
Citation: Khalid, A.M.; Khafaga, D.S.;

Aldakheel, E.A.; Hosny, K.M. Human

Activity Recognition Using Hybrid

Coronavirus Disease Optimization

Algorithm for Internet of Medical

Things. Sensors 2023, 23, 5862.

https://doi.org/10.3390/s23135862

Academic Editors: Christian

Baumgartner and Marco Altini

Received: 27 April 2023

Revised: 17 June 2023

Accepted: 20 June 2023

Published: 24 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Human Activity Recognition Using Hybrid Coronavirus
Disease Optimization Algorithm for Internet of Medical Things
Asmaa M. Khalid 1 , Doaa Sami Khafaga 2 , Eman Abdullah Aldakheel 2,* and Khalid M. Hosny 1

1 Information Technology Department, Faculty of Computers & Informatics, Zagazig University,
Zagazig 44519, Egypt; asmaa.elhenawy@gmail.com (A.M.K.); k_hosny@yahoo.com (K.M.H.)

2 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dskhafga@pnu.edu.sa

* Correspondence: eaaldakheel@pnu.edu.sa

Abstract: Background: In our current digital world, smartphones are no longer limited to communi-
cation but are used in various real-world applications. In the healthcare industry, smartphones have
sensors that can record data about our daily activities. Such data can be used for many healthcare
purposes, such as elderly healthcare services, early disease diagnoses, and archiving patient data for
further use. However, the data collected from the various sensors involve high dimensional features,
which are not equally helpful in human activity recognition (HAR). Methods: This paper proposes
an algorithm for selecting the most relevant subset of features that will contribute efficiently to the
HAR process. The proposed method is based on a hybrid version of the recent Coronavirus Disease
Optimization Algorithm (COVIDOA) with Simulated Annealing (SA). SA algorithm is merged with
COVIDOA to improve its performance and help escape the local optima problem. Results: The
UCI-HAR dataset from the UCI machine learning repository assesses the proposed algorithm’s per-
formance. A comparison is conducted with seven well-known feature selection algorithms, including
the Arithmetic Optimization Algorithm (AOA), Gray Wolf Optimizer (GWO), Whale Optimization
Algorithm (WOA), Reptile Search Algorithm (RSA), Zebra Optimization Algorithm (ZOA), Gradient-
Based Optimizer (GBO), Seagull Optimization Algorithm (SOA), and Coyote Optimization Algorithm
(COA) regarding fitness, STD, accuracy, size of selected subset, and processing time. Conclusions: The
results proved that the proposed approach outperforms state-of-the-art HAR techniques, achieving
an average performance of 97.82% in accuracy and a reduction ratio in feature selection of 52.7%.

Keywords: feature selection; population; human activity recognition; optimization; smartphones; sensors

1. Introduction

The IoMT is the newest IoT age, rapidly attracting researchers’ interest due to its extensive
use in SHS. IoMT involves integrating medical devices, hardware, and software applications
through a network to provide more efficient and easier healthcare services to patients and
to increase the consistency and precision of medical devices [1]. An IoMT-based intelligent
healthcare system involves various phases: smart sensors are connected to the patient’s body
through wearable devices to capture medical data; the gathered data are transmitted through
the network to medical experts for analysis and prediction with the help of smart applications;
and finally, feedback information from the physician can be returned to patients through
smartphone application [2]. HAR is one of the emerging applications of IoMT, which plays a
crucial role in healthcare systems. HAR is a process by which the detailed actions of a person’s
daily life (walking, running, and standing) are recorded by smart sensors to recognize the
correct activity [3]. Recognizing patients’ activities is crucial, particularly in elderly care,
remote patient monitoring, and rehabilitation support.

In recent decades, various approaches have been employed for HAR, including com-
puter vision [4], wireless signals [5], installed sensors [6], wearable sensors [7], and smart-
phone devices [8]. However, these techniques have limitations, such as the need for cameras
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and good light conditions in computer vision methods, restricted wireless signal moni-
toring areas, and users’ uncomfortable feelings when using wearable sensors [9]. Finally,
smartphone devices are considered the most appropriate method to record human activities
for many reasons, including wide availability, ease of use, and efficiency and safety when
collecting data [10].

An FS problem can be formulated as an optimization problem in which the objective is
to find the subset of data with the minimum size and maximum classification accuracy. Due
to the enormous amount of data obtained from various sensors, an efficient FS approach is
needed to select the most relevant data, reduce data dimensionality, maximize classification
accuracy, and minimize computational complexity. For this reason, various metaheuristics
have been applied to solve the problem, such as the ABC algorithm [11], WOA [12],
AOA [13], MPA [14], HHO [15], FDO [16], CSO [17], SDBO [18] and many others [8,19].

Although most metaheuristics perform well in solving the FS problem, they have significant
shortcomings, including being prone to local optima, having limited diversity, and increasing
computational time [20]. For this reason, researchers attempted to apply the hybridization
between two metaheuristics to benefit from their advantages and treat their limitations.

This paper proposes an efficient approach for selecting the most relevant and highest
classification accuracy feature subset from the HAR dataset, which helps precisely identify
human activities. The proposed approach also minimizes the selected subset’s size to
reduce data dimensionality and computational cost. The proposed approach uses the
hybrid COVIDOA with the simulated annealing (SA) algorithm. COVIDOA and SA are
well-known metaheuristics that proved their effective performance in solving various opti-
mization tasks [21,22]. However, we propose a hybrid approach to improve the solutions’
diversity and minimize the two method’s limitations.

The contributions of the paper are summarized as follows:

• This study aims to present an efficient HAR system to classify human activities accurately.
• The proposed system is based on hybridizing efficient COVIDOA with SA to produce

an efficient feature selection model, and then using different well-known classifiers to
classify the selected features.

• In the proposed model, we compared four classifiers to determine which classifier best
suits the activity classification process.

• The KNN classifier proved its superiority in classification against other classifiers.
• Various metrics are used for evaluation, including classification accuracy, best fitness,

selected subset size, and processing time.
• The proposed COVID-SA + KNN model is used for HAR of the public UCI-Human

Activity Recognition (UCI-HAR) dataset and showed excellent classification results
compared to various state-of-the-art techniques.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the related work. Section 3 describes the materials and methods of this work, including
dataset description, COVIDOA, and SA algorithms. The proposed COVIDOA-SA algorithm
is presented in Section 4. The evaluation metrics and numerical results are discussed in
Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

This section briefly overviews the recent studies proposed for sensor-based HAR
applications using various public datasets. Kwon et al. [23] proposed unsupervised learning
techniques for HAR using data collected from smartphone sensors. The results showed
that the accuracy of the proposed approach is maximized for HAR without generating
the training dataset by hand. Ronao and Cho [24] proposed an efficient HAR system
using smartphone sensors. The proposed algorithm exploits the inherited characteristics
of activities. The algorithm outperforms state-of-the-art HAR techniques, achieving an
average performance of 94.79% in accuracy.

A transition-aware HAR (TAHAR) system is proposed to recognize smartphone
physical activities [25]. The outcomes demonstrate that TAHAR is superior to the existing
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techniques and reveals the architecture’s main advantages. A hybrid FS approach is utilized
for HAR in [26]. This model used a sequential floating forward search (SFFS) to select the
most suitable features for activity recognition. The support vector machine was then used
to classify the selected features. The proposed approach achieved efficient performance
and superior classification results. Hassan et al. [27] proposed an approach for HAR from
smartphone sensors by extracting features from raw data.

Comparing traditional approaches showed that the proposed approach has superior
HAR performance. In [28], an accelerometer-based architecture is designed for HAR using
smartphones. The smartphone extracts data about the participant’s daily activities in this
approach. The data are then preprocessed, denoised, normalized, and segmented to obtain
the most important feature vectors. The Deep Belief Network (DBN) is then used for
training the features for a robust activity recognition system.

In addition, a Convolution Neural Network is proposed for the real-time classification of
human activities. The results demonstrate that the proposed method exceeds the others based
on two large public datasets: UCI-HAR [29] and Pamap2 [30]. Zhou et al. [31] built a deep-
learning framework for an accurate HAR system. This framework develops an intelligent
auto-labeling approach based on Deep Q-Network (DQN) with a distance-based reward
rule, enhancing learning efficiency in IoT environments. In addition, a Long Short-Term
Memory (LSTM)-based classification method is proposed to identify fine-grained patterns.
The experiments demonstrate the proposed method’s efficiency using real-world data.

Much work has been undertaken regarding HAR using smartphone data for the last
three years. For example, Sakorn and Anuchit [32] proposed a generic system for HAR in
smart homes using smartphone data. The proposed system is based on four LSTM networks
to study the recognition performance. The public UCI-HAR dataset [29] was considered for
testing, and the results demonstrate that the proposed four-layer LSTM system outperforms
the other LSTM networks with an accuracy of 99.39%. Luptáková et al. [33] proposed an
alternative approach, called a transformer, for classifying human activities. The advantages
of the proposed transformer model include directly focusing on using attention mechanisms
to find correlations in the time series between features and the longer path length between
features, allowing more accurate learning of the context in long time series.

Another novel HAR system is proposed in [13] by optimizing CNN and AOA. CNN
is utilized to learn and extract the features from the dataset, and AOA is used to select the
optimal features. The SVM classifier is used to classify the selected features. The proposed
model achieved a classification accuracy of 95.23%, 99.5%, and 96.8% for UCI-HAR [29],
WISDM-HAR [34], and KU-HAR [35] datasets, respectively.

Recently, Suh [36] proposed a novel transformer-based adversarial learning framework
for HAR using TASKED. This model adopts the teacher-free self-knowledge distillation
to improve HAR’s stability and performance. The results showed that the proposed
model outperforms the previous techniques and effectively improves subject generaliza-
tion. Zhang et al. [37] proposed a deep learning model, ConvTransformer, for HAR. The
proposed used CNN to model the local information of the sensor signal, and then a trans-
former to obtain the correlation of the feature sequence, and an attention mechanism to
highlight essential features. A comparison with state-of-the-art techniques showed that the
proposed model is more robust and has higher classification accuracy. The existing recent
studies are summarized in Table 1.

Table 1. Recent studies for HAR.

Ref. Year Dataset Method Average Accuracy

[11] 2020 UCI-HAR, WISDM Deep learning with a hybrid
ABCPSO algorithm 96.34% and 83.31%

[26] 2020 UCI-HAR Hybrid feature selection model 96.81%

[31] 2020 UniMiB SHAR, A semi-supervised deep
learning framework 96%



Sensors 2023, 23, 5862 4 of 18

Table 1. Cont.

Ref. Year Dataset Method Average Accuracy

[33] 2020 HAPT CNN and LTSM 95.87%

[32] 2021 UCI-HAR LSTM 93.519%

[9] 2021 UCI-HAR, WISDM Hybrid gradient-based optimizer and
grey wolf optimizer 98% and 98.87%

[15] 2022 N/A Harris Hawks-optimized CNN 100%

[13] 2022 UCI-HAR, WISDM-HAR, and KU-HAR Arithmetic optimization algorithm
with deep learning 95.23%, 99.5%, and 96.8%

[38] 2022 WISDM, PAMAP2, and UCI-HAR Ensemble measurement-based deep
learning-based model 98.70%, 97.45%, and 95.05%

[39] 2023 UCI-HAR and WISDM Feature selection and deep decision
fusion 94.4% and 93.9%

[40] 2023 WISDM, UCI_HAR 2012, and PAMAP2 HDE and adaptive boosting with CNN 0.95%, 0.94%, and 0.95%

3. Materials and Methods
3.1. UCI-HAR Dataset

UCI-HAR is a public dataset published by Anguita et al. [41] for the daily activities of
humans. Thirty participants aged 14 to 48 years old were required to apply the experiments
using a smartphone on the waist. The activities are classified into six groups: WK, WU, WD,
ST, SD, and LD. Three-axial linear acceleration and angular velocity were captured using the
accelerometer and gyroscope with a sampling frequency of 50 Hz. Noise filters were used to
preprocess the accelerometer and gyroscope signals before the samples were taken in fixed-
width sliding windows of 2.56 s and 50% above. Body acceleration was then isolated from
the gravity acceleration component to extract representative features properly. A fixed-width
sliding window of 2.56 s was used to segment the signals with 50% overlapping.

3.2. COVIDOA

This section introduces the main stages of the novel COVIDOA. In general, COVIDOA
simulates the replication mechanism of coronavirus particles [21]. The COVIDOA has two
main parameters upon which its performance depends. The first is the number of proteins
(NoP), representing the number of generated viral proteins during replication. In contrast,
the second parameter is the mutation rate (MR), which represents the probability of applying
mutation by the coronavirus proteins. The stages can be summarized as follows:

• Virus entry and uncoating

The virus releases its viral contents inside the human cell after entry through a struc-
tural protein called a spike.

• Replication using the frameshifting technique

Millions of viral proteins are then created using the frameshifting mechanism. The
created proteins are then merged to form new virions. This stage can be modeled using the
following equations:

Vi(1) = rand(lb, ub), (1)

Vi(2 : D) = P(1 : D− 1) (2)

where P is the parent protein sequence, Vi is the new child protein number i, and lb, ub, and
D represent the lower bound, upper bound, and dimension of the problem.
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• Mutation

The virus applied mutation to trick the human immune system as follows:

Yi =

{
r i f rand(0, 1) < MR

Vi otherwise
(3)

where Y and V are the old and mutated solutions. i = 1, . . . , D. and r is a random number
that takes a value between lb and ub. MR represents the mutation rate, the value of which
ranges from 0.005 to 0.5.

• New particle formation

The new proteins generated in the previous stage are grouped to form new particles,
which will then be released from the current human cell targeting the new one. The
pseudocode of COVIDOA is shown in Figure 1.
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3.3. SA Algorithm

SA is a single-solution metaheuristic that mimics the annealing process of metals. Anneal-
ing is a process of making metals more workable by slowly cooling down their temperature.
SA starts with an initial temperature of T0 and a randomly selected candidate solution.

SA gradually updates the initial random solution by selecting a neighboring solution.
If the neighboring solution is better, the initial and optimum solutions are updated, which
is repeated until reaching the final temperature. The initial temperature is the highest and is
gradually decreased using a parameter called cooling rate l until it reaches the final lowest
temperature Tend.

The temperature is updated using the following formula:

t = t× l, 0 < l < 1 (4)

where t is the current temperature and l is the cooling rate.
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To avoid becoming trapped in a local optima problem, SA can accept a new, worse
neighboring solution according to acceptance criteria of how much worse the new solution
is and the current temperature according to the current formula:

exp
(ω

t

)
≤ rand (5)

ω represents the difference between the current and new neighboring fitness, and t is
the current temperature.

4. The Proposed Hybrid Approach

Most IoMT applications include human body sensing, which allows them to collect
data precisely and use the body’s vital indicators as their collecting objectives. Wearability is
the most common requirement for gathering human body vital signs. The most commonly
used human body sensors are shown in Figure 2.
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This section illustrates the stages of the proposed HAR system based on the hybrid
COVID-SA algorithm. The flowchart in Figure 3 shows the stages of the proposed approach.
In the COVID-SA algorithm, COVID first works on the training and testing data of the
UCI-HAR dataset to select the most relevant features. After COVID finishes its work, SA
takes the optimum solution obtained by COVID as its initial solution instead of working
with the initial random solution. SA is used to improve the performance of COVID as it
can escape from the local optima trap. The stages of the proposed approach are as follows:

• Preprocess the dataset by splitting it into training and testing partitions.
• Determine the initial values for the COVID algorithm’s parameters, such as population

size (nPop), maximum number of iterations (Max_iter), problem dimension (D), number
of proteins (NoP), and mutation rate (MR).

• Generate initial binary population of solutions and compute fitness function. The
initial binary population is generated by using the sigmoid function [36], which is one
of the S-shaped transformation functions that transform the real-valued solution to its
binary representation as follows [42]:
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S(X) =
1

1− e−X , XB =

{
1 i f rand() ≥ S(X)

0 otherwise
(6)

where XB is the binary form of solution X.
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To calculate the fitness function of the initial population, the selected features (the
feature corresponding to 1) are fed into the KNN classifier to calculate the fitness of the
initial population value as follows:

f itness = aε + (1− a)
SSize
TSize

(7)

where a is a random value in the range [0, 1], ε is the error rate of the classifier, and SSize and
TSize are the size of the selected subset of features and the total size of features, respectively.

• Select a parent solution for replication using roulette wheel selection and apply repli-
cation to produce several viral proteins using Equations (1) and (2), and then apply
crossover between generated proteins to form a new virion (solution).

• Apply mutation to the solution generated in the last step to obtain the mutated solution
using Equation (3).

• Update the population for the next generation.
• Repeat steps 4 to 6 until the termination criterion is met and get the optimum solution.
• Initialize the SA algorithm’s parameters, such as T0, Tend, and l, and set the optimum

solution obtained from the COVID algorithm in the last step as the initial solution of SA.
• Select a new neighboring solution and update both the current solution and the best

solution according to the current temperature and how worse the new solution is using
Equation (5)

• Update the temperature according to the cooling rate l.
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• Repeat steps 9 and 10 until the final temperature is reached.
• Evaluate the obtained optimum solution using various evaluation metrics such as

accuracy, best fitness, average fitness, STD, and feature subset size, as discussed in the
next sections.

5. Experimental Results and Discussions
5.1. Data Preprocessing

The samples were preprocessed with a median filter for noise removal before being
added to the dataset. The total number of samples in the dataset is 10,299, separated into
training and testing sets. Authors have published data files where 7352 (71.39%) samples
represent the training set, and the remaining 2974 samples (28.61%) represent the testing
set. The details of UCI-HAR activities can be found in [29].

5.2. Parameter Setting

To prove the superiority of the proposed approach, we conducted a comparison with
seven well-known metaheuristics, including AOA [13], GWO [43], WOA [12], RSA [44],
ZOA [45], GBO [46], SOA [47], and Coyote Optimization Algorithm (COA) [48]. For a fair
comparison, we used a population size of 20 and a maximum number of iterations of 50 for
the proposed and competing metaheuristics. The results may differ because of the use of
random numbers in the optimization process. For this reason, we executed each algorithm
20 times and took the average results. All algorithms were executed on a DELL laptop with
Intel (R) Core (TM) i7-1065G7 processor, 8.0 GB RAM, and Windows 10 Ultimate 64-bit
operating system. MATLAB R2016a was used to develop and run all the algorithms. The
parameters of the utilized state-of-the-art algorithms were set as provided in Table 2.

Table 2. Parameter setting for the state-of-the-art algorithms.

Algorithm Parameter Value

AOA
Exploitation parameter (α) 5
Exploration paramter (µ) 0.5

GWO Convergence parameter (a) 2→ 0

WOA
Convergence parameter (a) 2→ 0

a2 −1→−2
B 1

RSA
Exploration accuracy for the hunting cooperation α 0.1

Exploration accuracy for the encircling phase (β) 0.1
ZOA Population movement parameter (I) [1, 2]
GBO Escape probability (pr) 0.5

SOA

Frequency control (fc) 0.1
Correlation constant (µ) 0.001
Correlation constant (v) [0, 0.5]

The angle (θ) [0, 2π]

5.3. Evaluation Measures

Various metrics are used to prove the effectiveness of the proposed COVID-SA algo-
rithm in FS, where the performance metrics are defined as follows:

Accuracy(ACC) =
TP

TP + TN + FP + FN
(8)

Precision(Pre) =
TP

TP + FP
(9)

Recall/Sensitivity =
TP

TP + FN
(10)
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TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative classification rates.

In addition to the previous metrics, additional evaluation measures are utilized, such
as the best cost, the average cost (AVG), the corresponding STD, and processing time. These
additional metrics are used to prove the ability of the utilized metaheuristics to obtain the
optimum solution for the FS problem.

5.4. Parameter Tuning for Different Classifiers

Table 3 explains the parameters of KNN, DA, and DT classifiers. With the trial-and-
error approach, which is widely used for parameter selection, it is found that the parameter
values that achieve the best classification results for these classifiers are: K = 5 and the
distance function is Euclidean for KNN classifier, max depth = 4, and the criterion is Gini
for DT classifier, and Gamm = [0:0.1:1] and Delta = 0 for DA classifier. The NB has almost
no hyperparameters to tune, so it usually generalizes well.

Table 3. Parameters for KNN, DT, and DA classifiers.

Classifier Parameter Description Value

KNN
Distance Distance function [Euclidean, Manhattan, and Minkowski]

K Number of neighbors [1, 2, 3, 4, . . . etc.]

DT
Criterion Measure the quality of the data split. [Gini, Entropy]

Max Depth [0, 2, 4, 6, 8] The maximum depth of the tree.

DA
Gamma Default: 0:0.1:1 control regularization parameter

Delta Default:0 control regularization parameter

5.5. Numerical Results and Analysis

In the experiments, we employed four well-known classifiers for applying feature
classification: KNN, DA, NB, and DT. A comparison is conducted between the four classi-
fiers to determine the most fitting for the HAR problem. The numerical results obtained
for the UCI-HAR dataset according to classification accuracy, best cost, average cost, STD,
selection size, and execution time (in minutes) for all classifiers are shown in Table 4. It
is obvious from the table that the KNN classifier has better classification results than the
others in terms of accuracy, best cost, average cost, and selection size. It achieved the
highest classification accuracy (0.9782) and the lowest best cost, average cost, and selection
size values (0.02455, 0.0281, and 265). In terms of STD and processing time, the DA classifier
is the best. However, KNN exceeds it in terms of the remaining measures.

Table 4. Comparison between different classifiers on the UCI-HAR dataset.

Classifier
Metric

Accuracy Best Cost AVG Cost STD Selection Size Time (m)

KNN 0.9782 0.024559 0.0281 0.0022 265 42.2
DA 0.9653 0.026826 0.0287 0.0016 290 12
NB 0.8642% 0.14978 0.1533 0.0025 269 29.08
DT 0.8768 0.060721 0.0617 0.0017 278 80.31

One of the common evaluation techniques for different classification models is the
confusion matrix. The confusion matrix shows how our classification model is confused
when it makes predictions, where the confusion matrix involves two common error patterns
as follows:

• False Positive: the model predicted positive, and it is false. For example, the model
predicted that the activity is walking, but it is not (it is standing, for example).
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• False Negative: the model predicted negative, and it is false. For example, the model
predicted that the activity was not walking, but it was.

A detailed explanation and analysis of the confusion matrix obtained from the four
mentioned classifiers are presented as follows:

A. K-Nearest Neighbor (KNN) classifier

KNN is one of the simplest and most well-known classifiers. It works by comparing
the similarity of a new sample with the other samples. The distances between the incoming
and other samples are calculated using a predefined distance function. In this work, the
Euclidean distance function is utilized. In KNN, the new sample is assigned to a class
to which most of the closest K neighbors belong. In the proposed algorithm, k is set
to 5. The KNN classifier’s confusion matric, precision, and recall results are shown in
Figure 4. As seen from the figure, The total number of walking (WK) activity samples
is 496. The KNN succeeded in classifying 494 Samples accurately, while 2 samples were
misclassified. For WU activity, the KNN classifier accurately classified all 471 samples with
no misclassifications. IT correctly classified 413 samples out of the total number of 420 WD
samples. However, the classification performance of the KNN is slightly degraded for ST
and SD activities, where it has 469 accurately classified samples and 22 misclassifications
for ST activity, and 499 accurate sample classifications out of the total number of 531 SD
samples. Finally, the LD activity is accurately classified by the KNN classifier having only
one wrong sample misclassified as ST activity. The preceding results of the KNN classifier
lead to an overall classification accuracy of 97.82%.
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As shown in the preceding results, the KNN classifier has high classification perfor-
mance than the other classifiers, which is due to the following advantages:

• The KNN algorithm can compete with the most accurate models because it makes
highly accurate predictions.

• Compared to other algorithms, it is very easy to predict multiclass problems. Supply
the ‘k’ a value equivalent to the number of classes, and you are ready.

• It does not need to fit a model in advance; provide the data point, and it will give you
the prediction.

Despite all these advantages, the KNN classifier is considered a lazy learning algorithm
because it does not perform any learning mechanisms. It memorizes the training dataset
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instead, which leads to computational costs compared to other algorithms. However, it is
still the better choice for applications where predictions are not requested frequently but
where accuracy is important.

B. Discriminative Analysis (DA)classifier

Discriminant analysis (DA) is a classification technique that assumes that various
classes produce data using Gaussian distributions. The trained classifier chooses the class
with the lowest misclassification cost to determine the new data class. Figure 5 shows the
confusion matrix of the DA classifier. The classifier successfully predicts the correct class
for all the samples of LD activity. However, there are some misclassifications in the other
activities. For example, for the WK activity, the classifier accurately classified 490 samples
with 6 misclassifications. It accurately classified 465 WU samples out of the 471 samples.
For the WD activity, 19 samples are misclassified as WU. The ST activity has the worst
classification results, as the classifier misclassified 45 samples out of 491.
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Additionally, the classifier classified 511 SD samples correctly, with 21 misclassifica-
tions. The obtained classification accuracy of the DA classifier is 96.53%. The DA classifier
has advantages such as simplicity and low computational cost; however, it does not have
the best classification performance compared to the other classifiers.

C. Naive Bayes (NB) classifier

The NB classifier is a probability-based classification method based on Bayes’ Theorem.
It strongly assumes independence between features. The NB classifier determines the
probability distribution of the target classes based on the features of the training set. It
estimates the class of the new test data by determining the value closest to the observed
probability. The obtained NB confusion matrix is shown in Figure 6. It can be seen in the
figure that the NB classifier has degraded classification performance in comparison with
KNN and DA classifiers because it has a large number of misclassifications. For example,
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the total number of samples in the SD activity is 532. The NB accurately classified only 397
samples and incorrectly classified 135 samples.
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Additionally, many WD and ST samples are misclassified, decreasing classification accuracy.
LD is the activity with the lowest number of misclassifications, where only 4 out of 537 LD
samples are misclassified as WU. The overall classification accuracy of NB is 86.42%. The main
advantage of the NB classifier is its low computational time needed for training; however, its
classification accuracy is very low compared to other classifiers’ accuracy.

D. Decision Tree (DT) classifier

DT is a classification technique that employs a decision tree to make predictions. The
data are recursively partitioned into subsets according to the most significant feature at each
tree node. It makes predictions using rules obtained from the features of the dataset. The
confusion matrix of the DT classifier is shown in Figure 7. The DT confusion matrix shows
that the DT classifier accurately classified all the samples of the LD activity. However, for
other activities, it has several wrong classifications. For example, the WK activity accurately
classified 436 samples, but the remaining samples were misclassified as 38 WU and 22 WD.
For WU activity, it has 390 accurate classifications out of the total number of 471 samples.
341 WD samples are correctly classified out of 420 samples. Finally, the ST and SD activities
have 95 and 48 misclassified samples. By comparing the results of DT with the previous
classifiers, its classification performance is better than the NB classifier, but the KNN and
DA classifier exceeds it. The accuracy of the DT classifier is 87.68%.

The advantages of DT classifier may include its simplicity and requiring little data
preparation. However, it suffers from some limitations, such as requiring higher time to
train the model and instability when small changes in the data occur.

Because of the superior classification performance of the KNN classifier over the others,
as seen in the previous analysis, we used the KNN classifier in the following experiments
of our model. The recognition results of the proposed model are compared to eight existing
FS techniques for the UCI-HAR dataset using the KNN classifier. The numerical results of
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the comparison are shown in Table 5. It is obvious from the comparison that the proposed
approach achieved the best results for accuracy, best cost, average cost, and selection size
with the values 0.9782, 0.024559, 0.0281, and 265, respectively. Although other algorithms,
such as COA, AOA, SOA, and RSA, have better STD results than the proposed algorithm,
they have more selection size and longer execution time. The bar charts in Figure 8 show a
comparison between the four classifiers according to accuracy, best cost, average cost, STD,
time, and selection size.

According to processing time, the proposed algorithm comes in the second order
with a processing time of 42.2 min after RSA, with a processing time of 33.05 min. With a
selection size of 265 out of 561 features, the proposed algorithm has proved its ability to
achieve the highest reduction ratio of (52.7%).
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Table 5. FS results of the proposed COVID-SA and the state-of-the-art algorithms.

Algorithm Metric

Accuracy Best Cost AVG Cost STD Selection Size Time (min)

Proposed
COVID/SA 0.9782 0.024559 0.0281 0.0022 265 42.2

GWO 0.97048 0.034878 0.0364 0.0023 449 50.8
AOA 0.9722 0.0325 0.0369 6.3799 × 10−4 280 74.4
RSA 0.9661 0.047349 0.0483 0.0011 500 33.05
ZOA 0.966746 0.039590 0.0403 0.0017 533 53.5
GBO 0.9620 0.039601 0.0398 0.0012 476 80.2
SCA 0.9437 0.041117 0.0426 0.0025 320 45.3
SOA 0.96471 0.044014 0.0441 7.4229 × 10−4 415 83.5
COA 0.971496 0.040079 0.0405 8.9910 × 10−4 466 47.6667
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Figure 9 shows the convergence curves of the proposed and compared algorithms
for HAR using the UCI-HAR dataset. The figure proves the superiority of the proposed
algorithm as it has the minimum cost values.

The overall results prove the efficiency of the proposed model in the HAR process
according to various metrics such as accuracy, precision, recall, best cost, average cost, STD,
and execution time.



Sensors 2023, 23, 5862 15 of 18Sensors 2023, 23, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 9. Convergence curves for all algorithms. 

The overall results prove the efficiency of the proposed model in the HAR process 

according to various metrics such as accuracy, precision, recall, best cost, average cost, 

STD, and execution time. 

5.6. Comparison with Other Studies 

For further evaluation of the proposed model, we compared the classification results 

of the proposed model with some recent HAR studies of the UCI-HAR dataset, such as 

[13,49,50]. In [13], the binary AOA algorithm is combined with CNN for optimal feature 

selection, and then the SVM is utilized to classify the selected features. This model 

achieved an average precision of 95.3%. The hybrid LSTM-CNN model proposed in [49] 

reported a mean precision of 95.8%. The LSTM model in [50] exceeds the two previous 

models with an average precision of 97.66%. The proposed model improved over these 

existing models by reporting an average precision of 97.9%. The proposed model achieved 

the highest precision for WK, WU, and LD, while all reported low precision for ST activity. 

Table 6 shows the results of the comparison. 

Table 6. Comparison with state-of-the-art techniques. 

Ref. Method 
Activity Precision 

(%) WK WU WD ST SD LD 

[13] BAOA + CNN 99 97 99 89 88 100 95.3 

[49] LSTM + CNN 94.65 95.03 100 92.32 92.32 100 95.8 

[50] LSTM 99 96 99 95 99 98 97.66 

Proposed  COVID-SA + KNN 99.2 99.2 99.8 93.4 95.8 100 97.9 

6. Conclusions and Future Work 

This work proposed an efficient HAR system based on data gathered from 

smartphones.  A hybrid FS approach is developed to improve the performance of the HAR 

system. The proposed hybrid FS method combines the Simulated Annealing (SA) algo-

rithm with the novel Coronavirus Disease Optimization algorithm (COVIDOA) to exploit 

their advantages and overcome limitations. Several classifiers are utilized to classify the 

features the proposed COVID-SA algorithm selects, and the KNN classifier shows supe-

rior performance. A comparison is conducted with several metaheuristics as FS methods 

using the KNN classifier. The proposed COVID-SA algorithm performed superior to other 

Figure 9. Convergence curves for all algorithms.

5.6. Comparison with Other Studies

For further evaluation of the proposed model, we compared the classification results
of the proposed model with some recent HAR studies of the UCI-HAR dataset, such
as [13,49,50]. In [13], the binary AOA algorithm is combined with CNN for optimal feature
selection, and then the SVM is utilized to classify the selected features. This model achieved
an average precision of 95.3%. The hybrid LSTM-CNN model proposed in [49] reported a
mean precision of 95.8%. The LSTM model in [50] exceeds the two previous models with
an average precision of 97.66%. The proposed model improved over these existing models
by reporting an average precision of 97.9%. The proposed model achieved the highest
precision for WK, WU, and LD, while all reported low precision for ST activity. Table 6
shows the results of the comparison.

Table 6. Comparison with state-of-the-art techniques.

Ref. Method
Activity

Precision (%)
WK WU WD ST SD LD

[13] BAOA + CNN 99 97 99 89 88 100 95.3
[49] LSTM + CNN 94.65 95.03 100 92.32 92.32 100 95.8
[50] LSTM 99 96 99 95 99 98 97.66

Proposed COVID-SA + KNN 99.2 99.2 99.8 93.4 95.8 100 97.9

6. Conclusions and Future Work

This work proposed an efficient HAR system based on data gathered from smart-
phones. A hybrid FS approach is developed to improve the performance of the HAR
system. The proposed hybrid FS method combines the Simulated Annealing (SA) algo-
rithm with the novel Coronavirus Disease Optimization algorithm (COVIDOA) to exploit
their advantages and overcome limitations. Several classifiers are utilized to classify the
features the proposed COVID-SA algorithm selects, and the KNN classifier shows superior
performance. A comparison is conducted with several metaheuristics as FS methods us-
ing the KNN classifier. The proposed COVID-SA algorithm performed superior to other
techniques according to various metrics such as classification accuracy, fitness value, STD,
selection size, and processing time.

In future work, other classifiers, such as SVM and RF classifiers, may be used to
classify human activities. Additionally, the proposed system can be applied to more
complex HAR datasets.
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IoMT Internet of Medical Things
IoT Internet of Things
SHS Smart Healthcare systems
HAR Human Activity Recognition
FS Feature selection
ABC Artificial Bee Colony
WOA Whale Optimization Algorithm
AOA Arithmetic Optimization Algorithm
MPA Marine Predators Algorithm
HHO Harris Hawks Optimizer
COVIDOA Coronavirus Disease Optimization Algorithm
SA Simulated Annealing
STD Standard Deviation
KNN K-Nearest Neighbors
DA Discriminant Analysis
NB Naive Bayes
DT Decision Tree
WK Walking
WU Walking upstairs
WD Walking downstairs
ST Sitting
SD Standing
LD Lying down
GWO Grey Wolf Optimization
RSA Reptile Search Algorithm
ZOA Zebra Optimization Algorithm
GBO Gradient-based Optimizer
SOA Seagull Optimization Algorithm
SVM Support Vector Machine
RF Random Forest
CNN Convolution Neural Network
TASKED Self-KnowledgE Distillation
FDO Fitness dependent optimizer
CSO A competitive swarm optimizer for large-scale optimization
COA Coyote Optimization Algorithm
SDBO Supply–demand-based optimization
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