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Abstract: Human activity recognition (HAR) is essential for the development of robots to assist
humans in daily activities. HAR is required to be accurate, fast and suitable for low-cost wearable
devices to ensure portable and safe assistance. Current computational methods can achieve accurate
recognition results but tend to be computationally expensive, making them unsuitable for the
development of wearable robots in terms of speed and processing power. This paper proposes
a light-weight architecture for recognition of activities using five inertial measurement units and
four goniometers attached to the lower limb. First, a systematic extraction of time-domain features
from wearable sensor data is performed. Second, a small high-speed artificial neural network and
line search method for cost function optimization are used for activity recognition. The proposed
method is systematically validated using a large dataset composed of wearable sensor data from
seven activities (sitting, standing, walking, stair ascent/descent, ramp ascent/descent) associated with eight
healthy subjects. The accuracy and speed results are compared against methods commonly used for
activity recognition including deep neural networks, convolutional neural networks, long short-term
memory and convolutional–long short-term memory hybrid networks. The experiments demonstrate
that the light-weight architecture can achieve a high recognition accuracy of 98.60%, 93.10% and
84.77% for seen data from seen subjects, unseen data from seen subjects and unseen data from unseen
subjects, respectively, and an inference time of 85 µs. The results show that the proposed approach
can perform accurate and fast activity recognition with a reduced computational complexity suitable
for the development of portable assistive devices.

Keywords: deep learning; activity recognition; lower-limb motion recognition; wearable sensors

1. Introduction

Locomotion is the ability to move from one place to another to perform activities of
daily living independently [1]. This ability, which involves carrying out activities such as
walking and stair and ramp ascent/descent, is commonly affected by aging and strokes,
reducing the quality of life of individuals [2]. Recent studies have indicated that two-thirds
of stroke survivors with lower-limb impairments are unable to continue with their profes-
sional career plans [3]. Active orthoses offer intelligent wearable devices to assist patients
in improving their locomotive performance and recovering their quality of life [4]. These
wearable devices need to understand the user’s motion intent to deliver a safe, controlled
and timely assistance. This process, known as human activity recognition (HAR), is com-
monly performed using wearable sensors and computational methods implemented in
assistive robots [5,6]. Even though sensing technology and computational intelligence have
shown rapid progress in recent years, HAR still faces various challenges including critical
accuracy demands, since recognition errors could result in faulty assistance. Moreover,
real-time constraints of the associated control systems demand a high-speed inference,

Sensors 2023, 23, 5854. https://doi.org/10.3390/s23135854 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5721-8866
https://orcid.org/0000-0002-9922-7912
https://doi.org/10.3390/s23135854
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135854?type=check_update&version=2


Sensors 2023, 23, 5854 2 of 22

which is further challenged by the scarce computational resources of portable low-weight
devices [7].

The goal for HAR is to maintain an accurate and fast intent prediction using portable
low-weight devices and low-cost sensors. Sensor-based HAR is commonly classified
into body-worn, object and ambient recognition. Object sensors are placed inside objects
to measure their kinematic states, for example, accelerometers in mobile phones detect
activities such as walking and running [8]. Ambient sensors, such as stereo cameras,
capture changes in the environment to estimate what the subject might be doing in the
perimeter [9]. Body-worn or wearable sensors are attached to the body at specific joints or
links. Wearable sensors are widely adopted for HAR, since they convey rich features with
sampling rates on the order of hundreds of hertz [10]. These sensors are highly portable
compared to ambient and object sensors, making them suitable for indoor and outdoor
activities. Wearable sensors include goniometers, inertial measurement units (IMUs) and
electromyography (EMG) systems [11,12]. IMUs and goniometers offer an advantage for
portable devices since they are light-weight and low-cost sensors [13]. The presented
approach suggests attaching IMUs to the lower limb to track the angular velocity about
the corresponding joint and the acceleration of the center point of that link. Goniometers
attached to joints help track the angular trajectories contributing to the activity of interest.
Time- and/or frequency-domain features can be extracted from these kinematic trajectories
with negligible computational overhead, which eliminates the need for less robust sensor
arrays such as EMG ones [14].

Wearable sensor data need preprocessing to eliminate anomalies and undesired
noise [15]. The proposed preprocessing stage starts with data cleaning by discarding
faulty motion circuits with missing entries or data. Motion axes are also assessed to discard
irrelevant sensory channels with low-magnitude temporal variation. The labeled dataset is
segmented into windows with small shifts in a one-dimensional convolutional fashion to
group different samples of a parametric probability distribution [16]. The optimal window
and shift sizes are selected based on a compromise between inference time and captured
temporal pattern span. The proposed method emphasizes the importance of systematic
feature extraction by defining relevant time-domain metrics [17]. On the one hand, this
approach has a major advantage over stochastic feature extraction methods, which use
empirical rules for hyperparameter tuning resulting in overly sized feature extractors [18].
On the other hand, systematic feature extraction using time/frequency-domain analysis
produces powerful features for periodic lower-limb patterns, reducing the computational
complexity of subsequent processes.

Verification methods are crucial for measuring the performance of machine learning
classifiers [19,20]. It is necessary to ensure the desired properties of a complex system by
evaluating statistical metrics. The most widely used curves for AI classifiers are learning
curves, which display the evolution of classification accuracy during training for both seen
and unseen data. Seen data refer to the portion of the dataset which is used to minimize
the system’s cost function and reduce classification error. Unseen data refer to another
portion of the dataset which measures the classifier’s performance on validation or testing
data not previously seen by the network, to assess the classifier’s success on a wider range
of the population. Confusion matrices are used to spot the classifier’s confusion patterns
and how some classes could be systematically confused for others. This helps the designer
tune the classifier’s performance by changing hyperparameter values, cost function or
network structure to eliminate this confusion. A statistical analysis of classifier performance
often also includes the F1-score to measure testing/validation accuracy. The F1-score is
the harmonic mean of two other statistical measures known as precision and recall. The
precision is the number of true positive results divided by the sum of all positive results,
while the recall is the number of true positive results divided by the sum of all samples
that should have been identified as positive.

This work presents a light-weight artificial neural network (ANN) architecture that
uses feature windows with consecutive time stamps. This concept takes inspiration from
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recurrent neural networks, which use sequence modeling to combine past and present
knowledge [21]. The proposed light-weight ANN method is trained to classify seven
locomotion activities (sitting, standing, level ground walking, ramp ascent and ramp descent,
stair ascent and stair descent) using the open-source ENABL3S dataset [22]. The classifier is
systematically tested against deep learning techniques (deep neural network (DNN), convo-
lutional neural network (CNN), long short-term memory (LSTM) and a CNN-LSTM hybrid)
whose hyperparameters are carefully tuned using grid search to maximize competitiveness
[23]. Eight K-fold validation experiments are carried out to assess the consistency of the
proposed approach and deep learning techniques as well as their respective accuracy levels,
F1-scores and average inference times. The light-weight ANN proves to be competitive,
making it suitable for the development of portable assistive systems capable of recognizing
activities in real time.

This paper is organized as follows: the related work is presented in Section 2. The
proposed feature extraction3 and recognition methods along with the competing deep
learning techniques are described in Section 3. The experiments and results are presented
in Section 4. Sections 5 and 6 present the discussion and conclusions, respectively.

2. Related Work

This section presents related works in the field of robotic orthoses and activity recogni-
tion. These works are compared in terms of hardware complexity, efficiency of computa-
tional methods and classification accuracy.

An exoskeleton or wearable orthotic device is a term that refers to any active method
used to provide partial or full assistance to the muscular activity of the wearer. A wear-
able assistive device is a fully closed-loop system that starts with motion intent pre-
diction and ends with controlled mechanical assistance. Lower-limb exoskeletons are
classified into systems for multiple-joint actuation and for single-joint actuation [24].
Trunk–hip–knee–ankle–foot systems are the most complex since they span multiple de-
grees of freedom and are generally used to offer more stability in the trunk and hip. Other
variations of multiple-joint systems can be realized by discarding a degree of freedom at a
time such as: hip–knee–ankle–foot devices for flexion/extension and abduction/adduction
control with free or locking motion in the hip joint, hip–knee devices for flexion/extension
movements of hip and knee joints and knee–ankle–foot devices. Kao et al. [25] collected
lower-body kinematic trajectories, EMG signals and ground reaction forces to compare
gait patterns before and after an ankle–foot orthosis attachment. The study showed the
importance of optimizing sensor modalities to match the required level of assistance and
actuator response time. This optimization process is also dependent on the number of use-
ful features that parameterize the data collected from several individuals. Device actuation
is governed by important design considerations other than sensor modality optimization
such as mechanical efficiency, size, weight and portability. Conventional actuators used in
exoskeletons are electric actuators, pneumatic actuators, hydraulic actuators in addition to
some modern actuators such as series elastic actuators and pneumatic artificial muscles [26].

Sensor data type plays a key role in HAR for reliable and safe assistive devices. IMUs,
comprising accelerometer, gyroscope and magnetometer signals, are the most widely used
wearable sensors in HAR. In particular, accelerometer and gyroscope signals measuring
gravitational accelerations (x, y and z axes) and angular velocity (roll, yaw and pitch),
respectively, offer relevant data, compared to magnetometer signals, for the design of HAR
methods. Sampling rate adjustment is an important calibration step, since higher rates
provide more accurate, precise feedback at the cost of power consumption and battery
drain. Typical IMU sampling rates are on the order of several hundred to several thousand
Hz. Electromyography (EMG) sensors are used in HAR given their capability to measure
electrical signals from muscle contractions while performing activities. There are two EMG
sensor types: surface EMG (sEMG) sensors, which are noninvasive electrodes placed on the
skin surface [27] and intramuscular EMG (iEMG), which uses invasive elements embedded
beneath the skin [28]. Other sensors used in HAR include mechanomyography, which
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measures low-frequency muscular contractions using accelerometers or microphones [29],
electroencephalography for brain activity monitoring [30] and piezoelectric sensors that
convert pressure loads to electrical signals [31]. HAR is not limited to these sensors;
however, the above-mentioned devices are the most widely used in academia and the
industry. The selection of sensory channels is dependent on the number of recognized
activities and their features. A large number of classes requires sensory information that is
rich enough to convey a suitable number of useful features.

The design of computational methods for activity recognition has been widely inves-
tigated with a variety of approaches ranging from heuristic methods to neural network
approaches and advanced deep learning techniques. Some works propose simple unsuper-
vised approaches such as k-nearest neighbors as in [32] to predict six different activities
based on a single smartphone IMU data including laying, downstairs walking, sitting,
upstairs walking, standing and walking. The formerly mentioned k-nearest neighbors
approach yields a maximum validation accuracy of 90.46% and is not able to recognize
some dynamic activities such as ramp ascent/descent. Support vector machines also belong
to the same category of computationally efficient methods and have been employed by
Tran et al. to classify the previously mentioned six activities using a smart-phone IMU [33].
The group passed 248 useful features to the support vector machine but only managed
to achieve a maximum validation accuracy of 89.59%. ANNs have paved the way for
more intricate classification methods starting with small neural networks that can achieve
acceptable results with low-cost microcomputing devices. Jmal et al. [34] deployed a
high-speed light ANN on a microcomputer for recognizing three activities (sitting, walking
and running). The approach proved to be computationally efficient but achieved an overall
maximum accuracy of 86% with a single IMU attached to the ankle. Such conventional
approaches are computationally cheap but require the systematic handcrafting of features
to produce accurate classification results.

Recent works have explored the potential of end-to-end deep learning methods for
activity recognition using raw input data from a variety of sensors, e.g., IMUs and EMG
sensors. CNNs have proved to be highly efficient in automatic feature extraction for im-
age processing applications, and the same principle has been explored in HAR using the
wearable sensor data in an imagelike format [35]. While CNNs have some remarkable
advantages such as parameter sharing and a sparsity of connections, they require higher
computational effort than conventional approaches such as k-nearest neighbors, support
vector machines and single-layer ANNs. Male et al. used an LSTM network to merge data
from IMU and vision sensors for activity recognition [36]. That approach achieved accurate
results; however, the vision component limited the method to fixed and well-controlled
environments. Some recent works have emphasized the importance of systematic feature
engineering for machine learning and deep learning methods to improve classification
accuracy [37]. Wang et al. used genetic algorithms to select relevant sensory inputs and a
Bayesian approach for deep CNN hyperparameter tuning, achieving a 90% activity recogni-
tion accuracy for unseen subjects using feedback from 24 sensory channels [38]. Recurrent
neural networks use previous outputs as current inputs while maintaining a hidden state,
which is useful for HAR research since the input is a time series. Ghislieri et al. proposed
a binary classification LSTM network for muscle activity detection, achieving an average
validation accuracy of 92% [39]. A multilevel classifier based on a CNN-LSTM hybrid
proposed in [40] combined the feature extraction capability of CNNs and the state evolution
tracking from recurrent neural networks, achieving a mean F1-score of 0.97 and a validation
accuracy of 94.53% for ten healthy subjects using two IMUs. However, the training dataset
for that approach was not balanced and a class bias was expected. Wang et al. proposed
a similar hybrid approach [41] achieving a 95.87% validation accuracy on the recognition
of six activities (walking, lying, sitting, standing, stair ascent and stair descent) using a
smart-phone IMU. Despite the high validation accuracy of the approach, it ignored some
dynamic activities such as ramp ascent/descent and was very computationally demanding.
Another CNN-LSTM hybrid approach was developed by Jain et al. to classify six activities
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(standing, sitting, lying, level walking, walking downstairs and walking upstairs) and
transitions between states, achieving an average F1-score of 0.8782 [42].

This paper proposes a light-weight computational architecture exploiting the benefits
of combining feature engineering and artificial neural networks. This approach uses
wearable sensor data for the classification of seven activities including sitting, standing,
ground level walking, ramp ascent and ramp descent, stair ascent and stair descent. The
proposed approach uses sensor data available in the ENABL3S benchmark dataset [22].
The key idea for the proposed light-weight ANN architecture is to achieve a competitive
performance compared to deep learning approaches, in terms of classification accuracy
and F1-score, while maintaining smaller training and inference times and computational
complexity through the systematic extraction of features.

3. Methods

This section describes the light-weight ANN network approach starting with input
preprocessing, hyperparameter tuning and ending with the cost function optimization
along with the network training procedure. This work also implemented a set of methods
for benchmarking including DNNs, CNNs, LSTM and CNN-LSTM hybrid networks. The
ENABL3S dataset [22] used in this research work comprises raw sensory information from
a set of sensors synchronized at a constant refresh rate of 500 Hz. In order to optimize
sensor modalities, only relevant sensory channels were selected from the dataset. The
sensors of interest for this study were five six-DOF IMUs (MPU-9250; Invensense, San Jose,
CA, USA) attached to the waist and both thighs and shanks of test subjects (tilted 20 deg
from vertical), and four goniometers (SG150; Biometrics Ltd., Newport, UK) attached to
both knees and ankles. The sensor type, attachment location and sensory channels used for
feature extraction are illustrated in Figure 1. The sensory channels were selected based on
their relevance to forward motion, where only the forward acceleration of movable links as
well as their associated angular displacements and velocities were considered. In total, the
data used were composed of accelerometer raw readings (x and y axes) [43] and angular
velocity (x axis) from the waist, acceleration (x and z axes) from the thigh and shank, angular
velocity (y axis) from the thigh and shank and absolute angle per goniometer from ankle
and knee. Benchmarking is implemented with eight k-fold experiments per computational
method. For each fold, data from seven individuals were used for training and validation
(seen subjects), and data from the eighth excluded subject were used for testing (unseen
subject). The training dataset for each fold comprised data points from 56 motion circuits
(8 seen circuits per training seen subject), the validation dataset comprised 14 motion
circuits (2 unseen circuits per seen subject), and the test dataset comprised 4 unseen motion
circuits from the unseen test subject.

Figure 1. Hardware setup and sensory channels, where green and red colors represent goniometers
and inertial measurement units, respectively (figure adapted from [22]).
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A total of 74 motion circuits for eight healthy subjects with different biometrics were se-
lected from the ENABL3S dataset as shown in Table 1. Even-numbered circuits recorded the
following sequence of activities: sitting→ standing→ level walking→ ramp ascent→ level
walking → stair descent → level walking → standing → sitting. Odd-numbered circuits
recorded activities in a reverse order: sitting→ standing→ level walking→ stair ascent→ level
walking→ ramp descent→ level walking→ standing→ sitting. The eight folds were used to
assess the consistency of the results for different data distributions. The results assessed
the performance metrics in terms of the compromise between classification accuracy, com-
putational cost and speed. The motion circuits were preprocessed through windowing,
shifting, manual feature extraction or a combination of the three, yielding eight segmented
datasets per method. For each fold, the learning curves, testing accuracy, confusion ma-
trices, F1-scores and average inference times were measured for training, validation and
testing subsets to assess the performance on seen and unseen data from seen and unseen
subjects. The F1-score was computed using the following equation:

F1 =
TP

TP + 1
2 (FP + FN)

(1)

where TP, FP and FN are the true positive, false positive and false negative results, re-
spectively. Two further training trials were conducted to validate the optimal selection of
sensory channels for the proposed approach. The two trials investigated the performance
of the network on seen subjects by using only IMUs for the first trial and only goniometers
for the second.

Table 1. Dataset subjects.

Subject Age (years) Height (cm) Weight (kg)

AB156 26 193 77
AB185 28 181 75
AB188 25 185 87
AB189 24 178 66
AB190 23 160 54
AB191 26 163 54
AB193 27 185 95
AB194 29 160 61

3.1. Shallow Neural Network
3.1.1. ANN Preprocessing

The data preprocessing stage started with channel segmentation, where each sensory
channel was divided into fixed-size windows. The dataset readings were sampled at a rate
of 500 Hz, therefore a window size of twenty-five samples was selected to capture enough
features without exceeding a time threshold (around 0.05 s). A transitional region of five
hundred samples (1 s) between two successive activities was removed to account for the
confusion caused by transitional periods (e.g., swift transition between ground-level walking
and standing). This ensured that correct ground-truth labels were included in the dataset. A
window shift of five samples was introduced for each new segmentation session causing a
time shift of about 0.01 s between successive segments. The time shift was applied five times
to span the whole range and produce a rich dataset. Different combinations of window
size and shifts were applied to select the optimal segmentation values using a grid search
(e.g., 25 samples per window, 5 samples per window shift, and 500 samples removal per
transitional period). Known time- and frequency-domain features were investigated, and
training trials were conducted using different combinations of features, based on which,
the optimal set of features was selected. For each window, the following nine features
were extracted: (1) mean, (2) median, (3) standard deviation, (4) minimum, (5) maximum,
(6) initial value, (7) final value, (8) mean absolute value (MAV) and (9) waveform length
(WL), as follows:



Sensors 2023, 23, 5854 7 of 22

µw =
1

25

i+24

∑
n=i

xw
n (2)

M̃w = xw
i+12 (3)

σw =

√
∑i+24

n=i (xw
n − µw)2

25
(4)

Minw = arg min
xw

n
(5)

Maxw = arg max
xw

n
(6)

Iw = xw
i (7)

Fw = xw
i+24 (8)

MAVw =
∑i+24

n=i | xw
n − µw |

25
(9)

WLw =
i+23

∑
n=i
| xw

n+1 − xw
n | (10)

where i, µw, M̃w, σw, MAVw and WLw represent the index of the first element of the window,
mean, median, standard deviation, mean absolute value and waveform length, respectively,
for the window w. The parameters xw

n , Minw, Maxw, Iw and Fw represent the minimum,
maximum, initial and final readings, respectively, for the window w. Incomplete windows
or residuals were removed to standardize the amount of captured variation per window,
and each fully segmented sensory channel was appended to the final preprocessed dataset
(see Figure 2a). Mean normalization and feature scaling were applied to the processed data
samples before feeding. Subsequently, a downsampling technique was used to balance the
labels and avoid class bias. Downsampling reduces the number of class labels to matching
numbers; this technique was selected because it helped reduce the quantity of redundant
information of periodic repetitive data collected from gait activities.

3.1.2. ANN Design

For sequential data, information from past samples has the potential to improve
the classification accuracy. The proposed approach captured this by embedding data
from past windows within input features. Three consecutive windows were concatenated
and fed to the classifier as a whole, instead of feeding individual windows. First, the
segmented dataset was copied three times, where each copy was shifted one window
below its predecessor. The three copies were then concatenated to form a new dataset.
This approach was simple and highly effective for activity recognition, since it considered
past and current inputs. This functionality in the proposed light-weight ANN approach
resembles that of an RNN, except that the ANN gradient computation and training are
considerably faster. The classifier hyperparameters, including the number of past windows,
were tuned experimentally using a grid search yielding a network with a single hidden
layer and 100 hidden units. For the activation on hidden neurons, the Tanh function was
employed, while a Sigmoid function was used for the activation of the output neurons
composed of seven units corresponding to the number of ADLs (see Figure 2b).
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(a)

(b)

Figure 2. Data preprocessing and ANN architecture. (a) Grouping readings into time-domain feature
windows. (b) Union of past and present feature windows for ANN.

3.1.3. ANN Training

The dataset labels were converted to a one-hot representation and the optimization
function f mincg [44] minimized the cross-entropy objective function of one training batch
for 1000 epochs using a line search algorithm. Line search provides a better rate of conver-
gence for the ANN cost function than traditional gradient descent at a higher computational
cost. The algorithm uses the Wolfe conditions to optimize the step size without manual
tuning of a fixed learning rate [45]. Line search achieved better training results for the
proposed ANN than gradient descent variants such as RMSProp and Adam algorithms
without any parameter tuning. L2 regularization was applied to prevent overfitting with a
regularization parameter equal to 2. The regularization parameter was tuned to reduce the
error between training and validation accuracy. The simplicity of the architecture justified
the usage of the computationally demanding line search algorithm, embedded within the
f mincg function, given the small effort required for gradient computing of the small ANN.
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3.2. Deep Neural Network
3.2.1. DNN Preprocessing

The sensory channels shown in Figure 1 were used for activity recognition with the
DNN approach. This deep learning approach used the preprocessing steps employed by
the proposed ANN method in Section 3.1.1. These preprocessing steps started with data
segmentation into five different segments, each of the five samples ahead of its predecessor.
No handcrafted features were computed for the windows; instead, the raw signals com-
posed of 25 samples were directly stacked into windows for input to the DNN. Transitional
periods and incomplete windows were removed and finally, segmented channels were
appended to the segmented dataset as shown in Figure 3a. Mean normalization and feature
scaling processes were applied to the dataset before feeding. The downsampling process
was also used to balance the classes.

3.2.2. DNN Design and Training

Multilayer networks are used for the classification of complex patterns, since the
first layers act as feature extractors and the final layer performs classification tasks [46].
Therefore, a manual extraction of features is eliminated in favor of a more stochastic
approach towards feature extraction. The hyperparameters of the classifier including the
number of layers, hidden units, regularization and activation functions were tuned using a
grid search to maximize the validation accuracy and reduce overfitting. The final network
had six hidden layers with a Tanh activation function and L2 regularization, followed by
a final So f tmax layer corresponding to different activities, as shown in Figure 3b. The
Adadelta optimizer with a 0.05 learning rate was used to minimize the cross-entropy cost
function of the training batch for 10,000 epochs.

(a) Grouping sensor readings into windows

(b) DNN architecture

Figure 3. Data preprocessing and DNN network architecture.
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3.3. Convolutional Neural Network
3.3.1. CNN Preprocessing

The second benchmarking approach implemented a CNN that used 2D convolutions
for feature extraction followed by an output classification layer. The same nineteen IMU
and goniometer channels used for the light-weight ANN and DNN approaches were
selected and preprocessed. The data were split into five segments, each comprised of
25-sample windows with 5-sample shifts. Transitional periods and incomplete windows
were removed, and the raw feature windows were stacked together to form 2D arrays fed to
the CNN. The rows and columns of the array represented the number of sensory channels
and data samples. The 2D arrays were fed directly to the CNN as illustrated in Figure 4a.
The classes were balanced using the downsampling technique after the preprocessing steps.

(a) Grouping sensor readings into 2D arrays

(b) CNN architecture

Figure 4. Data preprocessing and network architecture for the CNN.

3.3.2. CNN Design and Training

The CNN used a 2D convolutional layer composed of ten 3× 3 kernels with a Tanh
activation function, followed by a maxpooling layer of size 3× 3, a 2-step stride and valid
padding. Then, the layer was flattened and fed to two fully connected layers with a 30%
dropout probability. The first and second layers had 400 and 500 hidden units, respectively,
with a Relu activation. The final activations were fed to a So f tmax layer (see Figure 4b).
The categorical cross-entropy function was optimized using the Adadelta optimizer for a
single full batch with a 0.05 learning rate for 4000 epochs.

3.4. Long Short-Term Network
3.4.1. LSTM Preprocessing

The third benchmarking approach used an LSTM network following the approach pro-
posed in [47,48]. LSTM networks are known for their ability to process sequences of inputs
instead of processing a single input at a time, which can enhance the classification accuracy.
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Data from the nineteen sensory channels were split into five segments, each comprised of
25-sample windows with 5-sample shifts. Moreover, each of the ten consecutive windows
in a segment was bundled together to form a sequence of RNN inputs. Transitional periods
and incomplete sequences were removed, and the data were downsampled to ensure
balanced classes. A sequence of 10 windows without normalization was fed to the LSTM
network at a time for the recognition of ADLs, as shown in Figure 5a.

(a) Grouping sensor readings into sequences

(b) LSTM architecture

Figure 5. Data preprocessing and LSTM network architecture.

3.4.2. LSTM Design and Training

The hyperparameters of the classifier were tuned using a grid search to maximize the
validation accuracy and optimize the computational effort. This process was applied to the
number of layers, units and sequence size. The final network had one LSTM layer with
64 activation units, followed by a So f tmax layer with 7 units corresponding to the activity
classes (see Figure 5b). The initial hidden state and activation were both initialized to zeros.
The Adadelta optimizer with a 0.05 learning rate was used to minimize the training batch
cross-entropy cost function for 10 epochs.

3.5. CNN-LSTM Hybrid Network
3.5.1. CNN-LSTM Preprocessing

The combination of CNN feature extractors and LSTM sequence models can result in
enhanced activity recognition as proposed in [40,49]. The preprocessing steps used for the
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CNN in Section 3.3.1 and Figure 6 were employed for the hybrid CNN-LSTM approach. In
this hybrid approach, there was an additional final step in which ten consecutive 2D arrays
in a segment were bundled together to form a sequence of LSTM inputs. Thus, 2D array
sequences were used instead of window sequences. Each ten-array sequence was finally
fed to the CNN-LSTM hybrid at a time. Similar to the previous approaches, the data were
also downsampled to ensure balanced classes after the preprocessing stage.

Figure 6. CNN-LSTM network architecture.

3.5.2. CNN-LSTM Design and Training

The CNN feature extractor consisted of a 2D convolutional layer with ten 3× 3 kernels
and a Tanh activation function. This layer was followed by a maxpooling layer of size 3× 3
with a 2-step stride and valid padding. The layer was flattened and fed to an LSTM unit
with 64 activation units. The CNN-LSTM output from the ten-array sequence was fed to two
fully connected layers with a 30% dropout probability. The first layer had 400 hidden units
while the second layer had 50 hidden units, both layers using Relu activation functions.
The output from the fully connected layers was fed to a So f tmax layer as shown in Figure 6.
The categorical cross-entropy function was optimized using the Adadelta optimizer for a
single full batch with a 0.05 learning rate for 20 epochs.

4. Results

In this section, the results obtained by training, validating and testing the networks
are presented. The preprocessing methods introduced in the methods section were used
to obtain useful features, the features were fed to the networks, and the weights were
iteratively updated to minimize the cost functions. Finally, the learning curves, confusion
matrices and F1-scores were displayed.

4.1. Activity Recognition for Seen Subjects

Test subjects whose motion data were used to train a network were referred to as seen
subjects. This section presents the ADL classification results using data collected from
seven subjects distributed among eight folds.

4.1.1. ANN Approach

The light-weight ANN cost function was optimized using the training algorithm de-
scribed in Section 3.1.3. The training and validation processes of the ANN were performed
using data from seen and unseen circuits, respectively. The learning curves from the k-fold
experiment with the AB185 subject as the unseen subject are shown in Figure 7a. Confusion
matrices from training and validation of the proposed ANN for the considered k-fold
analysis are shown in Figure 7b and 7c, respectively. The averaged training and validation
accuracy results over the eight folds are shown in Table 2. The proposed ANN validation
F1-scores for the seven classes (sitting, standing, level walking, stair ascent, stair descent, ramp
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ascent and ramp descent) were computed for the eight folds. The F1-scores for the eight folds
were averaged (see Table 3). The light-weight ANN average input preprocessing duration
was 38.75± 342.1 µs and the average inference time was 45.79± 619.05 µs, which yielded a
total average run time of 84.54 µs for the pipeline.

(a) (b) (c)

Figure 7. Training and validation results of the light-weight ANN with seen subjects. (a) ANN
learning curve. (b) Training confusion matrix. (c) Validation confusion matrix.

4.1.2. DNN Approach

The DNN cost function was optimized using the training algorithm described in
Section 3.2.2. The DNN was trained and validated using data from seen and unseen
circuits, respectively. The accuracy results for the k-fold experiment with the AB185 subject
as the unseen subject are shown by learning curves in Figure 8a. Confusion matrices from
the DNN training and validation are shown in Figure 8b,c. The average DNN validation
accuracy over the eight folds is shown in Table 2. Training and validation F1-scores are
shown in Table 3. The DNN average inference time was 3.09± 0.33 ms.

(a) (b) (c)
Figure 8. Training and validation results of the DNN with seen subjects. (a) DNN learning curve.
(b) Training confusion matrix. (c) Validation confusion matrix.

Table 2. Average training and validation accuracy results with seen subjects over eight folds.

Approach Training Accuracy Validation Accuracy

Light-weight ANN 98.81% 93.10%
DNN 97.92% 87.92%
CNN 97.55% 92.34%
LSTM 98.34% 92.99%

CNN-LSTM 97.75% 92.42%
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Table 3. Average validation F1-score with seen subjects over eight folds (Highest F1-scores per row
are presented in bold).

Approach Sitting Walking R. Ascent R. Descent S. Ascent S. Descent Standing

Light-weight ANN 0.95 0.85 0.95 0.98 0.996 0.83 0.97
DNN 0.84 0.79 0.87 0.91 0.92 0.81 0.88
CNN 0.95 0.82 0.93 0.97 0.995 0.83 0.97
LSTM 0.95 0.84 0.95 0.97 0.998 0.81 0.98

CNN-LSTM 0.95 0.93 0.93 0.98 0.99 0.77 0.96

4.1.3. CNN Approach

The CNN design presented in Section 3.3.2 was trained using data from 56 seen
circuits and validated using data from 14 unseen circuits. The learning curves for the k-fold
experiment with the AB185 subject as the unseen subject are shown in Figure 9a. Training
and validation results are shown via confusion matrices in Figure 9b,c. The average training
and validation accuracy results for the eight folds are shown in Table 2. The validation
F1-scores for the seven classes were computed and averaged over all eight folds. Table 3
shows the average F1-score values for the ANN and CNN. The CNN average inference
time was 2.8± 0.24 ms.

(a) (b) (c)
Figure 9. Training and validation results of the CNN with seen subjects. (a) CNN learning curve.
(b) Training confusion matrix. (c) Validation confusion matrix.

4.1.4. LSTM Approach

The LSTM network was trained using the methods described in Section 3.4.2. The
learning curves for the k-fold experiment treating the AB185 subject as the unseen subject
are shown in Figure 10a. Confusion matrices from the training and validation processes
of the LSTM are shown in Figure 10b and 10c, respectively. The average k-fold training
and validation accuracy results are presented in Table 2. Similarly, the averaged validation
F1-scores for the seven classes can be found in Table 3. The LSTM average inference time
was 5.86± 0.97 ms.

(a) (b) (c)

Figure 10. Training and validation results of the LSTM approach with seen subjects. (a) LSTM
learning curve; (b) Training confusion matrix; (c) Validation confusion matrix.
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4.1.5. CNN-LSTM Approach

The learning curves for the k-fold experiment using the AB185 subject as the unseen
subject are shown in Figure 11a. The confusion matrices for training and validation are
shown in Figure 11b,c. The averaged k-fold validation accuracy for the CNN-LSTM hybrid
is shown in Table 2. Table 3 shows the average validation F1-scores for the seven classes
computed for each fold. An average inference time of 6.57± 0.9 ms was assigned to the
CNN-LSTM hybrid approach.

(a) (b) (c)

Figure 11. Training and validation results of the CNN-LSTM approach with seen subjects. (a) CNN-
LSTM learning curve. (b) Training confusion matrix. (c) Validation confusion matrix.

4.1.6. Accuracy of Light-Weight ANN on Seen Subjects with Individual and Combined
Sensory Channels

The training and validation accuracy levels were validated for the proposed approach
using the combined features of IMUs and goniometers. The validation accuracy level
dropped by eliminating either IMUs or goniometers, which validated the originally pro-
posed combination of IMU and goniometer channels as shown in Table 4. The validation
F1-scores associated with each trial are shown in Table 5.

Table 4. Average training and validation accuracy results with seen subjects for the ANN using
different sensor combinations.

Sensors Training Accuracy Validation Accuracy

IMUs only 99.43% 91.94%
Goniometers only 73.82% 71.51%

IMUs plus goniometers 98.81% 93.10%

Table 5. Average validation F1-score with seen subjects for the ANN using different sensor combina-
tions (Highest F1-scores per row are presented in bold).

Sensors Sitting Walking R. Ascent R. Descent S. Ascent S. Descent Standing

IMUs only 0.95 0.82 0.94 0.94 0.995 0.80 0.97
Goniometers only 0.88 0.51 0.69 0.64 0.62 0.72 0.82

IMUs plus goniometers 0.95 0.85 0.95 0.98 0.996 0.83 0.97

4.2. Activity Recognition for Unseen Subjects

This section presents the response of the ADL classification methods to unseen data
from new unseen subjects. In these experiments, unseen subjects referred to test subjects
whose motion circuit data were not used for network training and validation. The perfor-
mance of each computational method on unseen subjects was assessed as in Section 4.1.
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4.2.1. ANN Approach

The testing process of the proposed light-weight ANN used data from unseen motion
circuits associated with unseen test subjects. The confusion matrix from the k-fold experi-
ments using the AB185 subject as the unseen subject is shown in Figure 12a. The averaged
accuracy results from the unseen-subject testing process are shown in Table 6. The ANN’s
testing F1-scores from the seven activity classes, shown in Table 7, were computed for the
unseen subject data for the eight folds and then averaged, with the lowest average F1-score
being assigned to the walking class.

(a) ANN on unseen data (b) DNN on unseen data (c) CNN on unseen data

(d) LSTM on unseen data (e) CNN-LSTM on unseen
data

Figure 12. Unseen data’s confusion matrices.

4.2.2. DNN Approach

Unseen subjects’ data were used to test the DNN methods on activity recognition
for unseen test subjects. Recognition accuracy for each activity is shown by the confusion
matrix in Figure 12b, obtained from the k-fold experiment with the AB185 subject as the
unseen subject. The average activity recognition accuracy with unseen subject data are
shown in Table 6. The average F1-score results with unseen subject data for the eight folds
are shown in Table 7. The lowest average F1-score was associated with the ramp descent
class.

4.2.3. CNN Approach

The CNN was tested using data from unseen test subjects. The confusion matrix in
Figure 12c shows the recognition accuracy from the k-fold experiment with the AB185
subject as the unseen subject. The recognition accuracy results using unseen subjects for
the eight folds were averaged as shown in Table 6 . The testing F1-scores for unseen subject
data and the eight folds were computed and averaged as shown in Table 7, where the
lowest average F1-score was related to the walking class.
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Table 6. Average testing accuracy with unseen subjects over eight folds.

Approach Testing Accuracy

Light-weight ANN 84.77%
DNN 70.28%
CNN 86.78%
LSTM 86.9%

CNN-LSTM 86.36%

Table 7. Average testing F1-scores with unseen subjects over eight folds (Highest F1-scores per row
are presented in bold).

Approach Sitting Walking R. Ascent R. Descent S. Ascent S. Descent Standing

Light-weight ANN 0.89 0.76 0.86 0.82 0.895 0.83 0.87
DNN 0.795 0.63 0.68 0.62 0.71 0.68 0.78
CNN 0.90 0.79 0.88 0.83 0.92 0.87 0.88
LSTM 0.898 0.82 0.89 0.86 0.897 0.84 0.85

CNN-LSTM 0.87 0.84 0.91 0.84 0.89 0.83 0.85

4.2.4. LSTM Approach

The LSTM network for unseen-subject activity recognition was tested using data from
the four testing motion circuits of the unseen test subject. The LSTM network testing
confusion matrix for unseen data from the AB185 unseen subject is shown in Figure 12d.
The averaged accuracy results over the eight folds are shown in Table 6. The testing
F1-scores associated with the unseen subject data for the eight folds were computed and
averaged as shown in Table 7. The lowest average F1-score was associated with the walking
activity class.

4.2.5. CNN-LSTM Approach

The CNN-LSTM testing (i.e., unseen circuits from the AB185 unseen subject) confusion
matrix is shown in Figure 12e. The average testing accuracy over the eight folds and the
average testing F1-scores for the seven classes are shown in Tables 6 and 7, respectively.

4.2.6. Accuracy of Light-Weight ANN on Unseen Subjects with Individual and
Combined Sensors

The testing accuracy was validated for the light-weight ANN using the combined
features of IMUs and goniometers. A series of two training trials was conducted for different
sensor combinations to test the performance of the network on unseen subjects. The two
trials showed that the average testing accuracy and F1-scores dropped by eliminating either
IMUs or goniometers, which validated the originally proposed combination of IMU and
goniometer channels as shown in Tables 8 and 9.

Table 8. Average testing accuracy results with unseen subjects for the ANN using different sensor
combinations.

Sensors Testing Accuracy

IMUs only 79.55%
Goniometers only 69.96%

IMUs plus goniometers 84.77%
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Table 9. Average testing F1-scores with unseen subjects for the ANN using different sensor combina-
tions (Highest F1-scores per row are presented in bold).

Sensors Sitting Walking R. Ascent R. Descent S. Ascent S. Descent Standing

IMUs only 0.88 0.65 0.77 0.77 0.80 0.83 0.84
Goniometers only 0.84 0.53 0.69 0.57 0.67 0.82 0.73

IMUs plus goniometers 0.89 0.76 0.86 0.82 0.895 0.83 0.87

5. Discussion

This section discusses the key differences between the proposed light-weight ANN
method and the set of benchmarking approaches in terms of classification accuracy, infer-
ence speed and response to seen and unseen data.

5.1. Classification Accuracy

The training and validation learning curves showed a convergence toward a stable
maximum accuracy level without intermittent spikes as shown in Figures 7a, 8a, 9a, 10a
and 11a, which validated the hyperparameter tuning procedure. The proposed light-weight
ANN method and the LSTM proposed in [39] had the highest average validation accuracy
percentages of 93.102% and 92.99%, respectively. The light-weight ANN method showed
a better performance on data from seen subjects compared to the other methods. This
can be attributed to the systematic extraction of features that accurately parameterized
the probabilistic distribution of the considered population, without relying on a stochastic
feature extraction approach. This performance improvement can be also related to the
use of the features extracted from multiple past windows to maintain a form of internal
memory. The results from seen subjects showed that the proposed method was more
powerful for relatively small datasets prepared for seen device users, which made it more
convenient for the considered application. The ANN’s small training effort facilitated
device tuning to accommodate a new user and eliminated the need for huge datasets or
oversized computational resources. However, the CNN, LSTM and hybrid approaches had
higher average accuracy percentages of 86.78%, 86.9% and 86.36% for data from unseen
subjects compared to an accuracy of 84.77% for the light-weight ANN approach. The CNN-
LSTM performance for activity recognition was tested using data from unseen test subjects.
The averaged testing accuracy over the eight folds, shown in Table 6, indicated a slightly
lower testing accuracy for the CNN-LSTM compared to LSTM and CNN approaches.
This suggests that these deep learning methods are able to generalize to larger unseen
populations, which makes them more convenient for training on very large datasets.

5.2. Inference Speed

The mean and variance of the inference speed for the presented computational meth-
ods were measured using 1000 samples each. A machine with an i7 Intel core and Nvidia
RTX2060 graphics card was used to train, validate and test the approaches. MATLAB was
used for the training and development of the light-weight ANN approach, while Tensor-
flow was used for the training, validation and testing of the rest of the approaches. The
results showed a clear advantage in processing speed for the light-weight ANN approach
over the other deep learning methods. The DNN average inference time was approximately
35 times greater than the average time required by the proposed light-weight ANN. The
CNN average inference time of 2.8± 0.24 ms was approximately 33 times greater than
the average inference time required by the ANN. The LSTM average inference time was
5.86± 0.97 ms, which is about 69 times greater than the inference time from the proposed
ANN method. The average inference time of 6.57± 0.9 ms for the CNN-LSTM hybrid
was approximately 77 times higher than that of the proposed light-weight ANN method.
The light-weight ANN achieved an inference speed that was at least 30 times faster than
the fastest deep learning approach. This study used an offline dataset, which means that
hardware restrictions were not considered. However, for a real-time scenario, the designer
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must account for hardware overhead. The designer must also embed a synchronization
mechanism to feed sensory information to the network simultaneously without consid-
erable lag. These aspects for the implementation in real time will be investigated in our
future work. The average inference time for the proposed ANN method was 85 µs. The
hyperparameters of the CNN method proposed in [35,36] were tuned using a grid search
method to achieve the maximum classification accuracy with optimal network size and
yet the inference time was 2.8 ms, which is 33 times higher than the mean inference time
of the proposed ANN. The CNN-LSTM hybrid method proposed in [40,42] was adopted
for benchmarking, and despite the high testing accuracy percentage for unseen subjects,
the measured inference time was 6.57 ms, which is about 77 times higher than the one
achieved by the light-weight ANN. Moreover, the deep learning methods relied on GPU
utilities to achieve the measured speeds, while the light-weight ANN did not explicitly use
GPUs. This shows that the proposed approach is optimal for embedded devices with low
computational budgets. The fast inference achieved by the light-weight ANN approach can
be related to the optimized size of the network, which consisted of one hidden layer with
100 hidden units. The systematic feature extraction method helped to extract useful features
in approximately 46 µs on average without adopting additional costly computational layers
based on stochastic techniques.

5.3. Confusion Patterns

The confusion matrices and F1-scores of the proposed approach and deep learning
methods for benchmarking showed confusing trends. Confusion matrices from the DNN
training and validation showed a larger proportion of off-diagonal elements compared to
those of the proposed light-weight ANN (see Figure 8b,c. The average DNN validation
F1-scores for the seven ADLs, shown in Table 3, were generally less than their light-weight
ANN counterparts, except for the stair ascent class. The averaged validation F1-scores for
the seven classes were approximately equal for the ANN and LSTM (see Table 3). A visual
inspection of the confusion matrix of the ANN on unseen subjects indicated some confusing
trends such as standing being heavily confused with sitting or walking, stair descent being
confused with other activities, particularly ramp descent and walking, ramp descent being
confused with walking and walking being confused with other states in general. The DNN
recognition results on unseen subjects showed confusing trends such as standing being
heavily confused with sitting or walking and walking being confused with other states. It was
also shown that stair descent was confused multiple times with stair ascent or walking, stair
ascent was likely to get confused with stair descent, ramp descent was heavily confused with
stair descent or walking, and ramp ascent was heavily confused with walking. The results from
the CNN on unseen subjects showed that standing was heavily confused with sitting, stair
descent was heavily confused with ramp descent, ramp descent and ramp ascent were confused
with walking and vice versa. The recognition outputs of the sitting class were all classified as
true positives. Overall, the CNN method showed less confusion compared to the DNN and
ANN methods. The confusion matrix of the LSTM on unseen subjects showed a very poor
classification of standing and ramp descent activities, which were likely confused with sitting
and stair descent, respectively. The walking activity was mildly confused with ramp ascent
and ramp descent activities, while the sitting activity was not confused with any other activity.
The unseen subject results for the CNN-LSTM hybrid showed an improved classification
accuracy with only standing and stair descent being heavily confused with sitting and ramp
descent, respectively. The validation results for unseen motion circuits from seen subjects
showed that the lowest F1-score values were always assigned to walking and stair descent
activities for all computational methods (see Table 3). The feature extraction process itself
is unlikely to be the cause for this misinterpretation, since five different methods with five
different feature extraction layers experienced the same problem. The most reasonable
explanation for this phenomenon is that the sensor modalities failed to convey enough
information that could be used to create more distinctive features. The confusion matrices
with validation results in Figures 7c, 8c, 9c, 10c and 11c showed that the majority of ramp
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ascent false positives were predicted as sitting, indicating a mild confusion between the two
classes for seen subjects. The validation matrices also showed that the majority of walking
false positives were predicted as either ramp ascent or ramp descent, which was related to the
minor discrepancies between walking on a ramp and normal walking.

6. Conclusions

In this work, a light-weight computational approach for the recognition of activities of
daily living was presented. The proposed method used a systematic feature engineering
procedure coupled with a single-layer artificial neural network. The analysis of the pro-
posed light-weight ANN approach was performed using wearable data from the ENABL3S
dataset. Furthermore, the proposed approach was compared against state-of-the-art deep
learning methods such as DNNs, CNNs, LSTM and CNN-LSTM hybrid networks. The
analysis showed that the proposed method was suitable for the recognition of ADLs with
relatively small datasets and could generalize well to unseen motion circuits from seen
users. The proposed ANN achieved a higher recognition accuracy than the benchmarking
approaches for both seen and unseen data from seen subjects. The inference time for the
proposed light-weight approach was at least thirty times less than any of the other deep
learning approaches. A practical implementation would require more insight on sensor
refresh rates and sensory channel synchronization in real time, which is an aspect that will
be investigated in future work. Overall, the results from all experiments demonstrated that
the light-weight ANN offered an alternative approach for a reliable and fast recognition
of ADLs, making this method suitable for the development of portable robotic devices to
assist subjects in real time.
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