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Abstract: The advancements and reliance on digital data necessitates dependence on information
technology. The growing amount of digital data and their availability over the Internet have given rise
to the problem of information security. With the increase in connectivity among devices and networks,
maintaining the information security of an asset has now become essential for an organization.
Intrusion detection systems (IDS) are widely used in networks for protection against different
network attacks. Several machine-learning-based techniques have been used among researchers for
the implementation of anomaly-based IDS (AIDS). In the past, the focus primarily remained on the
improvement of the accuracy of the system. Efficiency with respect to time is an important aspect of
an IDS, which most of the research has thus far somewhat overlooked. For this purpose, we propose
a multi-layered filtration framework (MLFF) for feature reduction using a statistical approach. The
proposed framework helps reduce the detection time without affecting the accuracy. We use the
CIC-IDS2017 dataset for experiments. The proposed framework contains three filters and is connected
in sequential order. The accuracy, precision, recall and F1 score are calculated against the selected
machine learning models. In addition, the training time and the detection time are also calculated
because these parameters are considered important in measuring the performance of a detection
system. Generally, decision tree models, random forest methods, and artificial neural networks show
better results in the detection of network attacks with minimum detection time.

Keywords: intrusion detection system; network attacks; machine learning; network security; security
information and event management; CIC-IDS2017; anomaly detection

1. Introduction

In today’s digital world, cybersecurity is becoming an essential need for military and
government organizations, as well as for small enterprises and even individuals. Threat
prevention is the epitome of digital security, which requires threat detection and threat
management capabilities [1]. Security information and event management (SIEM) is being
implemented by a large number of organizations and becoming a standardized approach
to handle information security issues [2]. Due to the recent rise in cyberattacks and the
strict security regulations required by governments, organizations have been investing in
the security domain [3]. The core of any SIEM solution is the detection capability of the
system. Information security experts have developed multiple network intrusion detection
tools and techniques for the detection and prevention of evolving network attacks [4].

A computer network is a set of computers connected with each other for resource
sharing. Any unauthorized action on the hardware or software of the systems connected
with the network is called a network attack. In other words, a network attack is any action
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that compromises the confidentiality, integrity, or availability of a system. An attack can be
classified into one of two types [3]: active attacks and passive attacks. In active attacks, the
attacker attempts to alter system resources or affect normal operations. Such attacks can
lead to data modification, data loss, data theft, and denial of service. In passive attacks, the
attacker attempts to learn important information without affecting the system resources
and normal operations. Such attacks can lead to sensitive information being revealed [5].

Denial-of-service (DoS) attacks are the most common type of network attack. In this
attack, the attacker tries to engage the system’s resources to deny the service to legitimate
users. It is an automated and continuous process that aimst o compromise a system
by sending a large number of bogus requests. When these requests are generated from
multiple systems, such attacks are known as distributed denial-of-service (DDoS) attacks.
In brute-force attacks, the attacker tries multiple combinations to guess the credentials.
These attacks are computationally extensive and require huge resources.

Attacks can also be categorized with respect to the origin of the attack, which can be
inside attacks or outside attacks [6]. Inside attacks are attacks initiated by an entity within
the network or organization and are commonly known as insider attacks. The insider
is an authorized user or entity that has access to system resources but uses them in an
incorrect way. Outside attacks are attacks initiated by an entity from outside the network or
organization and are commonly known as outsider attacks. An outsider is an unauthorized
user or entity that performs illegitimate actions.

Broadly, network intrusion detection is categorized into two main types: signature-
based detection and anomaly-based detection [7,8]. Static methodology is used in signature-
based detection, wherein network traffic is compared with predefined rules, whereas
anomaly-based detection is a dynamic method that consists of machine-learning-based
models to detect unwanted or malicious behavior over the network [9]. Signature-based
approaches directly define the abnormal or malicious behavior in the form of rules. In this
case, known threats can be identified very quickly and efficiently. On the other hand,
the main objective of anomaly-based approaches is to define the normal or expected behav-
ior so that any variation from normal, or unexpected behavior, can be identified. Therefore,
anomaly-based detection techniques can also detect unknown or zero-day attacks [10].
With this clear advantage, anomaly detection would be the preferred methodology among
the information security researchers [6,11].

Intrusion detection systems (IDS) serve as essential components in network defense,
providing protection against a variety of network attacks. However, the focus of previous
research has primarily been on improving the accuracy of IDS while relatively overlooking
the crucial aspect of efficiency with respect to time. This oversight limits the effectiveness
of IDS in rapidly detecting and responding to network threats.

To address this gap, we propose a multi-layered filtration framework (MLFF) for
the efficient detection of network attacks. The primary objective of our research is to
minimize detection time without compromising the accuracy of the system. By employing
statistical methods for feature reduction, the MLFF systematically reduces the number
of features needed, optimizing the efficiency of the intrusion detection process. Through
experimentation on the CIC-IDS2017 dataset, we assess the effectiveness of the proposed
framework by evaluating its accuracy, precision, recall, and F1 score, in addition to its
training time and detection time.

This paper presents an approach to systematically reduce the number of features
using statistical methods and proposes a multi-layered framework for feature reduction.
The major contributions of this paper are summarized below:

• It provides a multi-layered filtration framework for feature reduction to systematically
reduce the number of features using statistical methods.

• It provides a mechanism to effectively reduce the detection time without compromis-
ing the accuracy of the detection system.

• It shows the accuracy, precision, recall, F1 score and detection time against selected
machine learning models for CIC-IDS2017.



Sensors 2023, 23, 5829 3 of 17

The rest of the paper is organized as follows. Section 2 covers the related work and
provides information about available datasets and the evaluation metrics for the detection
system. Section 3 provides the methodology and the proposed framework. Section 4
deals with the results and provides a discussion; these aspects are performed through
experiments and comparative analysis. Finally, Section 5 covers the conclusions and
recommendations for future work.

2. Related Work

Research on the detection of network attacks has been conducted using different
publicly available datasets. These datasets play a vital role in the validation of the detection
approach and are used as benchmarks [7]. The initial work of creating a dataset for
an IDS was carried out by DARPA (Defence Advanced Research Project Agency); they
generated the KDD98 (Knowledge Discovery and Data Mining) dataset in 1998. This was
created by modeling a small US Air Force base network connected to the Internet. It had
41 features that were categorized as normal or abnormal [8]. This dataset plays an important
contribution in the research of IDS. However, in [12], the author criticized the accuracy and
capability of KDD98 to contemplate realistic environments. Although KDD98 had multiple
reported problems, even then, it was being used by the research community [13,14].

Ref. [15] identified numerous issues in the KDD98 dataset, due to which a new dataset
NSL-KDD was published in 2009 [16]. The dataset was created by eliminating duplicate
records to overcome issues of bias in machine learning models.

Several other IDS datasets have been created. In 2007, a dataset named CAIDA was
proposed [17]. This dataset contains network traffic of distributed denial-of-service (DDoS)
attacks. This dataset lacks attack diversity. A labeled dataset for flow-based intrusion
detection was also proposed in 2009 [18]. The dataset was based on a honeypot deployed
over the Internet to maximize exposure to attacks. In 2015, Moustafa and Slay proposed a
dataset called UNSW-NB15, which addresses the issue of the unavailability of a network
benchmark dataset [19]. The dataset was generated by simulating network attacks and
suggesting nine different attack families.

Multiple datasets were reviewed, and in [20], the author proposed 11 characteristics
to evaluate a dataset. On the basis of these 11 characteristics, the Canadian Institute for
Cybersecurity (CIC) released a dataset called CIC-IDS2017 [21]. The CIC-IDS2017 dataset
is now widely being used among security researchers[22–27].

Multiple techniques were combined by Yulianto et al. [28] to improve the performance
of IDS using the CICIDS-2017 dataset. The hybrid feature selection method was used by
Tama et al. [29] and reduced the number of features to 37 with an accuracy of 96.46%.

Gupta et al. [30] suggested that the class imbalance problem can be tackled with
the help of ensemble algorithms. Deep neural network, eXtreme gradient boosting, and
random forest algorithms were used in three different stages and achieved an accuracy of
92% for the CICIDS-2017 dataset. Doaa et al. [31] also worked on feature reduction along
with ensemble learning techniques. The results show 99% accuracy with 30 features from
the CICIDS-2017 dataset.

A context-aware feature extraction method was proposed by Shams et al. [32] for
convolutional neural networks (CNN); these authors concluded that CNNs showed better
results as compared to an ordinary neural network. Birnur et al. [33] proposed an approach
using optimal feature selection and finding multivariate outliers for the improvement of
the performance of an IDS. The NSL-KDD dataset was used for experiments.

In [34], the author proposed a hybrid optimization scheme to improve the rate of
precision in the detection of an intrusion. Qureshi et al. [35] proposed a transfer learning
technique to train deep neural networks. The original and extracted features were combined
to improve the performance of an intrusion detection system.

Venkatesan et al. [36] suggested a model for intrusion detection and worked on feature
selection using a modeling approach. Similarly, in [37,38], the authors worked on reducing
the number of network parameters, resulting in decreased time and cost



Sensors 2023, 23, 5829 4 of 17

In [39], dimensionality reduction was carried out using PCA, and subsequently, SVM
was employed for the detection of DDoS attacks in SDN. Ref. [40] also worked on SDN and
proposed an allocation-based approach using a multi-criteria decision-making (MCDM)
strategy for a multi-domain SDN-enabled IoT network.

In [41], the authors proposed a detection framework based on 16 features for DDoS
attack detections. However, this method was not designed to cater to imbalanced data.
Yi et al. [42] proposed a multi-objective evolutionary convolutional neural network for an
IDS. However, these authors’ results show that the detection performance was affected by
the use of very few neurons and layers.

Although much work has been conducted using the available datasets for intrusion
detection systems, the major focus remains on the improvement of the accuracy of the
detection. In addition to the accuracy, the detection time is also an important factor,
especially in the case of AIDS deployed in an inline mode. Our main focus is to propose a
framework for feature reduction to effectively reduce the detection time without affecting
the accuracy of the system.

Evaluation Metrics

A confusion matrix is used to evaluate the performance of an intrusion detection
system. Table 1 shows a confusion matrix for a binary class classifier.

Table 1. Confusion Matrix.

Predicted Class

Attack Normal
Actual Class Attack TP FN

Normal FP TN

True positives (TP) represent the number of attacks that are correctly predicted as
attacks, and true negatives (TN) represent the number of normal events or instances that are
correctly predicted as normal behavior. False positives (FP) represent the number of normal
instances that are incorrectly predicted as attacks, and false negatives (FN) represent the
number of attacks that are incorrectly classified as a normal instance. In a good detection
system, TP and TN should remain high, and FP and FN should remain low [43].

The accuracy, precision, recall, and F1-score are the performance metrics used to
evaluate intrusion detection systems. They are derived from the information given in the
confusion matrix and calculated as per the following formulas [7]:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (1)

Precision =
TP

TP + FP
× 100 (2)

Recall =
TP

TP + FN
× 100 (3)

F1Score =
Precision ∗ Recall
Precision + Recall

× 2 (4)

Accuracy measure how accurate the detection system is at detecting normal and attack
traffic. It is the percentage of all correctly predicted instances against all instances. Precision
is the accuracy of positive predictions. Recall is the measure of the true-positive rate and
is also called the detection rate or sensitivity. F1 score is the harmonic mean of precision
and recall. In addition to these performance metrics, we also calculated the training time
and the detection time and compared these values against different ML and DL models.
In the case of an intrusion detection system, the training time is not considered a very
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important factor as the model is trained only once. However, the detection time is of prime
importance with respect to an intrusion detection system. Both the training time and the
detection time are calculated using the formulas below. Table 2 shows a list of notations
and their explanations.

TrainingTime = TrEndTime− TrStartTime (5)

DetectionTime = PrEndTime− PrStartTime (6)

Table 2. List of notations and their explanations.

Notations Explanaiton

TP True positive
TN True negative
FP False positive
FN False negative
Ho Null hypothesis
Ha Alternate hypothesis
t Calculated value of test statistic
r Correlation coefficient
n Sample size

d Difference between the two ranks of
each observation

R Coefficient of determination
TrstartTime Time when training starts
TrEndTime Time when training ends
PrstartTime Time when testing/prediction starts
PrEndTime Time when testing/prediction ends

3. Methodology

The dataset CICIDS2017 was selected as it has been widely used among the research
ca ommunity and is also publically available. The dataset was generated on a real network
that contained an attacker network and victim network. On the attacker side, four machines
were connected, having Kali and Windows 8.1 operating systems. The victim side was
protected with a firewall and contained multiple machines with Windows, Linux, and
Macintosh operating systems. Multiple services, including domain controller and domain
name system (DNS), were also running on the servers so that an attacker could perform
real attacks [21]. Almost 50 GB of captured traffic in PCAP files were provided. Along
with PCAP files, 8 CSV files were also provided, along with a set of 84 features and a label.
The dataset consisted of a total of 15 classes. One of the classes was related to “benign” or
normal traffic, and the other 14 corresponded to different “attack” classes. These attack
classes were DDoS, Portscan, Bot, Infiltration, Web Attack Brute Force, Web Attack XSS,
Web Attack SqlInjection, FTP-Pataor, SSH-Patator, DoS Slowloris, DoS SlowHttp, DoS Hulk,
DoS Goldeneye, and Heartbleed.

3.1. Proposed Framework Architecture

The proposed multi-layered filtration framework (MLFF) for attack detection is demon-
strated in Figure 1. It consists of multiple phases of preprocessing, three layers of feature
reduction, the creation of the final dataset, training models on a training dataset, and
validating the results on a test dataset.



Sensors 2023, 23, 5829 6 of 17

Figure 1. Proposed Framework Architecture.

3.1.1. Merge

As a first step, the 8 CSV files were merged together in order to create a single file that
contained the traffic from all classes. This combined dataset was generated from 8 files that
were collected from traffic captured from Monday to Friday. A total of 2,520,798 instances
were created. Table 3 shows the complete distribution of data among the classes.

Table 3. Distribution among Classes.

Label Instances

BENIGN 2,095,057
DoS Hulk 172,846

DDoS 128,014
PortScan 90,694

DoS Goldeneye 10,286
FTP-Pataor 5931

DoS Slowloris 5385
DoS SlowHttp 5228
SSH-Patator 3219

Bot 1948
Web Attack Brute-Force 1470

Web Attack XSS 652
Infiltration 36

Web Attack SqlInjection 21
Heartbleed 11

3.1.2. Cleaning

After that, the dataset was cleaned from NaN (missing) and infinity values; duplicate
values and white spaces were also checked and removed.
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3.1.3. Reducing the Imbalance Problem

The results clearly show that the dataset is huge and highly imbalanced. Applying
a machine learning model directly may lead to inefficiencies. To overcome the problem
of imbalanced data, instances from 4 classes (i.e. Benign, DoS Hulk, DDoS, and Portscan)
were removed using the Pandas dataframe.sample method, which returns random samples
according to the specified percentage. A total of 31,213 rows were removed because of
duplication. After that, a total of 207,908 instances were retained in the dataset. The
distribution of these instances among 15 classes is shown in Figure 2.

Figure 2. Final dataset distribution.

3.1.4. Filter-1

The first filter was a manual filter in which features were dropped on the basis of
domain knowledge. Some features are purely environment-dependent; for example, an IP
address can be changed according to the network configurations. Similarly, port numbers
can also vary in different scenarios. When the sender wants to communicate with the
receiver, it uses a random port number as a source port. Therefore, it is necessary to
eliminate such features. If we train our model without removing these features, the model
may perform well on test data; however, it will not achieve paramount results in real-
world networks.

A total of 83 features and a label are present in the dataset, and of them only 6 features,
which were named FlowID, Source IP, Source Port, Destination IP, Destination Port, and
Timestamp, were totally dependent on the architecture and the time of the test performed.
Therefore, these features were removed from the dataset, and 77 features were left. Table 4
shows the names of the feature dropped in the first layer.

Table 4. Features dropped in the first layer.

S. No. Feature Name

1 FlowID
2 Source IP
3 Source Port
4 Destination IP
5 Destination Port
6 Timestamp

3.1.5. Filter-2

The main objective of our study is to minimize the detection time while maintaining
accuracy so that the framework can be used in real networks. In this layer, first, we
identified the insignificant features, and then, we dropped these features from the dataset.
Therefore, in order to identify the insignificant features, a statistical approach of testing
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the significance using the p-value method was adopted [44]. That is, we wished to test the
hypotheses as follows:

Null Hypothesis H0 : p = 0 (insigni f icant) (7)

Alternate Hypothesis Ha : p 6= 0 (insigni f icant) (8)

The significance of correlation coefficients can be checked with the help of a t-test [45].
In general, we tested the degree of the deviation of the correlation coefficient from zero.

t =
r
√

n− 2
1− r2 (9)

Here, r is the correlation coefficient calculated from the sample, and n is the sample
size. With t and the sample size, we can calculate the p value. If the p value is greater or
equal to the significance level, which was set to an alpha equal to 0.025 in our case, we
retain the null hypothesis and conclude that the variable is insignificant. If the p value
is less than an alpha of 0.025, the null hypothesis is rejected, and we conclude that the
variable is significant. Thus, we will not drop it [46].

Because, in our case, the relationship among the features is non-linear, Spearman’s
rank correlation coefficient method [47] was used to find the value of r.

rs = 1− 6 ∑ d2

n(n2 − 1)
(10)

where,
d = rank X− rank Y (11)

The results show that 13 features are insignificant and can be dropped because they
do not contribute to the learning of the model. After this test, the number of features was
reduced to 64. Table 5 shows the names of the features dropped in the second layer.

Table 5. Features dropped in the second layer.

S. No Feature Name

1 Fwd Packet Length Mean
2 Bwd PSH Flags
3 Fwd URG Flags
4 Bwd URG Flags
5 CWE Flag Count
6 Avg Fwd Segment Size
7 Fwd Avg Bytes/Bulk
8 Fwd Avg Packets/Bulk
9 Fwd Avg Bulk Rate
10 Bwd Avg Bytes/Bulk
11 Bwd Avg Packets/Bulk
12 Bwd Avg Bulk Rate
13 Idle Std

3.1.6. Filter-3

The main objective of this filter is to test whether independent variables in a model are
correlated among themselves. During this test, we found and removed those independent
variables that were highly correlated to avoid the problem of overfitting the model. We
selected the variation inflation factor (VIF) method for the detection of multicollinear-
ity [48,49] among independent variables and also calculated the tolerance rate.

VIF =
1

1− R2 (12)
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Tolerance = 1− R2 (13)

Here, R2 is the coefficient of determination, which indicates the amount of proportional
change in the dependent variable due to the change in the independent variable.

In this case, we selected variables one by one, calculated the VIF against the included
variables in a model, ran tests for multicollinearity, and kept the variables that have VIF
less than 5. After completing the test iteration, 38 variables were dropped because of their
high collinearity with others.

3.1.7. Dataset after Filtration

After passing the parameters through the filtration framework, a new dataset was
created with only 26 selected parameters. The dataset was split into training and test data
with a ratio of 70/30. The models were trained with training data and evaluated on test
data. The training time and the detection time were also recorded against the selected ML
models.

4. Results and Discussion

This section describes the results obtained after the implementation of a multi-layered
feature reduction framework. All the implementation was carried out in Python on Jupyter
Notebook (Anaconda3). A Dell OptiPlex 7060 PC with an Intel Core i7-7800 CPU@ 3.40 GHz
with 32 GB RAM was used to conduct the experiment.

4.1. Selected Parameters

The final selected parameters, variance inflation factor (VIF), and tolerance against
each selected feature are shown in Table 6. Among 26 selected parameters, packet length is
identified as an important parameter as usually, attack traffic consists of irregular packet
length. Flow bytes/s is the packet flow per second. The time between two packets in a flow
in a forward and backward direction is also considered an important parameter. Moreover,
the number of packets per second in both directions is also selected.

Table 6. Names of the selected feature.

S. No Feature Name VIF Tolerance

1 Fwd Packet Length Min 1.381 0.724
2 Fwd Packet Length Std 1.145 0.872
3 Bwd Packet Length Min 2.048 0.488
4 Flow Bytes/s 1.078 0.927
5 Flow IAT Min 1.487 0.672
6 Fwd IAT Min 1.927 0.518
7 Bwd IAT Total 3.210 0.311
8 Bwd IAT Std 3.440 0.290
9 Fwd Packets/s 1.161 0.860
10 Bwd Packets/s 1.090 0.917
11 Min Packet Length 2.256 0.443
12 Packet Length Variance 1.350 0.740
13 FIN Flag Count 2.027 0.493
14 SYN Flag Count 1.335 0.748
15 ACK Flag Count 3.256 0.307
16 URG Flag Count 1.731 0.577
17 ECE Flag Count 1.000 0.999
18 Down/Up Ratio 1.625 0.615
19 Subflow Fwd Bytes 1.093 0.914
20 Subflow Bwd Bytes 1.064 0.939
21 Init Win bytes forward 1.916 0.521
22 Init Win bytes backward 1.098 0.910
23 min seg size forward 1.383 0.72
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Table 6. Cont.

S. No Feature Name VIF Tolerance

24 Active Mean 1.266 0.789
25 Active Std 1.394 0.717
26 Idle Min 2.522 0.396

There are different types of flags in a packet header. Each flag has a distinct role in
communication. Attackers manipulate the value of these flags to launch attack traffic. The
SYN flag is used to initiate a TCP connection. ACK is used to recognize the successful
delivery of a packet. The URG flag is used to prioritize the packet. The FIN flag specifies
the end of a TCP session. ECE is used to send the congestion indication. The value of these
flags and the total number of bytes in both the forward and backward directions sent in an
initial window are also selected for the model.

The active mean is the mean time for which the flow remains active, and active std is
the standard deviation time before the flow becomes idle. Idle Min is the minimum time
a flow remains idle before going active. All these parameters contributed to the efficient
detection of network attacks.

4.2. Comparison of Results

The main focus of our research is to develop an efficient attack detection system that
maintains a high detection rate with a minimum detection time. In this paper, we have
calculated the accuracy, precision, recall and F1-score along with the training time and
detection time against the selected machine learning models. We compared the results with
the findings presented by [24]. The results are also compared with the findings of other
researchers and are shown in Table 7.

Table 7. Comparison of results of the proposed framework and previous studies.

Solution Model Accuracy Precision Recall F1-Score
Training

Time
(Seconds)

Detection
Time

(Seconds)

Proposed
DT 0.9927 0.9927 0.9927 0.9927 1.02 0.02
RF 0.9942 0.9938 0.9942 0.9939 13.7 0.78

SVM 0.8911 0.8886 0.8911 0.8812 914 201
NB 0.3614 0.7070 0.3614 0.3218 0.56 0.21

KNN 0.9795 0.9795 0.9795 0.9795 0.13 91.3
LR 0.8184 0.8053 0.8184 0.8041 100 0.01

ANN 0.9815 0.9824 0.9815 0.9816 84.6 0.03

[24]
DT 0.9949 0.9943 0.9949 0.9942 1.23 1.12
RF 0.9930 0.9909 0.9930 0.9912 9.38 6.76

SVM 0.7521 0.9916 0.7521 0.7660 343 33.1
NB 0.9886 0.9901 0.9886 0.9885 1.07 0.15

KNN 0.9952 0.9949 0.9952 0.9949 11.13 7.92
ANN 0.9928 0.9937 0.9928 0.9917 53.78 48.03

[21]
KNN - 0.96 0.96 0.96 - -

RF - 0.98 0.97 0.97 - -
ANN - 0.98 0.98 0.98 - -

[25] CNN + GRU 0.9017 0.9234 0.9124 0.9205 741 17.3

[26] RF - 0.9572 0.9458 0.9415 -
DBN + SVM - 0.9774 0.9767 0.9768 - -

[27] RF +
AutoEncoder - - - 0.9950 - -



Sensors 2023, 23, 5829 11 of 17

Table 7. Cont.

Solution Model Accuracy Precision Recall F-1 Score
Training

Time
(Seconds)

Detection
Time

(Seconds)

[28] AdaBoost +
SMOTE 0.8147 0.8169 0.9576 0.8817 - -

[30] CSE-IDS 0.92 - - - 274 0.005

[31] RF+NB+KNN+SVM 0.997 - - - - -

[32] CAFE-CNN 0.992 - - - - -

[42] MECNN 0.997 0.991 0.791 83.31 - -

Figure 3 shows the accuracy and detection time of the proposed framework against
selected models. As our main focus is on the reduction of detection time, the results show
that in the case of the decision tree (DT) model, the detection time is 0.02 s, as compared
to 1.12 s in [24]. Additionally, we still manage to maintain an accuracy of 99.27% as
compared to 99.49% in [24]. In addition, random forest (RF) also produces 99.42% accuracy
as compared to 99.30% in [24]. The detection time of random forest is calculated as 0.78 s as
compared to 6.76 s in [24]. The results of the artificial neural network (ANN) show 98.15%
accuracy, which is a little less as compared to 99.28% in [24]. However, the detection time
has been significantly reduced, from 48.03 s [24] to 0.03 s.

Figure 3. Models with accuracy and detection time of proposed framework.

The results of a K-nearest neighbor (K-NN) classifier show an accuracy of 97.95%, but
the detection time is 91.3 s, which makes it impractical for use in an intrusion detection
system. Similarly, a support-vector machine (SVM) architecture has a detection time of
201 s, which is also considerably high. The detection time in the case of logistic regression
(LR) is very low, at only 0.01 s, but the accuracy is 81.84%. The naïve Bayes (NB) classifier
shows an accuracy of only 36.14% with a detection time of 0.21 s. The results clearly show
that in our approach, the random forest classifier gives better accuracy with less detection
time, and the decision tree classifier gives almost the same accuracy with significantly less
detection time.

As the RF model outperforms all others, the confusion matrix for the random forest
model is shown in Figure 4. We can observe that Web Attack Brute-Force and Web Attack
XSS have many false positives and false negatives in common. This is due to the high
degree of similarity between these attacks.
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Figure 4. Confusion matrix for random forest model.

We have also calculated the accuracy over 2, 5, 7, and 10 folds of cross-validation for
our top 3 models, i.e., decision tree, random forest, and ANN. The results of the average
accuracy against each fold are shown in Figure 5. The results show that the decision tree
and random forest models perform better with 10-fold cross-validation, and the ANN
performs best with 2-fold cross-validation. However, after the analysis of the results of
both holdout and cross-validation, it is clear that holdout validation gives better results.
The CIC-IDS2017 dataset used in our experiments is a relatively large dataset with a
substantial number of samples. This allowed us to split the dataset into separate training
and testing sets, ensuring a sufficient amount of data for model training and evaluation.
Additionally, our focus was primarily on reducing detection time without compromising
accuracy, and holdout validation provided a straightforward and efficient way to assess
these metrics. This allowed us to directly compare our results with existing benchmarks
and demonstrate the effectiveness of our proposed multi-layered filtration framework
(MLFF).
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Figure 5. Results of different folds of cross-validation.

4.3. Ablation Study

Our proposed multi-layered filtration framework consists of three essential filters:
filter 1 (F1), filter 2 (F2), and filter 3 (F3). In this subsection, we carry out an ablation study
to validate their effectiveness by removing or changing the order of these filters. F1 is a
mandatory filter and cannot be removed because it is based on environmental parameters,
as discussed earlier. However, F2 and F3 can be reordered or removed one by one. Table 8
shows a comparison of the results obtained from this process. For this ablation study, we
only selected the random forest ML algorithm because the results in Table 7 clearly show
that RF outperforms all other models with respect to accuracy and time.

Table 8. Comparison of the proposed framework with different filters.

Filters Number of Features Accuracy Detection Time (s)

F1 77 99.29 1.50
F1 + F2 64 99.30 0.99
F1 + F3 28 99.40 0.82

F1 + F2 + F3 26 99.42 0.78
F1 + F3 + F2 26 99.39 0.79

From Figure 6, we can see that each proposed filter plays an important part in reducing
the number of features and improving the performance in terms of accuracy and detection
time. Furthermore, it can be clearly observed that the best performance is achieved when
all three filters are used altogether in the sequence proposed in the multi-layered filtration
framework (MLFF).

Using the proposed framework, we managed to maintain a high detection rate while
ensuring the minimum detection time by reducing the selected parameters. However, this
approach has its own limitations; for example, in the case of high traffic volume, the system
cannot be used at an adequate speed. Additionally, this study only focuses on the network
attacks used in the CICIDS2017 dataset
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Figure 6. Number of Features and Detection Time against a combination of different filters.

5. Conclusions

This paper proposed a multi-layered filtration framework (MLFF) for the efficient
detection of network attacks. Using this framework, the number of features were systemat-
ically reduced without compromising the performance of the intrusion detection system.
The main aim of this paper is to minimize the detection time without affecting the accuracy
of the system. The proposed framework contains three filters that are connected in such a
way that the output of the first filter becomes the input of the second filter and the output
of the second filter becomes the input of the third filter. A total of 26 features were selected
out of 83 features. The model was trained using only the selected features, and detection
was performed on the test data. The accuracy, precision, recall, and F1-score, along with
the training time and detection time, were calculated against the selected machine learning
models. The results were compared with the available benchmarks and demonstrated a
significant improvement after the implementation of the proposed framework.

Random forest (RF) produced 99.42% accuracy, and the detection time was calculated
as 0.78 s. The results clearly showed that random forest outperformed all other models.
In addition, the decision tree model and artificial neural networks also performed well.
The experiment showed that the detection time was reduced significantly without compro-
mising the accuracy of the system. Because we have managed to reduce the detection time,
the proposed framework can be deployed in intrusion detection systems running in real
networks.

In order to further enhance the accuracy and timing of the proposed multi-layered
filtration framework (MLFF) for the efficient detection of network attacks, future research
can focus on leveraging advanced datasets, i.e., cicids2018, to optimize the model. Firstly,
expanding the scope of the attack spectrum by incorporating additional attacks from
multiple layers would be a valuable direction. By including a wider range of attack
types and techniques, the MLFF can improve its ability to detect sophisticated and multi-
faceted attacks.

Secondly, future work should explore the utilization of increased computing resources
to boost the performance of the MLFF. More powerful hardware, such as high-performance
servers or specialized processing units, can significantly accelerate the training and detec-
tion processes. This would result in reduced detection times and enable near-real-time
analysis of network traffic data. Additionally, the integration of multiple detection frame-
works into a centralized security information event management system will improve the
security echo system.
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