
through human effort alone. The implementation of artificial intelligence results in a de-
crease in error rates and undesirable production downtimes. Additionally, it enhances the
efficiency of production, facilitates traceability, and increases workplace safety [3].

This paper focuses on the implementation of predictions in controlling the motors
of a still-quite-rare kinematic structure, “Agile eye” (see Section 2.1), through prediction,
using artificial neural network models. In this research, artificial neural network models
address the task of approximating a continuous function that describes the kinematics of
the mechanism.

Mechatronic devices (their actuators–motors) are often controlled according to complex
kinematic equations resulting from Euler angles/Tait-Bryan angles, Matlab, based on
implemented sensors, etc. Our objective was to investigate the feasibility of bypassing the
utilization of these equations and substituting them with neural networks (prediction) as
an alternative approach. In addition to the device performing the required movements
after prediction, a calibration was created, after which the device performed more accurate
movements—Section 3.4.

The device design incorporated existing manufacturing technologies at the university,
to ensure the feasibility of its production. The main means of production were a Prusa i3
MK3S+ 3D printer (Prusa Research, Prague 7, Czech Republic, the device was purchased
through their eshop), an EMCO Concept Turn 55 lathe (EMCO GmbH, Salzburger Str. 80,
Hallein-Taxach, the device was purchased through their dealer), and a Z7016 Vario bench
drill (CORMAK, Brzeska 120, Siedlce, the device was purchased through their eshop).

In previous AI projects, we have predominantly used Python as the programming
language. To create the control program in this application, Python 3.8.15 and available
software libraries were used. Some of the libraries that can be used for prediction include
scikit-learn (MLPRegressor), pandas, matplotlib, and numpy.

Scikit-learn is an open-source software library that offers several features in the field
of machine learning. The most used functions include classification, regression, clustering,
dimensionality reduction, model selection, etc. [4].

Pandas is an open-source data analysis and manipulation tool that is quick, powerful,
flexible, and simple to use. This library contains several features suitable for machine
learning projects. We used the “reading and writing data” function, which gave us access to
a .csv file that contained the coordinates of the points where we wanted the optical axis of
the effector to move. The neural network training was carried out by reading values from
the .csv file where five columns were created, where there were two inputs (X,Y) and three
outputs (M1, M2, M3). More details about the neural network training are summarized in
Section 2.2 [5].

Matplotlib was used to plot the training progress on a graph. NumPy is the foun-
dational Python library for scientific computing. It is a Python library that includes a
multidimensional array object, various derived objects (such as masked arrays and matri-
ces), and a variety of routines for performing fast array operations such as mathematical,
logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear
algebra, basic statistical operations, random simulation, and much more. This library, due
to its wide possibilities of use, was used in all the created scripts that were related to the
control of the created device [6].

The paper’s contribution lies in the development of a methodology to control a
mechatronic device through prediction while creating a calibration to obtain more accurate
effector positions. The paper also provides an overview of the different effector motion
options of described device, including the Fourier transform.
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In Figure 1a, the design of the device used for the experimental part of this project is
shown. Figure 1b shows the prototype device constructed. The parts shown in black and
orange were printed from PETG material. The joint pins used in the rotating kinematic
pairs were turned on a lathe. On the right side of the device base, “T-cuts” were created
to allow for attaching another device for presentation purposes while maintaining the
distance between the axes of the effectors. Such a connection of two devices enables the
device to be repurposed for further research in the field of stereovision. In practice, the
outputs can be used to measure the distance of objects from the device or the dimensions
of tracked objects, detect the speed of moving objects etc.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 28 
 

 

The paper’s contribution lies in the development of a methodology to control a mech-

atronic device through prediction while creating a calibration to obtain more accurate ef-

fector positions. The paper also provides an overview of the different effector motion op-

tions of described device, including the Fourier transform. 

In Figure 1a, the design of the device used for the experimental part of this project is 

shown. Figure 1b shows the prototype device constructed. The parts shown in black and 

orange were printed from PETG material. The joint pins used in the rotating kinematic 

pairs were turned on a lathe. On the right side of the device base, “T-cuts” were created 

to allow for attaching another device for presentation purposes while maintaining the dis-

tance between the axes of the effectors. Such a connection of two devices enables the de-

vice to be repurposed for further research in the field of stereovision. In practice, the out-

puts can be used to measure the distance of objects from the device or the dimensions of 

tracked objects, detect the speed of moving objects etc. 

  

(a) (b) 

Figure 1. Agile Eye design: (a) CAD model; (b) physical construction of the device. 

The next part of the research will consist of object recognition of the workspace of the 

3D-measuring device through machine vision. The device will be able to detect the object 

to be measured, the measuring touch probes and the order of placement of the measuring 

probes in the tool stack. Another project will focus on the navigation of a mobile robot by 

tracking a specific person via machine vision or by voice commands of a specific person. 

2. Materials and Methods 

Currently, it is possible to find several published research studies in the field of the 

above-mentioned motor control methods. One of them is, for example, the Model-Based 

Design of Induction Motor Control System in MATLAB, where the author’s team utilized 

a mathematic model of an induction motor based on Kirchhoff’s second law with the con-

sideration of Maxwell’s equation [7]. 

Despite many publications in the field of motor control using predictions, our solu-

tion offers to some extent the possibility of eliminating overall inaccuracies and backlash 

in the mechanism through calibration. The publications currently available in the field of 

motor control utilizing neural networks, and which are relevant to the problem addressed 

in this paper, can be categorized as follows: 

• Kinematic Control of Redundant Manipulators Using Neural Networks [8]. 

• From neuron to behavior: dynamic equation-based prediction of biological processes 

in motor control [9]. 

• Neural Network-Based Motion Control of Underactuated Wheeled Inverted Pendu-

lum Models [10]. 

Figure 1. Agile Eye design: (a) CAD model; (b) physical construction of the device.

The next part of the research will consist of object recognition of the workspace of the
3D-measuring device through machine vision. The device will be able to detect the object
to be measured, the measuring touch probes and the order of placement of the measuring
probes in the tool stack. Another project will focus on the navigation of a mobile robot by
tracking a specific person via machine vision or by voice commands of a specific person.

2. Materials and Methods

Currently, it is possible to find several published research studies in the field of the
above-mentioned motor control methods. One of them is, for example, the Model-Based
Design of Induction Motor Control System in MATLAB, where the author’s team utilized
a mathematic model of an induction motor based on Kirchhoff’s second law with the
consideration of Maxwell’s equation [7].

Despite many publications in the field of motor control using predictions, our solution
offers to some extent the possibility of eliminating overall inaccuracies and backlash in the
mechanism through calibration. The publications currently available in the field of motor
control utilizing neural networks, and which are relevant to the problem addressed in this
paper, can be categorized as follows:

• Kinematic Control of Redundant Manipulators Using Neural Networks [8].
• From neuron to behavior: dynamic equation-based prediction of biological processes

in motor control [9].
• Neural Network-Based Motion Control of Underactuated Wheeled Inverted Pendulum

Models [10].

At first, the conditions were specified: a device with a parallel kinematic structure was
created. In the control system, standard kinematic relations were replaced by prediction
using neural networks. To fulfill such requirements, current materials, and methods in the
field of parallel kinematics of mechatronic devices, artificial intelligence and processing of
measured values were researched. The selected kinematic mechanism consisted mostly of
parts created by FDM. The selected manufacturing methods resulted in mechanical errors
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such as inaccuracies of parts, backlash, and flexing. These errors were partially eliminated
by calibration as shown in Section 3.4.1.

Although the device could have been controlled through the use of rotation matrices
or according to a model created in Matlab (Section 3.2.2), we sought to replace this with
inverse kinematics followed by prediction. Controlling the motors through prediction was
not expected to be more accurate than controlling the mechanism through the Simscape
model (Matlab). An important aspect of this study involved the incorporation of calibration,
whereby the neural network is trained based on the actual detected movements. Such a
training process enables the effector to achieve greater positional accuracy by compensating
for any clearances in the pins or motors.

The procedure for creating the experimental part was as follows:

• Designing and building a mechatronic device with a parallel kinematic structure.
• Obtaining enough values to control the motors using inverse kinematics (CREO).
• Building a structure where a millimeter graph paper was placed on which the motions

of the device could be studied.
• Writing the necessary programs.
• Processing the results.

The speed of movement for all types of movements on a circle or on a line between
two points can be calculated as follows—all created paths after the movement are executed
by the device in 36 s, so, as long as we know the length of the path, we can calculate the
exact speed of the effector’s movement. The control can also be carried out the other way
around—we choose the desired speed, and the number of points along which the optical
axis of the effector will move is adjusted according to linear/circular interpolation. The
predicted values of the servomotor rotation can be included as variable parameters. In
our experiment, these were varied continuously according to the required movements
of the optical axis of the device to a specific position. The measured parameter was the
movement of the intersection of the optical axis of the effector on the investigated plane.
The values obtained in this manner were processed afterward and are included in the
results of this paper.

2.1. Agile Eye

The kinematic model of the agile eye is a high-performance three-degree-of-freedom
camera-orienting device that was designed at Université Laval in 2002. The original model
achieved a relatively high positioning speed. The device can be used in various applications.
For example, it can be used for positioning effectors such as a camera for real-time tracking
of objects, or a laser or mirror to project light beams onto a certain surface. The design of
this device is shown in Figure 2 [11].
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The studies referenced in [11] point out that to achieve the combination of two camera
images into a stereopair, it is necessary for both cameras to contain three degrees of freedom.
Given that this is an implementation of AI algorithms into a mechatronic device, preparing
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the implementation of other AI methods, such as machine vision and voice recognition (an
Arducam IMX179AF—Arducam, Nanjing, China, the device was purchased through their
dealer), has been taken into account. Such mechanisms are used in the heads of humanoid
robots, where through the stereo vision device, the robot is able to track the scene around
it and at the same time it can detect the distance of the detected objects from the sensing
device (camera). The preparation of stereovision can lead to the creation of new research in
the investigated field.

The control of this mechanism consisted in expressing the Tait-Bryan equations on all
links of the mechanism. The whole study regarding the construction of this mechanism,
the kinematic analysis, and its control is written in a study detailed in reference [12]. The
mentioned study proves that the Agile Eye’s workspace is limitless and is only flawed by
six singularity curves (as opposed to surfaces). These curves were also found to match the
mobile platform’s self-motions [12].

2.2. Neural Network Model

The model that was used to calculate the positions of all 3 servomotors is a multilayer
perceptron, which consists of 1 input layer, 1 hidden layer, and 1 output layer. The input
layer is composed of 2 artificial neurons, where each neuron belongs to the desired position
to which the mechanism is to be directed. The hidden layer contains 500 artificial neurons.
The output layer contains 3 artificial neurons belonging to the 3 servo motors of the servo
mechanism [13,14].

This model spreads the input signal forward through the hidden layer, and it uses
some simple calculations such as weighted input and transferring this weighted input
via the activation function. Those activation functions can be specific for each layer of
the neural network and can often affect the final performance of the network after the
training or can affect the overall training time. The most common activation functions are
a hyperbolic tangent, logical sigmoid, linear function, or rectified linear unit activation
function. In addition, some of the activation can not prevent problems often known as
vanishing or exploding gradients problems, when the network is unable to train on the
given data set.

All layers that were created have the ReLU—Rectified Linear Unit activation function.
Testing other activation functions was not the object of this research. This activation
function, compared to activation functions such as a logical sigmoid or hyperbolic tangent,
better avoids the problem of vanishing gradients in the learning process. For the ReLU
activation function f, the Relations (1) and (2) hold [15].

f (x) = x+ = max(0, x) =
{

x if x > 0,
0 otherwise.

(1)

f ′(x) =
{

1 if x > 0,
0 if x < 0.

(2)

where x represents the value of the input that enters the artificial neuron. If the input is less
than or equal to 0 the output of this function is also equal to zero. If the input is greater
than 0, the output of the function is equal to the value of the input. The architecture of the
neural network model is shown in Figure 3.

Every training process of the neural network starts with randomizing the bias and
weight parameters randomly or by some specific rule. In the terms of the initialization
of the weight parameters a weight normalization rule was used. This normalization was
specific for the layers with the ReLU activation function. If we were to use a logical sigmoid
or hyperbolic tangent in this research a Xavier initialization method or Normalized Xavier
initialization method could be used. Because of these random-based initialization methods,
each training could achieve different results in the terms of the overall performance of
the network.
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parallel mechanism.

The training continues with slowly changing the initialized weight and bias parameter
values according to the error function. The final goal is to reach a global minimum in
the error space for a specific situation. The most often used error functions (also referred
to as cost functions) are mean squared error MSE or root mean squared error function
RMSE. The standard training methods such as gradient descent or Levenberg-Marquardt
optimalization algorithms set up all the parameters so the derivative of this function
according to weight and bias parameters is equal to zero. In this research a dataset was
created for learning with a teacher.

The X and Y variables are the values of the X and Y axis coordinates to which
the target point of the effector mechanism is to be directed. M1, M2, and M3 are the
rotation angles of the servomotors of the device. The training data had the format
expected outputs—attributed outputs. Therefore, this is learning with a teacher. The
Adam—Adaptive Momentum learning technique was used to train the model. The train-
ing was completed after 9 iterations, and the resulting accuracy (or MSE error function
value) was 0.09 (shown in Figure 4.). The number of samples of the training dataset was
3600. In this project, the neural network was trained using the Scikit-learn library, a widely
utilized tool [16,17].
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After the training was finished the neural network could be used as a controller for
the designed mechanism. A script was created for controlling the servomotors. It was
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necessary to provide a .csv data set with the required points of the path and after that it
could be used as described in the following flowchart in Figure 5 below.
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Figure 5. Using neural network as a controller for the servo motors.

The script loads the data file containing the required positions to which the mechanism
should position. After that, the neural network calls for a loop and calculates the desired
servomotor positions. To give time for the mechanism to position the effector of the
device, a time delay is added to the microcomputer. This time affects the final speed of
the positioning the servomotors. For the purposes of this experiment a time of 100 ms was
used. After the whole data list is read, the script is ended and can be called to repeat the
given task again.

3. Results

This section contains the practical outputs of the project, in terms of device design
and construction, measured data collection, and its evaluation. For purposes of this paper,
the outputs of the experiment performed by Alibakhshi and Mohammadi Daniali, focused
on the forward kinematics of the manipulator and usage of neural networks, including
the methods proposed by Gosselin and Gagne, were analyzed. The goal of the respective
experiment and the task of neural networks was “to estimate the distance between gripper
and singularity or obstacle in Euler coordinate” [18,19].

3.1. Agile Eye Design

The basic template for developing the design was the study referred to in Section 2.1.
This avoided the creation of potential errors such as the creation of two fixed circular arcs
and so on.

The design used in this paper was based on the above-mentioned design and improve-
ments and modifications such as:

• Servomotor cooling;
• Effector designed so that it can be used to mount both camera and laser;
• Created T-slots for precise attachment of the second device, in the case of stereo

imaging testing;
• Mounting holes that allow mounting of the device to the wall.

Holes were not created in the individual arms in terms of reducing the weight of the
device, due to the creation of the majority of the device by 3D printing (FDM). These parts
encompassed a smaller fill, so the weight would be similar to that of the holes created with
the full fill of the objects
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3.1.1. Main Components of Construction

The mechanical construction was designed to be manufactured mainly by FDM 3D
printing. The simplicity of the design is important as it makes the future pairing of two
mechanisms side by side (stereo vision) easier. The structure contains standard fasteners
(bolts, nuts) and flanged bushings (blue color—Figure 6c).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 28 
 

 

3. Results 
This section contains the practical outputs of the project, in terms of device design 

and construction, measured data collection, and its evaluation. For purposes of this paper, 
the outputs of the experiment performed by Alibakhshi and Mohammadi Daniali, focused 
on the forward kinematics of the manipulator and usage of neural networks, including 
the methods proposed by Gosselin and Gagne, were analyzed. The goal of the respective 
experiment and the task of neural networks was “to estimate the distance between gripper 
and singularity or obstacle in Euler coordinate” [18,19]. 

3.1. Agile Eye Design 
The basic template for developing the design was the study referred to in Section 2.1. 

This avoided the creation of potential errors such as the creation of two fixed circular arcs 
and so on. 

The design used in this paper was based on the above-mentioned design and im-
provements and modifications such as: 
• Servomotor cooling; 
• Effector designed so that it can be used to mount both camera and laser; 
• Created T-slots for precise attachment of the second device, in the case of stereo  

imaging testing; 
• Mounting holes that allow mounting of the device to the wall. 

Holes were not created in the individual arms in terms of reducing the weight of the 
device, due to the creation of the majority of the device by 3D printing (FDM). These parts 
encompassed a smaller fill, so the weight would be similar to that of the holes created with 
the full fill of the objects 

3.1.1. Main Components of Construction 
The mechanical construction was designed to be manufactured mainly by FDM 3D 

printing. The simplicity of the design is important as it makes the future pairing of two 
mechanisms side by side (stereo vision) easier. The structure contains standard fasteners 
(bolts, nuts) and flanged bushings (blue color—Figure 6c). 

  
 

(a) (b) (c) 

Figure 6. Individual parts of the Agile Eye: (a) base; (b) arm assembly; (c) effector. 

All parts were made using a Prusa MK3S printer in five production runs: 
• 1× base (Figure 6a)—1 production cycle; 
• 3× arm assembly (Figure 6b)—3 production cycles; 
• 1× effector (Figure 6c)—1 production cycle; 

During the print of the base two material changes were made for aesthetic reasons in 
order to increase the contrast of the departmental logo. 

  

Figure 6. Individual parts of the Agile Eye: (a) base; (b) arm assembly; (c) effector.

All parts were made using a Prusa MK3S printer in five production runs:

• 1× base (Figure 6a)—1 production cycle;
• 3× arm assembly (Figure 6b)—3 production cycles;
• 1× effector (Figure 6c)—1 production cycle;

During the print of the base two material changes were made for aesthetic reasons in
order to increase the contrast of the departmental logo.

3.1.2. Electric Components

The agile eye is a mechatronic system in which mechanics, electronics, and IT are
combined. The electronic components used in this design are:

• 3×MG996R Servo (RPishop.cz, Roudné, Czech Republic, the device was purchased
through their eshop)—servo motors which are used to create torque on the device
hoop and then move the effector;

• 1× RaspberryPi 4B (RPishop.cz, Roudné, Czech Republic, the device was purchased
through their eshop)—the control unit in which the scripts were created to control this
mechanism, including training the neural networks;

• 1× Servo Driver—a device that allows control of up to 16 servo motors.

The device can be used for different applications, according to which appropriate type
of effector is selected. Either an Arducam 8MP IMX179AF camera or a laser, with a body
diameter of 10 mm, can be attached to the proposed effector.

3.2. Kinematics

In many applications, mechanical systems that enable a rigid body to move relative to
a fixed basis are crucial. A rigid body in space has the ability to move in both translation
and rotation. The degrees of freedom (DoF) refer to the motions. A rigid body can only
have a maximum of six degrees of freedom (DoFs) in space, or three translations and three
rotations about the x, y, and z axes in Cartesian coordinates. A system can be referred to as
a robot as soon as it is able to operate the end-effector’s multiple DoFs using a mechanical
system [20].

The Agile eye device has a parallel kinematic structure that utilizes three motors to
rotate the effector with 3DoF. To achieve control of this device through prediction, it was
important to find out the rotation values of the motors at different effector orientations.
The underlying coordinate system, denoted Ox1y1z1, is symbolized by the colored axes
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of the individual motors which are shown in Figure 7a. The aforementioned coordinate
system and its orientation can be seen in Figure 7b (the location of its axes, located in the
axes of the motors).
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Figure 7. Reference configuration of the Agile Eye mechanism: (a) Motor axes; (b) Coordinate system
of the device.

Tait-Bryan angles were used to obtain the resulting rotation matrix while defining the
orientation of the Ox2y2z2 coordinate system on the effector. The rotation method of this
coordinate system is in the order Z1Y2X3, where indexes 1,2,3 symbolize the angles ψ, θ, φ,
that were used for the rotation about each axis [21,22].

The principle of using Tait-Bryan angles Z1Y2X3, is represented in the following figures
(Figures 8 and 9). Figure 8a shows the rotation of the coordinate system Ox′1y′1z′1 (purple
color) concerning the Z-axis. The angle used is defined by the symbol ψ. The second
rotation (Figure 8b) occurred with respect to the Y-axis, producing the coordinate system
Ox′′1y′′1z′′1 (yellow color), where the angle is defined by the symbol θ.
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Figure 9. Using Tait-Bryan angles: (a) Rotation of the X = 40 deg axis; (b) Representation of the
rotation angles of each axis between Ox1y1z1 and Ox2y2z2.

The last (third-read) coordinate system, Ox′′′1y′′′1z′′′1 (hereafter referred to as Ox2y2z2),
was created by the rotation of the X-axis, as symbolized in Figure 9a. The angle of rotation is
defined by the symbol φ. Specifically, the rotation angles of the coordinate system Ox2y2z2
are as follows:

• ψ = 20 deg;
• θ = 20 deg;
• φ = 40 deg.

These angles can also be read from Figure 9b, where two planes have been created
that intersect each other. The first plane was created on the coordinate system Ox1y1z1,
on the X and Y axes. The second plane was created on the coordinate system Ox2y2z2 on
the Y and Z axes. At the location where these planes intersect, the N(y′) axis was created,
with the N axis perpendicular to it (green colors). To define the angles between these two
coordinate systems, Tait-Bryan angles were used [23].

To represent the resulting coordinate systems, three 3 × 3 rotation matrices were
created. The rotation matrices created and the method of calculating the resulting rotation
matrix are defined by Relation (3).

RZ(ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

, RY(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

, RX(ϕ)

1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

 (3)

Multiplying the rotation matrices RZ, RY, and RX, we obtain the resulting rotation
matrix (4) RZYX, which expresses the orientation of the coordinate system Ox2y2z2 with
respect to Ox1y1z1 [24].

A
B RZYX = RZ(ψ)RY(θ)RX(ϕ) =

cosψcosθ cosψsinθsinϕ− cosϕsinψ sinψsinϕ+ cosψcosϕsinθ
cosθsinψ cosψcosϕ+ sinψsinθsinϕ cosϕsinψsinθ− cosψsinϕ
−sinθ cosθsinϕ cosθcosϕ

 (4)

3.2.1. Creo Parametric

In order to use prediction in the training of neural networks for the control of the
constructed device, it is necessary to create a dataset of values that will be used for the
training of the neural network. A model of the device, including the creation of the
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constraints, was created in Creo Parametric (CREO) to realistically represent the movements
it can perform. CREO offers a “Mechanism analysis” option where the inverse kinematics
can be used to obtain specific motor rotation values for each effector rotation.

To obtain the values of the rotation of the motors (deg), several effector movements
were generated, with five values recorded every 0.1 s—the rotation of the three motors (A,
B, C) and the exact location of the effector axis on the surface under study (X and Y axis). A
graph of the obtained values (shown in Figure 10), was created from the values generated
while the effector was performing a movement in the shape of a circle with a radius of 10
mm. The motion on the circle was generated through the goniometric function of the sine
and cosine of the angle.
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3.2.2. Simscape Multibody Model

There are several options for controlling this mechatronic device. One of them is the
use of Simulink, which can be used within Matlab. The “Simscape multibody model”
extension was used to create the simulation model. By using Simulink, a direct kinematic
solution for the designed mechatronic device occurs.

After exporting the data and subsequent editing, a simulation model of the device
(Figure 11), was created to represent the control of this mechatronic device. The simulation
model consisted of 6 functional blocks.
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The simulation model created in Matlab can also be used to verify mathematical
equations related to kinematics, simulate motions and evaluate numerical calculations for
inverse kinematics [24].

3.3. Collection of Data from Created Device Movements

After the device control was created, a program was used by which the device per-
formed a circle through the effector axis with a radius of 20 mm (R20). During the movement
of the effector, the recording of the captured image was started (Figure 12). The recorded
image was analyzed in the Tracker software (Section 3.3.1). Every 0.1 s the coordinates
of the tracked point (X,Y) were recorded. The coordinates obtained from the scan point
tracking were processed into graphs and then evaluated.
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Figure 12. Analysis of video in the Tracker software. The video section (1) contains a coordinate
system (2) relative to the camera frame, the calibration stick (3) defining the real scale of objects in
the projection plane, and a point (4), the position of which is tracked in coordinates relative to the
camera frame. The position of the target point is recorded using the Autotrack function in each of
6224 frames of the video, as shown in (5), and the position is recorded in table (6) and charts for
individual axes (7).

3.3.1. Tracker

Tracker is a free video analysis and modeling tool built on the Open Source Physics
(OSP) Java framework. It is designed to be used in physics education. This software allows
the user to manually or automatically track the position of an object in individual frames of
video and thus calculate its velocity and acceleration [25].

The actual inspection of the video recorded by the camera on the agile eye itself is
shown in Figure 12.

In cases when the target mark was too blurry to be recognized by the auto-tracking
algorithm, points were selected manually or omitted depending on the level of blurriness.
The described setup allowed the measurement of the positioning accuracy of the agile eye
mechanism without complicated and labor-intensive processes [26].
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3.3.2. Calculation of Achieved Points

The processed image data was processed through MATLAB. Since the training data
was taken on a plane that was 74 mm away from the plane in which the camera was located,
while experimenting, we had the plane from which we were detecting the eye rotation
255 mm away. Therefore, it was necessary to convert the acquired data into b values that
were projected on a plane that was 74 mm away from the camera plane. For the angle α,
relation 5 holds.

cos α =
255
α

(5)

The a value was the distance projected on a plane 255 mm away from the plane in
which the camera was located. In order to compare the desired position with the actual
position, we needed to calculate the distance b. To calculate the distance b, Equation (6)
was used.

b = 74
1

cos α
= 74

1
255
α

=
74α

255
(6)

A principled representation of the conversion is shown in Figure 13a.
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Figure 13. Representation of focal length and working planes: (a) Converting the values obtained to
the distances with respect to which the mechanism was positioned (b) Rotating the motors M1, M2,
M3, and positioning the camera to the X and Y coordinates.

3.4. Using Prediction for Motor Control

The neural network that was used in this research solved the approximation of the
unknown function f. Its shape is shown in Equation (7) [27].

y(M1, M2, M3) = f (X, Y) (7)

This function described the dependencies between the desired camera position given
by the X and Y coordinates and the three rotations of the servomotors M1, M2, and M3 as
can be seen in Figure 13b. These dependencies are described by a kinematic model. The
neural network model used was able to abstract the individual dependencies from the data
that was obtained from the CREO Parametric environment. In this way, it was possible to
bypass the kinematic model, which is described in more detail in Section 3.2.
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3.4.1. Processing the Results by Moving along the Circle R20

In a two-dimensional space, there were points with X and Y coordinates on which
we performed the convex wrapping. This envelope was the intersection of all convex sets
containing points with X and Y coordinates. To describe the accuracy and behavior of the
model that controlled the mechanism’s motors, it was necessary to calculate the radius and
coordinates of the center of the smallest inscribed circle and the radius and coordinates of
the largest inscribed circle. Based on these two circles, it was also possible to calculate the
center circle, which was important in the calibration of the neural network model. For a
center circle whose diameter is dmean and whose center coordinates are the same as those of
the dmax and dmin circles, the following prescription can be used.

dmean = dmin +
dmax − dmin

2
(8)

Circles with diameter dmin and dmax have the same center coordinates.
The behavior of the mechanism when positioning the camera along a circular path can

also be described by the geometric tolerances prescribed by STN EN ISO 1101:2006. These
geometric tolerances are divided into 4 categories according to the standard: geometric
tolerances of shape, position, orientation, and throw [28,29].

The circularity tolerance, which belongs to the group of shape tolerances, was used to
describe the observed trajectory. The tolerance zone for this tolerance tends to be bounded
by two concentric circles. Their radial distance is the prescribed value of this tolerance.
This parameter was used in the research to describe the positioning accuracy of the parallel
kinematic structure.

For calibration purposes, the measured data also had to be processed. The equipment
used performed 30 repetitions for each diameter. From these 30 repetitions, an average
trajectory was created. This path was made up of 360 points, each point belonging to a
certain angular range. In our case, this was a 1◦ angular span, as can be seen in Figure 14.
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Figure 14. Illustration of the processing of the average trajectory from 30 repetitions of the circu-
lar motion.

To calculate the average trajectory formed by the Pmean points, it was necessary to
calculate the distance of the points from the center of the inscribed and circumscribed circle.
The relation for calculating the distance d, which is shown in the previous figure, is as
follows. This distance was also used in the application of the Fourier transform, the results
of which are presented in Section 3.4.5:

d =

√
(X− xcenter)

2 + (Y− ycenter)
2 (9)
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For each point, which is specific by X and Y coordinates, the absolute distance from
the center of the concentric circles, which has xcenter and ycenter coordinates, was calculated.

The Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation method
was fitted to the resulting averaged trajectory [30,31].

This method returns a vector with interpolated values according to the shape-preserving
piecewise cubic interpolation of x and y. The piecewise polynomial f (x) uses Formula (10).

(x) = a(x− x1)
3 + b(x− x1)

2 + c(x− x1) + d (10)

The coefficients of the polynomial, in this case, are denoted by a, b, c, d. The intervals
of the polynomial are denoted by x and x1. Compared to the linear interpolation method,
this requires more computation time and is memory intensive. It requires at least four
points. MATLAB was used to preprocess the collected data. This interpolated trajectory
was used for calibration purposes, the shape of which is shown in Figure 15a.
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Figure 15. Graphs of the motion of the effector axis along the R20 circle: (a) Motion of the effector axis
according to the values obtained from the CREO program; (b) Motion of the effector axis according
to the values obtained from the prediction, trained on the motor control values from CREO.

The collected data (coordinates) from thirty repetitions of the effector axis movements
on the surface were plotted in Figure 15. The effector axis performed a motion on a circle
with radius R20. Figure 15a shows the coordinates of the points that were created by driving
the device with the motor rotation values obtained from the CREO program (Section 3.2.1).
It can be seen in the graph that the required circle R20 was not touched by the axis of
the effector even once during the thirty repetitions. Training the neural network on the
motor rotation values from CREO (Figure 15b) achieved better results in repeatability and
touching the effector axis of the desired circle. The shape of the circle, created by moving
the effector axis of the device in a post-comparison of the two graphs, achieved better
results when controlled by the inverse kinematic values from CREO.

Each set of values in the tables obtained serves the purpose of comparing several ways
of motor-control methods—control by values obtained from CREO, control by prediction
values without calibration, calibration according to the mean circle, and calibration accord-
ing to the average point curve. An important parameter is the deviation of the desired
motion from the actual motion generated. These values are also expressed graphically as
charts. For circular motion, the desired motion is represented by the green circle. By per-
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forming thirty repetitions of movement along the circle, the orange curve, which represents
the average real position for the desired ones, allows for the evaluation of repeatability
concerning the desired motions.

To achieve more accurate results, calibration of the servomotor position prediction
model was proposed. The training values of the rotation of the motors according to the
points formed on the central circle is shown in red in Figure 15a.

The exact coordinates obtained by moving the axis of the effector along the circle R20
(radius 20 mm), are shown in Table A1. The deviations of the actual motion from the desired
motion are important data to compare how the motors are controlled. In this case, it was the
motion where the axis of the effector was to form a circle at the intersection with a 40 mm di-
ameter millimeter paper (radius 20 mm). Since this was a circle formation, the most suitable
way of movement was achieved by the difference between the inner radius and the outer ra-
dius. The formula could be written as x = inner radius + ((outer radius − inner radius)/2).
The best results were obtained after calibration according to the mean circle (Figure 16a),
where the result of the prediction was x = 19.92 mm (R19.92). This is the radius dimension
that was closest to the desired radius (20 mm). Calibration according to the average point
curve is shown on the Figure 16b.
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Figure 16. Graphs of the motion of the effector axis along the circle R20: (a) Movement of the effector
axis according to the values obtained from the prediction, trained on the values of the mea circle;
(b) Movement of the effector axis according to the values obtained from the prediction, trained on the
values of the mean point curve.

From the chart shown in Figure 17, the maximum and minimum values that indicate
the curves—Envelope Xmax, Envelope Xmin, Envelope Ymax, and EnvelopeYmin—were
selected. These values were processed into graphs (Figures 18 and 19). Envelopes, as a pre-
liminary analysis tool, were created by connecting the local extrema using the “aggregate”
function in MS Excel.
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Figure 18. Graphs of the maximum and minimum values in the X and Y axes: (a) Movement of
the effector axis according to the values obtained from the CREO; (b) Movement of the effector axis
according to the values obtained from the prediction, trained on the motor control values from CREO.

The graph that resulted from the above values during the movement of the axis of the
effector along the circle of radius R20 is shown in Figure 18a. The same description of the
circle was applied to the prediction for motor control (Figure 18b). By comparing these
two graphs, it can be determined that the effector axis at the X − 20 Y0, X0 Y20, and X0
Y − 20 positions achieved more accurate positioning relative to the desired circle when
the prediction used for control was applied. The average values shown by the black “X”
symbol in Figure 18a are as follows: Y16.64, Y − 18.5, X15.8 and X − 17.47. The values in
Figure 18b are Y17.87, Y − 18.88, X14.29, and X − 20.65.

After applying the center circle calibration, the plot shown in Figure 19a was produced.
The calibration values produced by training the neural network on the values of the
waveform are shown in the graph in Figure 19b. By comparing these graphs, it was found
that the most accurate values of the positioning of the effector axis were found in the X-axis,
after using the prediction produced by training the prediction on the curve values. By
comparing the plots produced, it can be determined that the most accurate positions in the
X and Y axes were achieved when steering after calibration according to the average point
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curve. These were the best results in the +X, −X, −Y axes. The average values shown by
the black “X” symbol in Figure 19a are as follows: Y23.67, Y − 20.98, X17.98 and X − 22.22.
The values in Figure 19b are Y28.5, Y − 18.27, X19.85, and X − 19.49.
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Figure 19. Graphs of maximum and minimum values in the X and Y axes: (a) Movement of the
effector axis according to the values obtained from the prediction, trained on the values of the mean
curve; (b) Movement of the effector axis according to the values obtained from the prediction, trained
on the values of the curve.

3.4.2. Processing the Results by Moving along the Circle R10

To compare the control of the motors through inverse kinematics (Section 3.2.1) and
calibration on the center circle, a motion on the R10 circle was created. It can be seen in
the plots that more accurate values were achieved by the motion created by the prediction
control (plot in Figure 20b) compared to the control via the values from CREO Figure 20a.
It also achieved better repeatability results.
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The exact coordinates obtained by moving the axis of the effector along the circle R10,
are shown in Table A2. In this case, it is the motion in which the effector’s axis forms a circle
at the intersection with a 20 mm diameter millimeter paper (radius R10). The equation
for determining the central circle between the outer and inner is x = inner radius + ((outer
radius − inner radius)/2). The best results were obtained following calibration using the
mean circle, where the previous year’s result was x = 10.53 mm (R10.53). This is the closest
radius dimension to the intended radius (R10).

3.4.3. Processing the Results by Moving on the Line X30

Another comparison of the motor control was made by moving along a line at X −
30,Y0 and X30,Y0 coordinates. In the plots that are shown in Figure 21, it can be seen that
the X − 30 and X30 values were best achieved by the device when it was controlled by
prediction after calibration.
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Figure 21. Movement of the axis of the effector along a straight line at coordinates X − 30 and X30.
This figure shows a post-comparison of the mechanism control according to the values from CREO,
prediction, and after calibration.

The exact coordinates obtained by moving the effector axis along the line are shown
in Table A3. That it was the most accurate movement in the X-axis when controlled by
prediction after calibration is shown by the values written in the last row of the table:
X − 30.3119 and X24.0485.

3.4.4. Processing the Results by Moving on the Y50 Line

A comparison of the mechanism control was also made on the movement of the
effector axis at X0,Y50 and X0,Y − 50 coordinates. The processed motions on the graph
can be seen in Figure 22, where control through inverse kinematics and control through
prediction occurred.
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Figure 22. Movement of the axis of the effector along a straight line at Y − 50 and Y50 coordinates.
This figure shows a comparison of the control of the mechanism according to the values from CREO
and prediction.

The real values of the movement between points X0,Y50 and X0,Y − 50 are shown in
Table A4. By comparing the two motor controls (Figure 22) it can be evaluated that the
pros-mediated prediction control achieved better results: X − 1.6494, Y − 47.9879, and
X0.5451, Y42.8011, respectively.

3.4.5. Processing the Results by Moving on the Line X10Y30

A final comparison of the motor control was made at coordinates X − 10,Y30 and
X10,Y − 30. Plots of the motion of the effector axis are shown in Figure 23.

According to the values shown in Table A5, it can be concluded that a more accurate
movement on the X and Y axis was achieved by the device when it was controlled by the
values from the prediction: X − 6.4536 Y − 19.7469 and X6.11 Y − 21.4966, respectively.

Given the generated motions, it can be determined that it is feasible to effectively use
a neural network to control a mechatronic device with a parallel kinematic structure. The
device when controlled through the predicted values achieves similar positioning perfor-
mance as when controlled according to the values obtained from the inverse kinematics.
Through the process of calibration, we successfully attained higher accuracy in the move-
ments of the optical axis of the effector, aligning it more closely with the desired trajectories.



Sensors 2023, 23, 5872 21 of 26

Sensors 2023, 23, x FOR PEER REVIEW 22 of 28 
 

 

The real values of the movement between points X0,Y50 and X0,Y − 50 are shown in 

Table A4. By comparing the two motor controls (Figure 23) it can be evaluated that the 

pros-mediated prediction control achieved better results: X − 1.6494, Y − 47.9879, and 

X0.5451, Y42.8011, respectively. 

3.4.5. Processing the Results by Moving on the Line X10Y30 

A final comparison of the motor control was made at coordinates X − 10,Y30 and 

X10,Y − 30. Plots of the motion of the effector axis are shown in Figure 23. 

According to the values shown in Table A5, it can be concluded that a more accurate 

movement on the X and Y axis was achieved by the device when it was controlled by the 

values from the prediction: X − 6.4536 Y − 19.7469 and X6.11 Y − 21.4966, respectively. 

  

Figure 23. Movement of the axis of the effector along a straight line at coordinates X − 10Y30 and 

X10Y − 30. This figure shows the comparison of mechanism control by values from CREO and pre-

diction. 

Given the generated motions, it can be determined that it is feasible to effectively use 

a neural network to control a mechatronic device with a parallel kinematic structure. The 

device when controlled through the predicted values achieves similar positioning perfor-

mance as when controlled according to the values obtained from the inverse kinematics. 

Through the process of calibration, we successfully attained higher accuracy in the move-

ments of the optical axis of the effector, aligning it more closely with the desired trajecto-

ries. 

3.4.6. Fourier Transform 

An infinite sum of sines and cosines is used to represent the expansion of a periodic 

function f(x) into a Fourier series. The orthogonality relationships between the sine and 

cosine functions are used in the Fourier series [32]. 

Harmonic analysis is the computation and study of the Fourier series. An arbitrary 

periodic function can be divided into a collection of manageable terms that can be fed in, 

Figure 23. Movement of the axis of the effector along a straight line at coordinates X − 10Y30
and X10Y − 30. This figure shows the comparison of mechanism control by values from CREO
and prediction.

3.4.6. Fourier Transform

An infinite sum of sines and cosines is used to represent the expansion of a periodic
function f (x) into a Fourier series. The orthogonality relationships between the sine and
cosine functions are used in the Fourier series [32].

Harmonic analysis is the computation and study of the Fourier series. An arbitrary
periodic function can be divided into a collection of manageable terms that can be fed
in, solved separately, and then combined to get the answer to the original puzzle or an
accurate approximation of it [33].

By removing the first harmonic component in the Fourier order, we achieved a shift
(centering) of the center of the circle shown in Figure 24a, to the value X0,Y0—shown in
Figure 24b.
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It is possible to examine, for instance, the impact of technological production condi-
tions on the geometric accuracy of the generated regions or to pinpoint the root causes of
geometric errors (deviations) based on harmonic analysis [33].

By removing the first and leaving the remaining 50 harmonic components, the circu-
larity profile in the polar view shown in Figure 25a was achieved. The linear view of this
profile is shown in Figure 25b.
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In pursuing this approach, our objective was to mitigate the potentially detrimental
effects of vibrations that might have occurred during the measurement of effector move-
ments. Additionally, we aimed to address inaccuracies that emerged from the detection of
motion axes by the Tracker software (Section 3.3.1).

4. Discussions

In this work, we found that the created mechatronic device can be controlled by neural
networks. The proposed calibration method demonstrates its efficacy in facilitating the
attainment of more precise values, whereby the training process allows the alignment
of the actual movement of the optical axis with the desired position. If we compare, for
example, the motion along the R10 circle, when the motors were controlled by prediction
they achieved much more accurate movements concerning the desired ones, in contrast to
the control of the motors utilizing inverse kinematics (Section 3.4.2).

Using the Fourier transform, we achieved the centering of the resulting circle on
the X0 and Y0 coordinates of the graph. The contribution of this work can be negoti-
ated in several ways. Education—students will be exposed to a real device through a
fabricated device in which artificial intelligence models—prediction, machine vision, and
voice recognition—are implemented. Research—the constructed device can be used for
several demonstration tasks in the field of exploring AI algorithms.

Considering other established works dealing with prediction in the field of motors,
this paper describes the simultaneous control of 3 motors in order to reach a specific effector
point, according to previously detected motions. From this point of view, it is a unique
approach to dealing with motor control, in which other AI elements can be implemented in
further research. Among the main advantages of this research can be included the speed
of control generation for virtually any kinematic structure. The disadvantage lies in the
inaccuracy of the resulting device motions.
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In the design process, a deliberate constraint was imposed to use exclusively the
production technologies and materials currently available at the laboratory. Reasonable
clearances in the mechanism were necessary to achieve the desired functions. The control
system was limited as only the values from the inverse kinematics and predicted values
were used to control the motors. Even though a model of the control structure of the
designed mechanism was created in Section 3.2.2 using Matlab, this control was not in-
cluded in the experimental part of this paper. The depicted control structure can help
readers to create their own “Agile eye” with control via Matlab. To make the replication of
experiments easier, only open-source libraries were used.

The time between running the program on the RPi and moving the constructed
device (response time) is 1.62 s. According to the technical specifications of the Waveshare
MG90S, this servo motor has a resolution of 10 bits, which means it can have up to 1024
different positions. The motors used in the device are characterized by “high resolution”.
Repeatability for movement along the R20 circle was best when the device was controlled
by precalculated values from inverse kinematics (5.22 mm). However, when moving
along the R10 circle, it reached more accurate values when controlled via prediction (6.61
mm). The achieved repeatability values, despite being quite high, thus demonstrated the
possibility of using neural networks in applications where it is not necessary to achieve
precise movements—tracking objects by camera systems over a large area, sensing products
on a conveyor, etc.

5. Conclusions

According to the measured and processed values, it is possible to say that the device
can be controlled by neural networks (prediction). By calibration, it is possible to achieve
more accurate results, or in other terms results closer to the desired ones. The inaccuracies
and randomness of positioning that occurred in the circular and linear movements were
caused mainly by the loose fit of joint pins of the Agile Eye mechatronic device, and the
backlash of the servomotors. More precise parts made of stiffer material would result in
overall higher accuracy and precision. Using such construction for replication of the control
process described in this paper would achieve results with higher precision. However,
higher precision would make measuring and evaluating of impacts of changes in the
controlling process harder. The described device is meant mainly for experiments regarding
various methods of control. Therefore, some errors in the mechanism are even desirable.

In this paper, we did not try to prove that this method of motor control is the best, but
to test whether it is possible to control motors in a complex parallel kinematic structure
utilizing neural networks. Even though we avoided the real use of the generated rotation
matrices in the program, we were able to achieve the desired motions with the effector.
The proposed calibration also produced excellent results. Several movement patterns
were created and each was repeated 30 times. These movements were—Movement on a
circle with radius R20/R10, Movement on line X30/Y50 and X10Y30. The results uniquely
demonstrated the ability to execute the default motions, according to the predicted val-
ues. The research demonstrated that the generated backlash in the created device can be
eliminated to some extent through calibration. The paper can serve as a basis for further
research in the field of motor control and applications of AI algorithms.

Further work on the project involves using machine vision for person detection and
voice command recognition—the Arducam module located in the effector has a camera
and microphone implemented for these purposes.
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Appendix A

Table A1. The exact values of the achieved coordinates from the plots in Figures 15 and 16.

Circle R20 xcenter
[mm]

ycenter
[mm]

Dimension
of the

Annular
Area [mm]

Radius Inner
[mm]

Radius
Outer [mm]

CREO 1.4529 0.45085 5.221 13.827 19.0481

Prediction 2.584 0.64836 11.7513 9.2923 21.0436

Calibration
according

to the mean
circle

0.61807 −0.38082 9.6603 15.0923 24.7526

Calibration
according

to the
average point

curve

−3.9477 −5.135 14.2048 10.9642 25.169

Table A2. Exact values of the coordinates obtained from the plots in Figure 20.

Circle R10 xcenter
[mm]

ycenter
[mm]

Dimension
of the

Annular
Area [mm]

Radius Inner
[mm]

Radius
Outer [mm]

CREO 0.52421 −0.57734 7.5812 2.2057 9.7869

Prediction −0.45999 0.19545 6.6117 3.3813 9.9929

Calibration
according

to the mean
circle

0.71054 −1.3825 7.623 4.9045 12.5276

Table A3. The exact values of the achieved coordinates from the plots in Figure 21.

Line X30 Mean A
[X;Y]

Circle A
[X;Y]

Circle
Radius
[A;B]

Mean B
[X;Y]

Circle B
[X;Y]

CREO −22.6290;
−0.7716

−22.8759;
−0.9357

1.8368;
3.1305

17.7390;
−1.6877

17.9179;
−1.5837

Prediction −24.9526;
1.1181

−22.7572;
0.1707

3.3431;
0.9870

18.8197;
−2.1449

18.9206;
−1.6785

Calibration
according

to the mean
circle

−30.3119;
4.6014

−29.8509;
5.7452

1.96;
2.4627

25.2273;
5.2472

24.0485;
4.8840
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Table A4. The exact values of the achieved coordinates from the plots in Figure 22.

Line Y50 Mean A
[X;Y]

Circle A
[X;Y]

Circle
Radius
[A;B]

Mean B
[X;Y]

Circle B
[X;Y]

CREO −47.2469;
−1.0282

−49.2846;
−4.6818

5.9688;
1.4017

42.4793;
0.1806

42.1856;
0.3747

Prediction −47.9879;
−1.6494

−47.9684;
−1.5761

0.8949;
1.0737

42.8011;
0.5451

42.5573;
0.9177

Table A5. The exact coordinate values obtained from the plots in Figure 23.

Line X10Y30 Mean A
[X;Y]

Circle A
[X;Y]

Circle
Radius
[A;B]

Mean B
[X;Y]

Circle B
[X;Y]

CREO −7.1995;
21.8294

−7.1865;
21.8432

0.3023;
0.6011

5.5410;
−19.5651

5.6359;
−19.4667

Prediction −6.4536;
19.7469

−6.6761;
19.5895

0.6207;
1.1513

6.11;
−21.8049

5.8308;
−21.4966

References
1. Zhipeng, Z.; Yin, D.; Ding, J.; Luo, Y.; Yuan, M.; Zhu, C. Collaborative tracking method in multi-camera system. J. Shanghai

Jiaotong Univ. 2020, 25, 802–810.
2. Bilal, A.; Wang, J.; Zain, A.A. Role of machine learning and data mining in internet security: Standing state with future directions.

J. Comput. Netw. Commun. 2018, 2018, 6383145.
3. Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Exploring impact and features of machine vision for progressive industry

4.0 culture. Sens. Int. 2022, 3, 100132. [CrossRef]
4. Machine Learning in Python Pandas Documentation. Available online: https://scikit-learn.org/stable/ (accessed on 15 June 2023).
5. Pandas Documentation. Available online: https://pandas.pydata.org/ (accessed on 13 June 2023).
6. NumPy Documentation. Available online: https://numpy.org/doc/stable/ (accessed on 16 June 2023).
7. Krenicky, T.; Nikitin, Y.; Božek, P. Model-Based Design of Induction Motor Control System in MATLAB. Appl. Sci. 2022, 12, 11957.

[CrossRef]
8. Li, S.; Zhang, Y.; Jin, L. Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst.

2016, 28, 2243–2254. [CrossRef]
9. Daun-Gruhn, S.; Büschges, A. From neuron to behavior: Dynamic equation-based prediction of biological processes in motor

control. Biol. Cybern. 2011, 105, 71–88. [CrossRef]
10. Yang, C.; Li, Z.; Cui, R.; Xu, B. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2004–2016. [CrossRef]
11. Gosselin, C.M.; Hamel, J.-F. The agile eye: A high-performance three-degree-of-freedom camera-orienting device. In Proceedings

of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 781–786.
12. Bonev, I.A.; Chablat, D.; Wenger, P. Working and assembly modes of the Agile Eye. In Proceedings of the 2006 IEEE International

Conference on Robotics and Automation 2006, ICRA, Orlando, FL, USA, 15–19 May 2006; pp. 2317–2322.
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