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Abstract: Accurate equipment operation trend prediction plays an important role in ensuring the
safe operation of equipment and reducing maintenance costs. Therefore, monitoring the equipment
vibration and predicting the time series of the vibration trend is one of the effective means to
prevent equipment failures. In order to reduce the error of equipment operation trend prediction,
this paper proposes a method for equipment operation trend prediction based on a combination
of signal decomposition and an Informer prediction model. Aiming at the problem of high noise
in vibration signals, which makes it difficult to obtain intrinsic characteristics when directly
using raw data for prediction, the original signal is decomposed once using the variational mode
decomposition (VMD) algorithm optimized by the improved sparrow search algorithm (ISSA) to
obtain the intrinsic mode function (IMF) for different frequencies and calculate the fuzzy entropy.
The improved adaptive white noise complete set empirical mode decomposition (ICEEMDAN) is
used to decompose the components with the largest fuzzy entropy to obtain a series of intrinsic
mode components, fully combining the advantages of the Informer model in processing long time
series, and predict equipment operation trend data. Input all subsequences into the Informer
model and reconstruct the results to obtain the predicted results. The experimental results indicate
that the proposed method can effectively improve the accuracy of equipment operation trend
prediction compared to other models.

Keywords: equipment operation trend prediction; variational mode decomposition; ICEEMDAN;
quadratic decomposition; informer

1. Introduction

For public buildings, structural safety is the most important goal in the implementation
process of various construction projects. Temporary structures such as work platforms
and load-bearing support systems directly affect the construction safety of super high-rise
buildings. Scaffolding, as the “heart” of various major building systems, plays an overall
role in various major events and construction fields. Once the performance of the scaffold
deteriorates it not only seriously affects task execution and production efficiency, but also
leads to malignant events, resulting in incalculable losses. Therefore, the safety and stability
of temporary frames have attracted much attention. Due to the relatively complex operating
environment of the temporary frame, the performance of the parts will gradually age over
time, and extreme weather conditions and human factors can also have a certain degree
of impact on the parts. Therefore, the equipment is prone to failure, and this failure may
be random. However, with the continuous improvement of equipment operation process
requirements and increasing maintenance costs, traditional equipment operation trend
prediction methods based on timeliness and low accuracy have been unable to meet the
needs of effective equipment maintenance and risk avoidance.

Based on the above requirements, researchers conducted research on equipment op-
eration trend prediction. The main prediction of mechanical equipment operating trends
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models includes mathematical models and deep learning models [1–3]. Mathematical
models such as wavelet packet decomposition [4], auto-regressive integrated moving
average model [5] and empirical mode decomposition [6], show poor predictive ability
when dealing with large samples and long time series [7]. Dragomiretskiy et al. [8]
proposed a completely non-recursive variational mode decomposition (VMD) method,
which is more robust to sampling and noise, and has better results in decomposing
complex signals. However, the number of modes can affect the decomposition accuracy.
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN),
proposed by Torres et al. [9], added Gaussian noise to the residual and averaged it multiple
times to offset the noise. The decomposed components can be added to obtain the original
signal. Colominas et al. [10] proposed ICEEMDAN (Improved complete extensible EMD),
which solves the problems of residual noise and pseudo modes in CEEMDAN.

In recent years, the powerful feature extraction ability of deep learning has attracted the
attention of researchers, making it widely used in the prediction of mechanical equipment
operating trends. Recurrent neural networks can simultaneously model sequential and
time dependencies on multiple scales [11]. However, RNN has the same feature extraction
ability for all inputs when processing time series. As time increases, RNN will have a
problem of decreasing or even disappearing the gradient, resulting in RNN having only
short-term memory and not being able to learn well the long-term dependencies of temporal
data. The Transformer model was proposed by Vaswani et al. [12], whose core principle
is the self-attention mechanism. Compared to the RNN model, the Transformer model
exhibits superior performance in capturing remote dependencies. However, Transformer’s
self-attention mechanism standardizes the dot product computing method, resulting in a
large amount of memory and computing resources required for the computing process,
greatly increasing the operating cost [13]. The ProbSparse self-attention mechanism was
proposed to improve the Transformer model and achieve good results in predicting long
series data [14]. The Informer model solved the limitations of Transformer in processing
long time series, greatly reducing the time complexity and memory usage of each layer.
Informer uses a generative decoder to obtain long sequence output, requiring only one
forward step to output the entire decoded sequence, while avoiding cumulative error
propagation during inference.

The main contributions of this paper are summarized as follows:

1. We propose a novel and effective signal decomposition approach for equipment oper-
ation trend prediction. In order to solve the problem of difficulty in determining the
number of signal decomposition algorithms, an improved sparrow search algorithm
optimization decomposition algorithm was proposed.

2. The fuzzy entropy scale of the signal after one decomposition is taken into account
by us. A signal decomposition algorithm for VMD-ICEEMDAN quadratic decom-
position was constructed by decomposing the component with the highest fuzzy
entropy using ICEEMDAN.

3. We innovatively combine the VMD-ICEEMDAN model and the Informer approach,
and a novel equipment running trend prediction approach is proposed to improve
the prediction results. Through a large number of comparative experiments, it has
been proven that the method proposed in this paper is indeed efficient.

2. Related Work

It is well known that the trend prediction of equipment operation is a time series
prediction problem. Many time series prediction models are based on two strategies:

1. Deep learning models. In Guo et al. [15], a Recurrent Neural Network (RNN) based
health indicator was proposed to predict the RUL of bearings. RNN can mine temporal
and semantic information from time series. In Qin et al. [16], the root mean square at
different times was used as the health indicator, and a new kind of gated recurrent
unit (GRU) neural network with dual attention gates was used to predict the trend
of achieving health indicators. Still, the error will gradually increase under transient
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(nonstationary) operating conditions. A novel feature-attention-based end-to-end
approach was proposed for RUL prediction by Liu et al. [17]. Convolutional neural
networks (CNN) are applied to capture local features from the output sequences
of BGRU, but the prediction performance needs to be improved. Yang, et al. [18]
introduced Informer into the time series forecasting of motor bearing vibration, which
reduced the error accumulation in forecasting.

2. The combination of signal decomposition and deep learning models. Nowadays,
very few studies use only one of the linear, nonlinear, wavelet transform, or other
mathematical models for trend prediction of equipment. The majority of research
incorporates machine learning or deep learning models. In Wang et al. [19], a novel
method of rubbing fault diagnosis based on variational mode decomposition (VMD)
was proposed, which could non-recursively decompose a multi-component signal
into a number of quasi-orthogonal intrinsic mode functions. The fault separation
upon the principles of empirical mode decomposition (EMD), envelope analysis and
the pseudo-fault signal was built by Singh, and Zhao [20], which solved the mode
mixing problem inherent in EMD. Qiu et al. [21] used EMD to decompose the power
load series to obtain a series of intrinsic mode functions and then used deep belief
networks to predict the intrinsic mode functions. Liang et al. [22] used ICEEMDAN
to decompose the original series into different levels of components and then used
a network composed of short-term and short-term memory, convolutional neural
networks, and convolutional attention modules (LSTM-CNN-CBAM) to predict all
components, proving that the decomposed time series components are superior to the
undissociated time series components in terms of model prediction accuracy.

At present, most research does not consider both the impact of the volatility of time
series and the limitations of prediction models, so it cannot be applied well to the ma-
chinery industry. Above all, the trend prediction model of equipment based on Signal
decomposition and Informer is proposed in this paper. The combined model is composed of
Variational Mode Decomposition (VMD) and Improved adaptive white noise complete set
empirical mode decomposition (ICEEMDAN) and Informer. VMD is used for decomposing
the complex original sequence into a series of low-complexity and different-frequency
subsequences. Moreover, the fuzzy entropy of the subsequence is calculated. ICEEMDAN
is applied in decomposing the subsequence with the largest fuzzy entropy named IMF_M
to generate a series of new intrinsic mode functions. The cross-correlation coefficient of
the new intrinsic mode functions and the IMF_M are calculated to eliminate irrelevant
components, and all the remaining components are utilized to train and test the Informer
model for trend prediction. The obtained results are reconstructed to obtain the final
prediction result.

3. Methodology
3.1. VMD and Its Improvement

Variational mode decomposition (VMD) extracts the signal by using the idea of solving
a variational problem to decompose an original signal into multiple signals with different
center frequencies and without losing the characteristics of the original signal so that the
effective separation of the frequency domain part and components of the signal can be
achieved adaptively.

The VMD algorithm to decompose the signal can be understood as the construc-
tion and solution of the variational problem. VMD calculation equations are shown in
Equations (1)–(6) [23,24]:

min
{νk},{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δt +

j
πt

)
∗ νk(t)

]
e−jwkt

∥∥∥2

2

}
s.t.

K
∑

k=1
νk = s(t)

(1)
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L({vk}, {ωk}, τ) := α∑
k
‖∂t

[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jωkt‖

2
+ ‖s(t)−∑

k
vk(t)‖

2
+

〈
τ(t), s(t)−∑

k
vk(t)

〉
(2)

_
υ

n+1
k (ω) =

_
s (ω)−∑i 6=k

_
υ i(ω) +

_
τ (ω)/2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω

∣∣∣υn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣υn+1
k (ω)

∣∣∣2dω

(4)

_
τ

n+1
(ω) =

_
τ

n
(ω) + τ

(
_
s (ω)−∑

k

_
υ

n+1
k (ω)

)
(5)

∑
k

∥∥∥∥_υ n+1
k −_

υ
n
k

∥∥∥∥2

2

/∥∥∥_υ n
k

∥∥∥2

2
< ε (6)

Equations (1)–(6) are the equations for decomposing the equipment operating data
of traditional VMD, where s(t) is the original component, K is the number of decomposi-
tions, {vk} = {v1, · · · , vk} represents the decomposed IMF component,
{wk} = {w1, · · · , wk} represents the central frequency of each component, α represents
the penalty factor, τ(t) is the Lagrange multiplier operator, ω is the Frequency,

_
s (ω)

is the Fourier transform of the signal s(t),
_
υ

n+1
k (ω),

_
s (ω) and

_
τ (ω) are the Fourier

transforms to
_
v

n
k (t), s(t), τ(t), respectively.

The VMD decomposition process is the process of solving this variational problem,
i.e., solving the modal function and the central frequency when the sum of the estimated
bandwidths of the central frequencies of the components is minimized.

Assuming that the multi-component signal is decomposed into K modal components
of finite bandwidth and the constraint is that the modal sum is equal to the input signal, the
constrained variational expression is constructed as shown in Equation (1). The complete
algorithm for VMD is summarized in Algorithm 1.

Algorithm 1: VMD

Initialize
{
_
v

1
k

}
,
{
_
w

1
k

}
,
{
_
τ

1
k

}
, n→ 0

Repeat
n→ n + 1

For k = 1 : K do

Update
_
v k for all w ≥ 0:

_
υ

n+1
k (ω)− >

_
s (ω)−∑i 6=k

_
υ i(ω)+

_
τ (ω)/2

1+2α(ω−ωk)
2

Update wk: ωn+1
k − >

∫ ∞
0 ω|υn+1

k (ω)|2dω∫ ∞
0 |υn+1

k (ω)|2dω

end for

Dual ascent for all w ≥ 0:
_
τ

n+1
(ω)− >

_
τ

n
(ω) + τ

(
_
s (ω)−∑

k

_
υ

n+1
k (ω)

)
until convergence: ∑

k

∥∥∥∥_υ n+1
k −_

υ
n
k

∥∥∥∥2

2

/∥∥∥_υ n
k

∥∥∥2

2
< ε

In the actual equipment operation scenario, the parameters of VMD must be deter-
mined, such as the number of decompositions and penalty factor. If the set K is less than the
number of useful components in the signal to be decomposed, it leads to modal aliasing; if
the set K is greater than the number of useful components in the signal to be decomposed, it
leads to the generation of some useless spurious components. Therefore, the determination
of the K value is very important for VMD. The penalty factor α determines the bandwidth
of the IMF component. The smaller the penalty factor, the larger the bandwidth of each
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IMF component, making some components contain other component signals; the larger the
value of α, the smaller the bandwidth of each IMF component, making some signals lost in
the decomposed signal. These problems make it difficult to determine the parameters of
the decomposition algorithm.

In Zhang et al. [25], the parameter-adaptive VMD method based on the grasshop-
per optimization algorithm (GOA) was proposed to analyze vibration signals from
rotating machinery. The global optimization performance of GOA was demonstrated
by Shahrzad et al. [26] and had been used for the parameter optimization of various
algorithms because of its being simple and efficient. However, the researchers found
that the population diversity and convergence accuracy of the algorithm need to be
increased and improved. In Qin et al. [27], the sparrow search algorithm and the VMD
method are combined to decompose the original data, so that the decomposition results
are more rapid and accurate. However, the performance of the sparrow search algorithm
will degrade rapidly when the optimal solution of the problem to be solved is far from
the origin.

In summary, this paper proposes an improved sparrow search algorithm (ISSA) to
optimize the VMD algorithm. The basic sparrow algorithm uses a random initialization
method to generate the initial population when solving the optimal solution problem,
which may produce the problem of uneven distribution of the initial sparrow population,
resulting in poor diversity of the sparrow population. In order to enrich the diversity of the
sparrow population, the Fuch chaos mapping model is introduced to generate a diverse
chaotic initialized sparrow population by using the characteristics of Fuch chaos mapping
which has a better iteration speed and produces a uniformly distributed chaotic sequence
between [0, 1]. Fuch chaotic mapping expression as Equation (7). With a limited number
of iterations, the producer’s moving range will gradually shrink, making the algorithm’s
global search ability decrease. To address this problem, this paper introduces the positive
cosine algorithm to dynamically adjust the producer’s location formula to balance the
two processes of global expansion and local optimization, so that SSA has stronger global
exploitation capability in the early stage and stronger small-range search capability in the
later stage. The improved explorer position update formula is shown in Equation (8), where
t represents the number of current iterations, and Xi,j denotes the position information
of the ith sparrow in the jth dimension. R2(R2 ∈ (0, 1]) and ST(ST ∈ (0.5, 1]) denote the
warning value and the safety value, respectively. In the process of finding the optimal
solution, Levy flight can not only perform a local search in short distances but also a
global search in long distances. Therefore, Levy flight can serve to enhance the local search
ability when searching near the optimum, effectively solving the problem that standard
SSA may fall into local optimum. The improved follower position equation and Levy
flight step equation are shown in Equations (9) and (10), where XP is the optimal position
currently occupied by the discoverer and Xworst indicates the current global worst position.
A denotes a 1 × d matrix where each element is randomly assigned a value of 1 or −1 and
A+ = AT(AAT)−1. The specific algorithm flow is shown in Figure 1.

Xn+1 = cos
(

1/X2
n

)
(7)

Xt+1
i,j =


Xt

i,j + r1 · sin(r2)×
∣∣∣r3 · xt

best − Xt
i,j

∣∣∣ i f R2 < ST

Xt
i,j + r1 · cos(r2)×

∣∣∣r3 · xt
best − Xt

i,j

∣∣∣ i f R2 ≥ ST
(8)

Xt+1
i,j =

Q · exp
(

Xt
worst−Xt

i,j
i2

)
i f i > n/2

Xt+1
P + s ·

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L otherwise
(9)

s = µ/|β|1/β , 0 < β ≤ 2 (10)
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3.2. ICEEMDAN

Improved adaptive white noise complete set empirical mode decomposition (ICEEM-
DAN) is developed from the adaptive noise complete ensemble empirical mode decomposi-
tion (CEEMDAN). Unlike CEEMDAN which adds Gaussian white noise directly during the
decomposition process, ICEEMDAN adds special noise Ek

(
w(i)

)
when extracting the kth

layer IMF. That is, the kth layer IMF obtained after the Gaussian white noise is decomposed
by EMD, and to obtain a unique residual, the IMF obtained by ICEEMDAN decomposition
is the difference between the existing residual signal and its local mean. The ICEEMDAN
method solves the problem of residual noise and pseudo-modalities in CEEMDAN by
reducing the useless modal components [10]. The ICEEMDAN’s algorithm is as follows:

1. Add a set of white noise w(i) to the original sequence, constructing a sequence

x(i) = x + x(i) = x + β0E
(

w(i)
)

, The first set of residuals is obtained: R1 =
(

N(x(i))
)

.

2. Calculation of the first modal component: d1 = x− R1.
3. Continue to add white noise and use local mean decomposition to calculate the second

set of residuals R1 + β1E
(

w(i)
)

. Define the second modal component d2.

d2 = R1 − R2 = R1 −
(

N
(

R1 + β1E
(

ω(i)
)))

4. Calculate the Kth residual Rk =
(

N
(

Rk−1 + βk−1E
(

w(i)
)))

and modal component
dk = Rk−1 − Rk.
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5. Until the end of the computational decomposition, all modalities and residual num-
bers are obtained.

Where x is the signal to be decomposed, Ek(·) denotes the kth order modal component
generated by the EMD decomposition, N(·) denotes the local mean of the generated signal,
and w(i) represents the Gaussian white noise.

3.3. Informer

Transformer clearly has superior performance than RNN in capturing long-term de-
pendencies. However, Transformer suffers from high secondary computational complexity
of the self-attention mechanism, memory bottleneck of stacked layers under a long sequence
of inputs, and slow inference when predicting long outputs. The ProbSparse self-attention
mechanism of the Informer model achieves O(L log L) for time complexity and memory
usage, which solves the Transformer’s problem of high computational complexity. In
addition, Informer’s autocorrelation distillation operation highlights features with high
attention scores on J stacking layers and greatly reduces the spatial complexity. Therefore,
the model can receive long sequence inputs. Informer’s generative decoder, which directly
predicts in one time and multiple steps, avoids the accumulation of errors generated by
single-step prediction, improves the prediction accuracy and reduces the prediction time.
The unit structure of Informer is shown in Figure 2, where the left side represents the
encoder, which consists of the ProbSparse self-attention block (PSB) and distillation stack.
The ProbSparse self-attention block (PSB) halves the input for each layer of convolution
and pooling (C&P) operation. The right side represents the decoder, which receives long
sequence inputs and interacts with the encoded features through multi-head attention, and
finally predicts the output target part directly in one go.
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The classical Transformer model calculates self-attention based on the input triplet (query,
key, value), which performs the scaled dot-product as A(Q, K, V) = So f tmax(QKT/

√
d )V,

where Q ∈ RLQ×d, K ∈ RLK×d, V ∈ RLV×d, and d is the input dimension. Let qi, ki, vi stand
for the ith row in Q, K, V, respectively. The formula for calculating the weighted value of
the ith query is shown in Equation (11):

A(qi, K, V) = ∑
j

k(qi, ki)

∑l k(qi, kl)
υj = Ep(qi ,kl)

[
Vj
]

(11)

where p
(
k j
∣∣qi
)
= k

(
qi
∣∣k j /∑l k

(
qi
∣∣k j
))

and k
(
qi
∣∣k j
)

selects the asymmetric exponential
kernel exp( qiKT

j /
√

d ).
Since there are two ∑ in the computation, self-attention requires O(LQLK) memory as

well as the computation of quadratic dot product as a cost. It is shown that the distribution
of self-attention Probability is sparse, and only a few dot product calculations of Q and K
dominate the distribution after softmax [14]. The ProbSparse Self-attention mechanism in
informer uses KL scatter to define the sparsity of the ith query metric and greatly reduces
the time complexity and memory usage. The sparsity evaluation formula is shown in
Equation (12), where the first term of qi is the Log-Sum-Exp(LSE) over all keys, and the
second term is their arithmetic mean.

M(qi, K) = ln ∑LK
j=1 exp

(
qikT

j√
d

)
− 1

LK
∑LK

j=1

qikT
j√
d

(12)

Based on the above theory, the formula to achieve ProbSparse Self-attention is obtained
as shown in Equation (13):

A(Q, K, V) = so f tmax

(
QKT
√

d

)
V (13)

where Q is a sparse matrix of the same size of q.

3.4. Deep VMD-ICEEMDAN-Informer Prediction Model

Equipment operation testing data are characterized by instability and random noise,
which is caused by the complex environment in which the equipment is located. Equipment
operation time, weather, temperature, human and other factors will have an impact on the
health status of the equipment, and the degree of influence of each factor on the equipment
operation trend may not be visually reflected in the test data. For example, in extreme bad
weather, due to enhanced wind, the equipment will inevitably generate more substantial
vibration information than usual, while factors such as temperature, humidity, and light
are difficult to directly link to equipment vibration information. Therefore, the accurate
extraction of information inside the equipment operation data plays an important role in
carrying out prediction tasks in a rational and efficient manner.

To be able to extract more information characterizing the equipment operation trend,
this paper uses VMD to decompose the original operation data into several VMFs, which
have more significant regularity and more obvious signal characteristics compared with
the original signal. Previous studies have directly modeled the components after VMD
decomposition without considering the influence that the decomposed complex compo-
nents still have on the prediction results. The magnitude of fuzzy entropy represents the
complexity of the signal, i.e., the complexity of the feature information contained inside
the signal. The fuzzy entropy of VMFs is calculated to determine whether the components
decomposed by VMD still contain too many internal features [28]. The fuzzy entropy is
calculated by Equation (14):

FuzzyEn(n, m, r, N) = ln On(m, r)− ln On+1(m, r) (14)
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The ICEEMDAN decomposition technique is used to obtain a series of intrinsic
modal components (IMF) by quadratic decomposition of the overly complex VMF_M to
improve the prediction accuracy of the model for complex signals, and then improve
the prediction accuracy of the model as a whole. The correlation coefficient can describe
the degree of correlation between IMF components and VMF_M. The formula for calcu-
lating the correlation coefficient is shown in Equation (15), where: rXY is the number of
interrelationships between sequences X and Y; X and Y are the average value of X and Y;
N is the number of sequences.

rXY =
∑N

i=1
(
Xi − X

)(
Yi −Y

)√
∑N

i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi −Y

)2
(15)

The IMF components decomposed by ICEEMDAN may contain spurious components.
The correlation coefficients between the normalized IMF_M autocorrelation function and
the auto-correlation function of each order IMF component are solved, and the correlation
coefficients are compared with the correlation coefficient threshold to select the IMF com-
ponents with a strong correlation with VMF_M from the quadratic decomposition IMF
components and eliminate the redundant spurious components, and thus can improve the
accuracy of subsequent signal feature extraction. Considering that the traditional RNN
model may produce gradient disappearance and explosion when dealing with long se-
quence data, the Informer model with high operational accuracy and high speed is used to
predict each component.

The proposed time prediction method of equipment operation trend (Figure 3) is
divided mainly into three modules, i.e., the data collection module, decomposition module,
and prediction module.
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For the problems of instability and large random noise of equipment operation mon-
itoring data, a prediction model of equipment operation trend based on ISSA-VMD-
ICEEMDAN and Informer model, called VIInformer, is constructed, and its flowchart
is shown in Figure 4. The specific steps are as follows:

Step 1 The number of decompositions K and the penalty factor α are obtained according
to the ISSA optimized VMD algorithm proposed in Section 3.1. Decomposition of
equipment operation process monitoring data into K subseries VMFs using the
VMD decomposition algorithm.

Step 2 Calculate the fuzzy entropy of the VMF of the subseries decomposed in Step 1. The
magnitude of the fuzzy entropy reflects the complexity of the signal; the higher
the complexity of the signal, the larger the fuzzy entropy value.

Step 3 The subseries VMF_M with the highest fuzzy entropy is subjected to ICEEMDAN
quadratic decomposition; the modal components obtained by quadratic decompo-
sition often contain some pseudo-modal components, which are irrelevant and do
not reflect the characteristics of IMF_M. Therefore, the pseudo-modal components
need to be eliminated, and the number of interrelationships of the components
from the ICEEMDAN secondary decomposition is calculated to eliminate the irrel-
evant components. Then the components are denoised in order to avoid the data
failing to converge and the model training time being too long; the components
are normalized.

Step 4 Informer prediction models are built and predicted for the subsequences generated
by Step 2 and Step 3, respectively.

Step 5 The individual subsequence prediction results obtained from Step 4 are recon-
structed to obtain the final results of the equipment operation trend prediction.
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4. Experiments and Analysis
4.1. Experimental Data

The paper uses real-time temporary equipment operation monitoring data from
22 November 2021 to 14 March 2022 for the Beijing 2022 Winter Olympic Games in
Yanqing for arithmetic analysis. The data collection system of this competition area
collects data 2–3 times per second and has collected more than 300,000 data. The types
of sensors used to collect data on the operation of the equipment are inclination sensors
and vibration sensors. The sensors transmit the message to the system’s equipment
operation safety monitoring platform through a controller area network (CAN) bus and
Ethernet and save the data in a time series database. To verify the various indicators
of the sensor, we conducted equilibrium tests on the inclination sensor, vibration table
tests on the vibration sensor, and long-term low-temperature box stability tests. The test
experiment diagram is shown in Figure 5.
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However, there may be false positives, missing positives, and delays in the data
transmission. Therefore, missing values and outliers in the equipment operation dataset
need to be identified and processed. In this study, the same mean interpolation method is
used for processing the outlier and missing value of the original data.

Due to the high volatility and randomness of the original sequence, direct predic-
tion of the original sequence will appear to cause large errors. In order to reduce the
prediction error, a signal decomposition algorithm is introduced to consider the signal
decomposition of the original sequence and extract the feature information inside the
sequence for prediction.

The min-max normalization method is applied to equipment operation data in this
experiment [29].

4.2. Setup of the Parameters and Comparison
4.2.1. Parameters

The following parameters were used for the ISSA-VMD algorithm: In fact, a small
number of iterations can result in the algorithm being unable to find the global optimal
solution. However, an excessive number of iterations can also waste computing resources.
In general, the range of iterations is selected between 50 and 500 [30]. In this paper, in
order to find the optimal solution and control the experimental time, we chose a maximum
number of iterations of 100. The number of variables to be optimized is set to 2, that is,
the number of VMD decompositions K and the penalty factor α, the maximum number of
iterations to 100. A small population size can cause the algorithm to fall into local optima,
while a large population size can reduce algorithm efficiency. The population size is related
to the scale of the problem. The population size is 5 to 10 times the size of the problem [30].
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Since the number of variables to be optimized in this paper is 2, the population size was
set at 20, the upper limits of K and α are 10 and 2500, respectively, and the lower limits are
2 and 100, and the convergence tolerance is set to 10−7. The following parameters were
used for the ICEEMDAN algorithm: the noise standard deviation is set to 0.2 according
to experience, the number of realizations is set to 50, the maximum number of sifting
iterations allowed is set to 50. The parameters of Informer are set as shown in Table 1.

Table 1. The parameters of Informer.

Parameter Value

Encoder layers 2
ProbSparse Attention 8

Decoder layers 1
Multi-head Attention 2

Learning rate 0.00001
Batch size 32

Maximum iterations 200
Dropout 0.1

Training data length 720
Predicted length 168

4.2.2. Comparison

In order to verify the accuracy of the algorithm in this paper, the original signal is
selected and input directly into Informer, VMD−Informer, ICEEMDAN−Informer, and
VIInformer, for experimental verification. The purpose of this experiment is to verify
whether the prediction accuracy of the model in this paper is improved compared with
the single model and the simple combined model. In addition, this paper conducts lateral
experiments on the model. The classic deep learning models LSTM, GRU, and CNN are
selected as benchmark models. In order to further verify the accuracy of the model, we
combine three classic deep learning models LSTM, GRU, and CNN with signal decomposi-
tion algorithms, respectively. The purpose of this experiment is to verify the fit between the
decomposition algorithm and different depth models.

The prediction algorithm in this study uses the mean square error (MSE), mean
absolute error (MAE), and root mean square error (RMSE) as evaluation indexes in the
experiments [14], as shown in the following Equations (16)–(18). For n samples, define
the true value as y = {y1, · · · , yn} and the predicted value as y = {y1, · · · , yn}. Each
evaluation indicator represents the deviation of the predicted value from the true value,
and a smaller value means a better model effect.

MSE =
1
n

n

∑
i=1

(yi − yi)
2 (16)

MAE =
1
n

n

∑
i=1
|yi − yi| (17)

RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2 (18)

4.3. Experimental Results and Analysis

Four data recorded by inclination and vibration sensors were used in this study. They
are derived from the real world, which makes the experimental results more applicable.

4.3.1. X-Axis Vibration Data from Inclination Sensor (Data 1)

Data 1 are the vibration data of the X-axis recorded by the inclination sensor. Figure 6a
shows the results of the ISSA-VMD decomposition of the trend series. Figure 6b displays
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the results of calculating the fuzzy entropy for the components after ISSA−VMD decom-
position. It can be seen that the fuzzy entropy of IMF_2 is the largest, so the ICEEMDAN
secondary decomposition is used for IMF_2. Figure 6c shows the results of ICEEMDAN
decomposition for the IMF_2. Figure 7 shows the prediction results with the VIInformer of
Data 1. Table 2 shows the results of comparative trials.
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Figure 6. Experimental results with Signal decomposition. (a) ISSA−VMD decomposition results for
Data 1. (b) Fuzzy entropy of components. (c) ICEEMDAN secondary decomposition results for IMF_2.

Table 2. Comparison of errors of Data 1.

Method MSE MAE RMSE Running Time (s)

Informer 0.1027 0.1098 0.1108 258
VMD−Informer 0.0733 0.0749 0.0951 243

ICEEMEDAN−Informer 0.1895 0.1918 0.2136 364
VMD−ICEEMDAN−LSTM 0.1907 0.1949 0.2278 598
VMD−ICEEMDAN−GRU 0.1854 0.1983 0.2262 525
VMD−ICEEMDAN−CNN 0.2752 0.3274 0.3515 794

VIInformer 0.0115 0.0262 0.0334 332
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Figure 7. The Prediction Result of Data 1 with VIInformer.

As shown in Table 2, by performing ablation experiments, the accuracy of the Informer
prediction model based on VMD decomposition is improved compared with the original
model, the accuracy of the Informer prediction model based on ICEEMDAN decomposition
is reduced, and the prediction accuracy of the Informer model based on VMD−ICEEMDAN
secondary decomposition is higher than that of the rest of the models.

To verify the prediction effectiveness of the adopted informer prediction model, a cross-
sectional comparison experiment is used. As can be seen from Table 2, by comparing the
prediction errors with LSTM, GRU, and CNN, respectively, it can be seen that the Informer
model performs best on the VMD−ICEEMDAN quadratic decomposition method, and
the model mean square error (MSE) is 0.1792, 0.1739, and 0.2637 lower than LSTM, GRU,
and CNN, respectively. The mean square error (MSE) of VIInformer is the smallest. It can
be observed that using VMD decomposition is beneficial for predicting results. However,
ICEEMDAN decomposition has a negative impact on the predicted results. Through
comparison with LSTM, GRU and CNN, we have reached preliminary conclusions that
Informer has the best fit with the decomposition model.

4.3.2. Y-Axis Vibration Data from Inclination Sensor (Data 2)

Data 2 are the equipment Y-axis vibration data recorded by the inclination sensor.
Figure 8a shows the result of ISSA−VMD decomposition for Data 2. After calculating
the fuzzy entropy of the components after ISSA−VMD decomposition, it was found that
the component with the highest fuzzy entropy is IMF_4, which is shown in Figure 8b.
The ICEEMDAN quadratic decomposition of IMF_4 yields the results shown in Figure 8c,
which shows the results of ICEEMDAN decomposition for the IMF_4. Figure 9 shows the
prediction result of Data 2 in our method. We also conduct comparative experiments on
Data 2, which is shown in Table 3.

Table 3. Comparison of errors of data 2.

Method MSE MAE RMSE Running Time (s)

Informer 0.0925 0.0992 0.0988 262
VMD−Informer 0.0733 0.0879 0.0851 251

ICEEMEDAN−Informer 0.1115 0.1368 0.1416 375
VMD−ICEEMDAN−LSTM 0.0827 0.0984 0.0987 608
VMD−ICEEMDAN−GRU 0.0833 0.0897 0.0751 561
VMD−ICEEMDAN−CNN 0.1145 0.1318 0.1036 821

VIInformer 0.0532 0.0655 0.0634 344
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Figure 8. Experimental results with Signal decomposition. (a) ISSA−VMD decomposition results for
data 2. (b) Fuzzy entropy of components. (c) ICEEMDAN secondary decomposition results for IMF_4.

In Table 3, compared with other methods, VIInformer performs best in the face of
data mutation. The values of MAE are 0.0992 for Informer, 0.0879 for VMD−Informer,
0.1368 for ICEEMDAN-Informer, 0.0984 for VMD−ICEEMDAN−LSTM, 0.0897 for
VMD−ICEEMDAN−GRU, 0.1318 for VMD−ICEEMDAN−CNN and 0.0655 for VI-
Informer. Accordingly, compared to other methods, the method in this paper improves
0.0337, 0.0224, 0.0713, 0.0329, 0.0242 and 0.0663, respectively. The forecasting errors
show that Informer with ICEEMEDAN and CNN with VMD−ICEEMDAN have poor
forecasting results, while Informer with VMD and VIInformer are able to achieve good
prediction results. The reason is that VMD decomposition can indeed reduce the com-
plexity of the original sequence. VMD−ICEEMDAN enables decomposition-prediction
models to have better feature extraction and generalization capabilities. False compo-
nents generated by ICEEMDAN decomposition reduce the feature extraction ability
of the prediction model. The weak feature extraction ability of CNN leads to the poor
prediction performance of the model.
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Figure 9. The Prediction Result of Data 2 with VIInformer.

4.3.3. X-Axis Vibration Data from Vibration Sensor (Data 3)

Data 3 are the equipment X-axis vibration data recorded by the vibration sensor.
Figure 10a shows the results of the ISSA−VMD decomposition of Data 3. In order to
know which component contains more information about the features that represent the
interior of the signal, we calculated the fuzzy entropy of each component. In Figure 10b,
the component with the highest fuzzy entropy after ISSA-VMD decomposition is IMF_3.
Figure 10c shows the results of ICEEMDAN decomposition for IMF_3. Figure 11 shows the
prediction results of Data 3.

As can be seen from Table 4, the values of RMSE are 7.188 × 10−3 for Informer,
7.041 × 10−3 for VMD−Informer, 8.436 × 10−3 for ICEEMDAN−Informer, 7.397 × 10−3

for VMD−ICEEMDAN−LSTM, 6.731× 10−3 for VMD−ICEEMDAN-GRU, 8.246 × 10−3

for VMD−ICEEMDAN−CNN and 4.643 × 10−3 for VIInformer. Accordingly, com-
pared to other methods, the method in this paper improves 2.545 × 10−3, 2.398 × 10−3,
3.973 × 10−3, 2.754 × 10−3, 2.088 × 10−3, 3.603 × 10−3, respectively. Compared with
other models, VIInformer exhibits good model generalization ability. The reason is
that quadratic decomposition can decompose complex a non-periodic time series into a
frequency-dominated periodic sequence. The powerful feature extraction capabilities of
Informer enable the decomposition prediction model to achieve optimal performance.

Table 4. Comparison of errors of Data 3.

Method MSE MAE RMSE Running Time (s)

Informer 6.271 × 10−5 6.645 × 10−3 7.188 × 10−3 288
VMD−Informer 6.303 × 10−5 6.214 × 10−3 7.041 × 10−3 269

ICEEMEDAN−Informer 9.805 × 10−5 7.804 × 10−3 8.436 × 10−3 385
VMD−ICEEMDAN−LSTM 4.783 × 10−5 5.949 × 10−3 7.397 × 10−3 614
VMD−ICEEMDAN−GRU 4.234 × 10−5 6.083 × 10−3 6.731 × 10−3 557
VMD−ICEEMDAN−CNN 6.395 × 10−5 7.138 × 10−3 8.246 × 10−3 847

VIInformer 2.807 × 10−5 3.054 × 10−3 4.643 × 10−3 371
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Figure 10. Experimental results with Signal decomposition. (a) ISSA−VMD decomposition results
for Data 3. (b) Fuzzy entropy of components. (c) ICEEMDAN secondary decomposition results for
IMF_3.
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4.3.4. Y-Axis Vibration Data from Vibration Sensor (Data 4)

Data 4 are the equipment Y-axis vibration data recorded by the vibration sensor.
Figure 12a shows the result of ISSA−VMD decomposition for Data 4. As shown in
Figure 12b, the component with the highest fuzzy entropy after ISSA−VMD decomposi-
tion is IMF_5. Therefore, the ICEEMDAN decomposition of IMF_5 is required, and the
results are shown in Figure 12c. The final prediction results with VIInformer are shown
in Figure 13. It can be seen from the forecasting diagrams that although the predicted
values of the VIInformer are lower than the true values, the VIInformer can predict the
trend of the data correctly. Not only that, the VIInformer can forecast the extreme values
correctly to the maximum extent.
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Figure 12. Experimental results with Signal decomposition. (a) ISSA−VMD decomposition results for
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Figure 13. The Prediction Result of Data 4 with VIInformer.

As can be seen from Table 5, all the values of MSE, MAE and RMSE of the method
VIInformer are the smallest. Although the predicted value of VIInformer is lower than the
true value, it predicts the trend of the sequence accurately. The results benefit from the
feature extraction ability of Informer and the denoising ability of the decomposition model.

Table 5. Comparison of errors of Data 4.

Method MSE MAE RMSE Running Time (s)

Informer 0.0837 0.1004 0.1058 289
VMD−Informer 0.0639 0.0984 0.0901 260

ICEEMEDAN−Informer 0.1255 0.1274 0.1316 391
VMD−ICEEMDAN−LSTM 0.0976 0.0989 0.0987 599
VMD−ICEEMDAN−GRU 0.0933 0.0983 0.0971 521
VMD−ICEEMDAN−CNN 0.1395 0.1438 0.1446 834

VIInformer 0.00095 0.00262 0.00234 368

5. Discussion

From the prediction results of the four experiments mentioned above, it is observed
that the vibration trend time series prediction based on VIInformer can better fit the real
data. It can be seen that the predicted values can better fit the true values in Data 1–3.
Although the predicted value in Data 4 was smaller than the true value, the model can
forecast the trend of the data series better and some of the extreme values. This situation
can be caused by the anisotropy of feature dimensions’ prediction capacity. It may become
a new improvement point in future research. We will address the observed discrepancies
for future research, such as exploring alternative modeling approaches, refining the model
architecture, or incorporating additional features that better capture the complexities of the
vibration signals. Compared with the results of Data 1, Data 2 and Data 4, the overwhelming
performance of Data 3 is increased, and such phenomena can be caused by the compatibility
between the model and the data.

Meanwhile, through ablation experiments, it is found that the use of VMD alone is
also beneficial for prediction accuracy. This means that although the vibration sequence
has strong randomness and volatility, there are still traces to follow, and the signal can
effectively identify hidden patterns in time series data. By decomposing and predicting the
original sequence and recombining the predicted data, noise reduction can be achieved to a
certain extent on the original sequence. However, the prediction results after ICEEMDAN
decomposition are not as good as the direct prediction results. This may be due to the
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excessive false components generated by ICEEMDAN decomposition. By comparing the ex-
perimental errors of four data, it can be seen that the prediction effect is best after secondary
decomposition. This indicates that using fuzzy entropy for secondary decomposition and
removing false components has a positive impact on the prediction results. The main reason
is that the decomposition method decomposes complex non-periodic time series into a
frequency-dominated periodic sequence, and the model has a strong generalization ability
for such sequence data. At the same time, the classic deep learning models LSTM, GRU and
CNN are selected as benchmark models combined with signal decomposition algorithms.
It can be found that the Informer combined with signal decomposition performs better in
predicting than the other three deep models.

6. Conclusions

This paper proposes a device operation trend prediction model based on VIInformer.
Compared to existing methods, this model has the following advantages:

(1) The randomness and volatility of equipment operation trend data after VMD de-
composition decreased. The ICEEMDAN secondary decomposition of components
with excessive fuzzy entropy can obtain more characteristic information containing
equipment operation trends, and the non-stationary nature of the sequence after the
secondary decomposition is greatly reduced.

(2) Using the Informer model to predict the decomposed sequence is different from
traditional machine learning models. Informer’s parallel computing ability has been
significantly improved, and the model’s running speed has been effectively improved.

In summary, compared to other models, the model proposed in this article has higher
prediction accuracy, more accurate and reliable prediction of equipment operation trends,
and broad application prospects.

Meanwhile, there are also some areas for improvement in this study. For example, this
study only used historical equipment vibration time series to conduct the prediction task. It
makes sense to research the multi-temporal scale features in order to achieve more accurate
prediction results. At the same time, how to improve the model runtime effectively is also a
promising research direction. In addition, we were only able to include four datasets in our
study due to resource constraints. This limited sample size may affect the generalizability
of our findings.

In the future, we will conduct studies and research concerning time series forecast-
ing methods. Deeper research on data with non-stationary, non-periodic fluctuations
and high noise will be carried out and the impact of this problem on the forecasting
operation will be solved. More self-testing data will be added in this experiment to
further improve the persuasiveness of the model. Saving computational costs is valuable
for practical applications. Equipment fault diagnosis prediction will be taken as the next
direction of research.
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