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Abstract: Epilepsy, a prevalent neurological disorder, profoundly affects patients’ quality of life due
to the unpredictable nature of seizures. The development of a reliable and user-friendly wearable
EEG system capable of detecting and predicting seizures has the potential to revolutionize epilepsy
care. However, optimizing electrode configurations for such systems, which is crucial for balancing
accuracy and practicality, remains to be explored. This study addresses this gap by developing a
systematic approach to optimize electrode configurations for a seizure detection machine-learning
algorithm. Our approach was applied to an extensive database of prolonged annotated EEG record-
ings from 158 epilepsy patients. Multiple electrode configurations ranging from one to eighteen were
assessed to determine the optimal number of electrodes. Results indicated that the performance
was initially maintained as the number of electrodes decreased, but a drop in performance was
found to have occurred at around eight electrodes. Subsequently, a comprehensive analysis of all
eight-electrode configurations was conducted using a computationally intensive workflow to identify
the optimal configurations. This approach can inform the mechanical design process of an EEG
system that balances seizure detection accuracy with the ease of use and portability. Additionally,
this framework holds potential for optimizing hardware in other machine learning applications. The
study presents a significant step towards the development of an efficient wearable EEG system for
seizure detection.

Keywords: seizure detection; wearable EEG; machine learning; continuous EEG monitoring;
electrode configuration optimization; computational efficient; metric adjustment

1. Introduction
1.1. Advancements and Limitations of Wearable Systems for Seizure Detection

Epilepsy is a neurological disorder that affects nearly 1% of the world population,
and is characterized by recurrent seizures [1,2]. These seizures can be life-threatening [3,4],
and have a significant impact on the quality of life of those who are affected. While
most people with epilepsy (PWE) can achieve seizure control with antiepileptic drugs
(AEDs), approximately one-third of PWE suffer from drug-resistant epilepsy (DRE), which
does not respond well to medical treatment [5]. Despite optimal drug therapy, these
individuals experience recurrent seizures and often require more invasive treatments,
such as surgery [6,7], implantable devices [8], or dietary modifications [9]. Additionally,
even patients with drug-controlled epilepsy may still experience occasional seizures, with
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approximately 56% of adult PWE experiencing seizures overall [10].The unpredictability
of seizures, particularly in people with DRE, constitutes one of the main challenges that
impacts the quality of life of PWE [11,12]. Accurate and timely seizure detection could
enable interventions and treatment monitoring that have the potential to improve the
quality of life for PWE. In particular, this could help with the optimization of the medical
treatment given to patients with epilepsy, including medication adjustments, monitoring of
medication efficacy [13], evaluating seizure-prevention strategies, and generating alerts for
required emergency interventions [14].

One promising avenue for improving the quality of life of patients suffering from
unpredictable seizures is through the use of wearable systems, which can detect seizures in
real-time and alert patients or caregivers to take the appropriate action [15]. Multiple prod-
ucts to detect seizures are commercially available; these are based on movement detectors,
audio, autonomic change detection (such as skin conductance [16]), and electroencephalog-
raphy (EEG) [17–21]. However, peer-reviewed performance reports have been published
for only a small number of these devices. In most cases, these focus on the detection of
generalized tonic-clonic seizures or focal to bilateral tonic-clonic seizures [20,22]. The focus
placed on this type of seizure is due to their robust clinical and behavioral correlates, which
manifest in the wide range of modalities used [23]. However, many patients exhibit differ-
ent types of seizures, including absence seizures or focal aware seizures. These seizures
may have only a mild clinical manifestation that will not be detected in every peripheral
modality, yet it may be identified in the EEG recording [23]. Some of these seizures may
have a widespread electrographic manifestation, e.g., absence seizures, whereas some
seizures may manifest in a local subset of EEG electrodes, e.g., focal seizures. Thus, in
the process of creating a wearable EEG-based seizure monitoring system, it is essential to
identify the critical recording locations that should be included in order to ensure adequate
seizure detection performance in a wide variety of patients and epileptogenic foci.

The potential advantages of an ambulatory wearable EEG system extend beyond
its ability to detect various seizure types with a higher sensitivity. Such a system allows
for the continuous long-term monitoring of brain electrophysiological activity, which can
provide useful insights into the long-term dynamics of the signal, and aid in characterizing
neuronal changes that influence susceptibility to seizures over extended periods during
both wakefulness and sleep [24–26]. Given the high comorbidity between epilepsy and
sleep disorders [27,28], a practical wearable EEG system could therefore help quantify the
relationship between seizures and sleep, leading to more accurate detection and better
understanding of epilepsy classification in the short-term [29]. Over the long-term, mea-
suring sleep quality and epileptiform activity during sleep may have a predictive value in
determining the likelihood of seizures occurring in the following day [29].

1.2. Balancing Machine Learning Performance and Ergonomics in Wearable EEG Systems

The development of an accurate, comfortable, and user-friendly wearable EEG system
for brain activity monitoring and, in particular, for the early detection of epileptic seizures
is a challenging task [15,30]. It requires the careful balancing of competing priorities: on the
one hand, the system must provide high-quality signals and be highly accurate in detecting
seizures. On the other hand, it must be easy to set up and use for prolonged periods of
time [15,31,32].

Achieving this balance requires a precise definition of performance measures for the
detection algorithm. First, the system must be sensitive and maximize the proportion of
identified seizures, typically termed as sensitivity or recall. On the other hand, the system
must produce a minimal false alarm rate. A high frequency of false alarms may deem the
system alerts as a nuisance, and significantly reduce the compliance and alert value as a
result. Typically, algorithmic performance is evaluated using the area under the receiver
operating curve (AUC-ROC), where a perfect classifier would produce a score of one. The
curve is created by plotting the sensitivity or true-positive rate (TPR) against the specificity
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or false-positive rate (FPR), which, in our case, is the proportion of false alarms out of all
the non-seizure data, along the 0–1 decision threshold range.

In the context of seizure detection, the proportion of true labels is extremely low,
leading to substantially imbalanced data. In imbalanced datasets, the AUC ROC may
give an overly optimistic estimate of the model’s performance. When the positive class
is rare, the model can achieve a high TNR by simply predicting all samples as negative,
resulting in a high specificity, but also accompanied with a low sensitivity. In terms of false
alarm evaluation, a relatively low FPR may still be an order of magnitude higher than the
actual seizure prevalence, thereby creating more false alarms compared to the true-positive
seizure alerts and giving a low predictive value to an alert. A complementary metric to use
for evaluating the predictive value of the alerts is the positive predictive value (PPV), also
known as precision, which is calculated by evaluating the proportion of true alerts out of
all the alerts, hence providing information on the alert value.

Both measures of sensitivity (recall) and PPV (precision) are considered in the precision–
recall (PR) curve (Figure 1). The PR curve focuses on the positive class and plots the
precision against recall along the 0–1 decision threshold range. The PR curve provides a
more accurate measure of the model’s ability to identify positive samples in imbalanced
datasets accurately, and it is more appropriate when the positive class is rare [33]. To further
adjust this measure to our problem, we decided to focus on the area under the curve using
only clinically acceptable sensitivity ranges (>0.7, i.e., more than 70% detected seizures),
hence defining our target performance metric as the AUC-PR-0.7 (Figure 1), and thereby
giving us the ability to specifically optimize alert values at the high sensitivity range of
interest. This measure could then be used to systematically evaluate the performance of
various electrode layout options.
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Figure 1. Definition of the AUC-PR-0.7 performance measure—the area (marked in red) under the
precision–recall curve above 70% recall (dashed line). Precision is defined as the relative number of
true alerts out of all alerts, while recall is defined as the relative number of alerted seizures out of
all seizures.

One crucial factor that can affect the performance of a wearable EEG system is the num-
ber and location of the electrodes [34]. While a larger number of electrodes can potentially
provide more information and improve the accuracy of seizure detection, it also increases
the complexity and cost of the system as a result. One way of reducing this complexity
is by identifying the optimal subsets of electrodes that maximize the performance while
minimizing the complexity of the mechanical design. When evaluating an algorithm for
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cross-subject performance, we must take into account patient variations in the signal. These
may occur due to the differences in age, gender, etiology, seizure focus, and additional
factors affecting the ictal activity and the baseline non-ictal activity. Thus, the cross-subject
classification framework should only rely on the essential common representations to
thereby avoid overfitting patient-specific characteristics and learn the shared patterns. This
should be taken into account when choosing an optimal electrode subset.

In this article, we describe a systematic approach to identifying optimal electrode
configurations for a wearable EEG system for epileptic seizure detection. We first defined
the performance measure to be optimized and then systematically evaluated the cross-
subject performance of various electrode configurations using real-world EEG data. Our
results demonstrate the trade-off between accuracy and complexity and provide valuable
insights into the optimal electrode configurations for practical usage.

Our findings can assist in the development of wearable EEG systems for epileptic
seizure detection at home and in clinical settings and can ultimately improve the lives of
people with epilepsy. The framework we outline here can be used also for the development
of wearable EEG systems in additional domains.

The structure of the paper is as follows: Section 2 provides an overview of the analytical
framework, including the data, the extracted features, the machine learning algorithm
employed, the performance evaluation metrics, and the technical aspects concerning the
computational implementation. In Section 3, we present the results of our analysis, initially
focusing on the trade-off between accuracy and system complexity. We then delve into
a systematic examination of all eight-electrode configurations. Section 4 discusses the
implications of our findings, offering insights into the practical application of optimal
electrode configurations and suggesting avenues for future research. Finally, in Section 5,
we summarize the key contributions of this work towards the development of an efficient
and user-friendly wearable EEG system for the detection of epileptic seizures.

2. Materials and Methods
2.1. Data

We used the EPILEPSIAE database [35], a large EEG dataset that was recorded in differ-
ent epilepsy centers across Portugal (Coimbra), France (Paris), and Germany (Freiburg) [35],
where the recorded patients were undergoing pre-surgical evaluation [5]. The criteria de-
fined for this dataset stated that the data for each patient must include at least 69 h (4 days)
and at least five clinical epileptic seizures with interictal intervals of at least 4 h between
each other [35].

This database includes 24,969 h of EEG recordings from the inpatient pre-surgical evalua-
tion of 158 people with focal epilepsy (92 males; age 34.4 ± 12.3; 158.0 ± 85.7 recording hours
per patient; and 7.7 ± 4.8 seizures per patient). In total, 75% had presumed temporal lobe
epilepsy, and 12% had presumed frontal lobe epilepsy, respectively. EEG recordings included
26–41 electrodes (31.0 ± 2.6 mean ± standard deviation). The 19 electrodes of the international
10–20 system (FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and
O2, respectively) were included in all recordings, and were thus used in our analysis. The
dataset also includes the medical history and seizure types. Periods that contained epileptic
seizures were annotated by two experienced independent reviewers. Seizure annotations
included onset and offset times, vigilance state, and seizure classification. Note that since the
dataset only included patients with focal epilepsy, all seizures in the dataset have focal onset.
The EPILEPSIAE database has been widely used in research studies to develop and assess
algorithms for seizure detection and prediction, as well as to explore other aspects of epilepsy,
such as brain connectivity and network dynamics [36].

2.2. Preprocessing and Feature Extraction

EEG data collected from the sensors were referenced to the electrode FP2. The choice
of electrode FP2 was motivated by its convenient location on the forehead, allowing
for a good conductance and attachment and, therefore, a reliable signal. Furthermore,
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a preliminary examination conducted with an average reference demonstrated that the
combined contributions of both FP1 and FP2 electrodes are equivalent to the contribution
made by each of these electrodes individually. Using FP2 as the reference left a total of 18
electrodes for the analyses. The data were bandpass filtered in the range of 1–40 Hz, and a
notch filter at 50 Hz was applied to remove the line noise from the electricity network. We
employed a group of automated criteria to eliminate sections of the data that exhibited a
high degree of noise or interference or contained a non-physiological dominant component
in the signal. The data were divided into 20 s segments, with a 10 s overlap between
consecutive segments. Segments that partially or fully overlapped a seizure according
to the database annotations were labeled as ictal, and all other segments were labeled as
non-ictal.

For the analysis in this study, we used 17 families of spectral single-channel EEG
features extracted for each 20 s segment. Specifically, for each channel, we calculated the
following [17]:

• Broadband root total power (the square root of the power integral, which is equivalent
to the temporal signal’s standard deviation);

• The relative power and relative log power in 5 frequency bands: delta [1–4 Hz], theta
[4–8 Hz], alpha [8–12 Hz], beta [12–30 Hz], and gamma [30–50 Hz]. The term ‘relative’
indicates that the power in each band was divided by the total broadband power
between 1–40 Hz;

• Spectral moment: first, the signal’s power distribution in the frequency domain is
normalized as a probability distribution, followed by computation of the expected
power value;

• Spectral edge frequency (SEF): the frequency below which 90% of the total EEG power
is located;

• Spectral entropy (SE): the entropy of the spectrum when treated as a normalized
probability distribution;

• Spectral slope and intercept: the slope and intercept of the linear of the log power log
frequency plot;

• “Out-of-range” feature: This feature counts how many of the following four features
are out of these features’ normal empirically defined range: the root total power of
the power spectrum, the spectral slope and intercept, and the spectral edge frequency.
Thus, this feature is an integer number between 0 and 4.

2.3. Machine Learning Algorithm

We used the LightGBM (light gradient-boosting machine) machine learning al-
gorithm for the analysis and classification of EEG data [31]. LightGBM is a popular
and highly efficient gradient-boosting framework that uses decision tree-based algo-
rithms to iteratively improve the accuracy of predictions. The algorithm optimizes the
cross-entropy loss, a commonly used loss function in binary classification problems:
L = − 1

N ∑N
n=1[yn log(ŷn) + (1 − yn) log(1 − ŷn)], where N is the number of samples, yn is

the true label, and ŷn is the predicted label. LightGBM was designed to handle medium-
scale datasets and provides faster training and prediction speeds compared to other ma-
chine learning algorithms. Previous analyses performed with an ensemble of different
algorithms (support vector machine, linear discriminant analysis, extra trees, logistic
regression, and random forest) have shown that the performance of the ensemble was
only negligibly better than that of the LightGBM. Hence, LightGBM was selected for the
current analyses.

2.4. Data Splitting into Train and Test Sets

Data were split into a train set and a test set at the level of patients. The training set
contained balanced data (the number of ictal and non-ictal periods was equal) from 75% of
the patients (n = 120), while the test set included all data (not balanced) from the remaining
25% of the patients, respectively (n = 38). While splitting the data at the patient level is
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more challenging for the model, this approach ensures the model’s generalizability and
its applicability in real-life scenarios, where it needs to perform well with patients it has
never encountered before. We used 20 different train-test splits of the data. All train-test
data splits preserved the frequency of the epileptic focus zones in the full dataset in terms
of the seizure onset zone (temporal, frontal, parietal, or occipital) and hemisphere (right
or left). Implementing this procedure was crucial in diminishing the susceptibility of the
findings to a specific division of the data and enhancing their generalizability.

Hyper-parameter optimization was only performed once—on the training set that
included the full electrode set (n = 18 electrodes) and the first split of data. These hyper-
parameters were used for all models that were built in the rest of the analyses.

2.5. Performance Measure

An important measure of performance in binary classification on imbalanced data is
the area under the precision–recall curve (AUC-PR). The precision–recall curve depicts
the precision (or PPV) of the algorithm, namely the relative number of true alerts out of
all alerts, as a function of the recall (or sensitivity), namely the relative number of alerted
seizures out of all seizures. As a low sensitivity is irrelevant for a viable seizure detection
algorithm, we only focused on the area under the precision–recall curve in the recall range
of 0.7–1 (Figure 1) and normalized it to the 0–1 range, i.e., 1

0.3

∫ 1
0.7 p(r)dr; where p(r) is

the precision (p) as a function of recall (r). We denoted this quantity as AUC-PR-0.7.
We empirically found that this quantity is a good proxy for several other performance
measures of interest which are more computationally intensive (e.g., the mean number of
false alarms per day across patients or mean total false alarm time per day across patients).
Therefore, this proxy measure was used for model optimization. In addition, we also
used the more traditional metrics of the area under the receiver operating characteristic
curve (AUC-ROC).

2.6. Analytical Framework

The analytical framework was divided into two successive stages. The goal of the
first stage was to determine the optimal number of electrodes, while the goal of the second
stage was to find the optimal configurations with this number of electrodes.

To determine the optimal number of electrodes we sampled 1000 random configura-
tions of each possible number of electrodes (from 1 to 17 out of 18 electrodes; there are
less than 1000 possible configurations of 1–3 and 15–17 electrodes, hence in these cases we
sampled all possible configurations). For each configuration we built a LightGBM model
and evaluated its performance using the AUC-PR-0.7 measure. We compared the sampled
configurations AUC-PR-0.7 to that of the full model containing all 18 electrodes. In this
analysis stage, a single data split was used (as shown in Figure 2A).

After determining the optimal number of electrodes (eight electrodes, not includ-
ing the ground and reference; as shown in Section 3), we examined the performance
of the algorithm across all possible eight-electrode configurations (43,758 options;(

n
k

)
= n!

k!(n−k)! f or n = 18; k = 8). To that end, we built a LightGBM model for each of the

configurations and evaluated its performance using the AUC-PR-0.7 measure. We repeated
this for each of the 20 data splits. To generalize the results across these data splits, we calcu-
lated for each electrode configuration in each data split the ratio between the AUC-PR-0.7
of a model using that configuration’s electrodes only, and the AUC-PR-0.7 of the corre-
sponding full model (containing all 18 electrodes and all features). We denoted this value
as “percent-of-full-AUC-PR-0.7” and calculated the median percent-of-full-AUC-PR-0.7
across the data splits (see Figure 2B).
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Figure 2. A flowchart depicting the major stages of the analysis: (A) determining the optimal number
of electrodes, and the (B) systematic examination of all eight-electrode configurations. The colors
of the flowchart symbols represent the processing stage; the text of identical processing stages was
omitted from (B) for conciseness.

2.7. Runs and Computational Resources

We used an AWS ECS cluster to extract features from 20 s epochs of EEG data for
each of the 158 patients. Subsequently, we created 20 train-test splits of these patients’
features. Balanced train sets consisted of 8000–14,000 samples (depending on the number
of seizure segments in each train set), while test sets consisted of ~1.5–2 million samples
(depending on the recording duration of patients in each test set). To examine the case of
eight electrodes, we conducted an exhaustive search on all possible 43,758 configurations
of eight electrodes out of 18 (all 10–20 system electrodes, besides FP2, which was used as a
reference). Using another AWS ECS cluster, we trained and evaluated a LightGBM binary
classifier for each of the 43,758 electrode configurations using the 20 different train-test
splits, resulting in a total of 875,160 models. The performance of each model was then
evaluated on its corresponding test set using the AUC-PR-0.7 and AUC-ROC metrics.

As the test sets were big in size (~2 million samples), the inference phase turned
out to be the slowest link in the training-evaluation chain. In order to accelerate the
inference phase, we used the Intel extension for Scikit-learn (https://github.com/intel/
scikit-learn-intelex, accessed on 17 November 2022), and achieved a four-fold decrease in
the computation time compared to the vanilla LightGBM implementation. To further cut
running times, we only used five selected feature families in this analysis (relative power
in delta, theta, and alpha bands, broadband root total power, and the number of features
out-of-range, see Section 2.2). This feature set was selected based on domain knowledge
and yielded a similar performance to the full feature set.

3. Results

EEG data from 158 patients of the EPILEPSIAE database [35] were divided into 20 s
segments, and were labeled as either ictal (during a seizure) or non-ictal (not during a
seizure), according to the database annotations. Spectral features were extracted, and data
were split to train-test sets at the level of patients. LightGBM models were trained on
a balanced (ictal/non-ictal) train set and were evaluated on a full (unbalanced) test set.
Performance was measured using AUC-PR-0.7 and AUC-ROC (see Section 2).

https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
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3.1. Dependence of Classification Performance on Electrode Number

Our objective was to strike a balance between the system usability and performance
by minimizing the number of electrodes while maintaining comparable detection capa-
bilities to those achieved with the full set of electrodes. This approach aimed to enhance
user-friendliness, thereby ensuring that the wearable EEG system remains practical and
accessible without compromising its overall performance. With that objective in mind, we
first examined the performance as a function of the number of electrodes (see Figure 2A for
an analysis summary flowchart). To that end, we examined 1000 random configurations for
each possible electrode-subset size (one to seventeen electrodes; Figure 3) and compared it
to the performance of the full set containing all 18 electrodes (black dashed line).
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Figure 3. Dependence of the AUC-PR-0.7 measure on the number of electrodes. Each color denotes a
different number of electrodes, and each dot represents the test set AUC-PR-0.7 of a model that only
uses the features from a specific electrode configuration with the corresponding number of electrodes.
The dashed line represents the AUC-PR-0.7 measure obtained from a model that uses features from
all 18 electrodes.

Here, we used a single train-test data split. This analysis revealed that there were
numerous configurations of eight electrodes with performance that was similar to the full
18-electrode 10–20 configuration, thereby allowing the mechanical design process to main-
tain a considerable degree of flexibility and freedom in choosing electrode configurations
without compromising performance. Therefore, we next focused on systematically exam-
ining eight-electrode configurations. The decline in performance around eight electrodes
was characterized with a gradual rather than sharp drop. This observation is consistent
with the fact that different EEG electrodes cover overlapping areas, with each electrode
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encompassing a significant region of cortical activity. Consequently, when the number of
electrodes is reduced to around eight, certain configurations may still provide adequate
coverage, enabling the detection of relevant dynamical changes associated with epileptic
seizures. However, other configurations may lack sufficient coverage, resulting in the
omission of crucial seizure-related patterns.

3.2. Systematic Examination of All Eight-Electrode Configurations

To examine the case of eight electrodes, we conducted an exhaustive search on all
possible 43,758 configurations of eight electrodes out of eighteen (see Section 2.6). For each
configuration, we trained and evaluated a LightGBM binary classifier using 20 different
train-test splits, resulting in a total of 875,160 models (see Figure 2B for an analysis summary
flowchart). We used an AWS ECS cluster to perform this analysis in a reasonable amount
of time.

The full models, using all electrodes and features, yielded somewhat different perfor-
mance values for each data split: AUC-PR-0.7 values ranged between 0.0032 and 0.0056
(0.0040 ± 0.0006; mean ± standard deviation), and AUC ROC values were between 0.86
to 0.9 (0.88 ± 0.01; mean ± standard deviation). Similarly, the electrode configurations
that yielded the highest AUC-PR-0.7 were somewhat different among the different data
splits. Therefore, to generalize the results across data splits, we used the median across data
splits percent-of-full-AUC-PR-0.7 (see Section 2.6). Figure 4 depicts this quantity for all
43,758 eight-electrode subsets. Although performance was found to be varied on a
wide range of values (from 75.7% to 97%), the top 1000 spatial configurations (marked
in gray) were all above 94.4%, indicating that there is still substantial flexibility in the
electrode layout.
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of-full-AUC-PR-0.7 are denoted by colored dots, and the spatial configuration of these subsets is
presented in Figure 5. The top 1000 configurations are marked in gray.
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PR-0.7 is denoted above each configuration, and the frame color is in accordance with the color of the
marked data points as shown in Figure 4.

It is possible to evaluate the contribution of each electrode by examining its participa-
tion in the top subsets. However, separately examining the contribution of each electrode
is an over-simplification, as it does not take into account the interactions between these
electrodes; it is thus informative for the system design process to examine multiple con-
figurations of eight electrodes, which provide a good performance, and then select the
optimal configurations according to various design considerations. Figure 5 depicts three
examples of these configurations—the highest, intermediate, and lowest, in terms of the
median percent-of-full-AUC-PR-0.7 across the data splits.

4. Discussion

In recent years, there has been substantial progress made in the development of
algorithms for seizure detection and prediction, primarily focusing on electrophysiological
data, such as surface and intracranial EEG [37,38]. Concurrently, advancements have
been made in the design and development of wearable EEG systems [39], which hold
the potential to revolutionize seizure monitoring and management. However, despite
the urgent need for such technology, practical and reliable EEG-based solutions that can
be seamlessly integrated into the daily routines of people with epilepsy remain elusive.
This gap highlights the importance of the continued research and innovation in this field,
striving to develop user-friendly, accurate, and dependable wearable EEG systems that can
empower patients and thereby improve their overall quality of life.

A wearable EEG system for daily use should balance performance with the ease of
use and portability [39]. The system should be compact, lightweight, and unobtrusive,
allowing patients to wear it comfortably for prolonged periods of time without interfering
with their daily activities. In addition, the system should be easy to use, with minimal
setup and maintenance requirements to reduce the burden on patients and caregivers. The
design and development of such systems require careful consideration of factors, such as
the electrode number and location, signal processing algorithms, and power consumption,
among others [30]. Ultimately, the success of a wearable EEG system for seizure detection
will not only depend on its accuracy in detecting seizures, but also on its practicality and
usability in real-world settings.

In this study, our objective was to systematically examine the performance of a seizure
detection algorithm under various electrode configurations in order to guide the design of
a wearable EEG system and provide constraints from a machine-learning point of view. To
achieve this, we utilized the EPILEPSIAE database, which allowed us to explore a large
number of potential electrode configurations with variable electrode counts. Our findings
demonstrated that high-performance seizure detection, comparable to that achieved with
18 electrodes, can be obtained even with configurations utilizing only eight electrodes.
However, it is important to note that electrode configurations with substantially fewer
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electrodes might result in a low sensitivity and high false-alarm rates. Such outcomes
could be detrimental to the usability of the system and patient compliance, despite the
potential benefits of the smaller form factor. Therefore, it is crucial to carefully examine
the different configurations in terms of both detection accuracy and various aspects of the
mechanical design.

The mechanical design of the headset should take into account multiple factors, such as
usage during sleep versus wakefulness, the weight of the headset, the attachment method
to the scalp, and hair penetration. For example, during sleep, patients may move around
or change positions, which can cause the headset to shift or become dislodged. During
wakefulness, motion-related artifacts and multiple environmental sources of noise can
occur, which can be reduced by implementing the appropriate mechanical and electronic
design strategies. The headset should be designed to be lightweight and comfortable,
with a secure attachment mechanism that can withstand movement and minimize noise
artifacts. Additionally, the design should consider hair penetration, as hair can interfere
with the quality of the EEG signal, and hair-penetrating electrodes may be less conve-
nient for the user. From a mechanical design perspective, it is desirable to minimize the
number of hair-penetrating electrodes in order to enhance user comfort and improve the
overall usability.

We quantified the performance of all possible eight-electrode configurations through
a comprehensive analysis. Our findings revealed that there are multiple configurations
that are capable of achieving a high performance (in terms of the AUC-PR-0.7 metric),
thus providing flexibility for the design process to focus on configurations that optimize
user-friendliness and ergonomics.

It is important to note that in this study, the machine learning algorithm was evaluated
using a cross-patient approach, meaning it was assessed on patients who were not included
in the training set. This methodology thereby ensures more robust and generalizable results.
Furthermore, our study encompassed a substantial and diverse database, comprising
adult patients with varying epileptic foci. Importantly, the dataset adequately represents
the major types of focal epilepsy, including temporal and frontal lobe epilepsy, thereby
ensuring a comprehensive coverage of the relevant cases. As a result, we have a high
level of confidence in the generalizability and representativeness of the results obtained
to the adult population. An additional investigation is further warranted to assess the
generalizability of these findings to the pediatric population, as the EPILEPSIAE dataset
utilized in our study lacks the representation of children.

In future analyses, it may also be valuable to investigate optimal electrode config-
urations for specific types of epilepsy in terms of epileptic foci, etiologies, or clinical
syndromes. This would require data from a sufficiently large population with the relevant
type of epilepsy. However, optimizing the system for a specific population may also offer
several benefits, such as reducing the mechanical complexity and improving the algorithm’s
performance. By tailoring the system to individual populations, a more personalized and
effective approach to seizure detection could be achieved, potentially enhancing patient
outcomes and their overall quality of life.

Recently, ultra-long monitoring of EEG with minimally invasive sub-cutaneous elec-
trodes has emerged [40], offering intriguing possibilities in the context of seizure detec-
tion [41] and sleep analysis [42]. Studies have demonstrated that the sensor signal from
these sub-cutaneous electrodes exhibits a high degree of similarity to the proximate scalp
sensors. We propose that an analysis similar to the one presented in this paper could further
enhance the potential of ultra-long monitoring by optimizing the implantation location
and the spatial arrangement of the sensors. By refining these aspects, it may therefore be
possible to improve the overall effectiveness and reliability of sub-cutaneous EEG systems,
and provide a more accurate and less obtrusive monitoring solution for individuals with
epilepsy and other neurological conditions.

This study outlines a systematic process for optimizing the number and configuration
of electrodes in an EEG system for detecting epileptic seizures in a home or ambulatory
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setting. By, our findings can thereby inform the development of a wearable EEG system
that balances the performance and ergonomic considerations and enables early detection
and timely intervention for seizures. Additional aspects, such as the type of electrodes,
integration of additional physiological signals (e.g., heart rate and skin conductance),
efficiency of the algorithm and preprocessing, and data storage and transmission should
also be considered in order to achieve the desired balance between accuracy and usability.
The use of ambulatory EEG systems could facilitate the collection of continuous data
outside of clinical settings, providing a more naturalistic and comprehensive picture of
a patient’s condition. While there are rich datasets available from clinical settings, the
collection of ambulatory data from PWE can further enhance the field of seizure detection
and prediction by providing real-world data that reflects the complexities of everyday life.

Furthermore, our approach can have broader applications in neuroscience and cogni-
tive monitoring, enabling the identification of optimal electrode configurations for mon-
itoring brain activity with potential prognostic value for seizure anticipation and other
neurological conditions, such as Alzheimer’s disease [43] and depression [44]. Addition-
ally, this methodology can be applied to the monitoring of cognitive workload in healthy
individuals [45]. Given a labeled multi-electrode dataset in these domains, our system-
atic approach for recognizing optimal minimal electrode configurations can be utilized
to improve the accuracy and efficiency of brain monitoring technologies, especially those
designed for home-use portability. This will lead to a better diagnosis and treatment of
neurological disorders, ultimately resulting in improved outcomes and well-being for
individuals with various neurological conditions.

5. Conclusions

In conclusion, this study can serve as a meaningful step towards the development of a
user-friendly, reliable, and efficient wearable EEG system for epileptic seizure detection. By
systematically exploring the impact of electrode number and configuration on the perfor-
mance of a seizure detection algorithm, we have demonstrated that it is possible to achieve
a high accuracy with fewer electrodes and maintain a balance between ergonomics and
detection performance. Our findings not only provide valuable insights for the design of
wearable EEG systems tailored to the needs of people with epilepsy, but also have broader
implications for other neurological conditions and cognitive monitoring applications. This
research contributes to the advancement of wearable brain monitoring technologies, par-
ticularly those designed for home-use portability, thereby promoting a better diagnosis,
treatment, and management of neurological disorders.
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28. Halász, P.; Bódizs, R.; Ujma, P.P.; Fabó, D.; Szűcs, A. Strong relationship between NREM sleep, epilepsy and plastic functions—A
conceptual review on the neurophysiology background. Epilepsy Res. 2019, 150, 95–105. [CrossRef] [PubMed]

29. Wu, T.; Avidan, A.Y.; Engel, J. Sleep and Epilepsy, Clinical Spectrum and Updated Review. Sleep Med. Clin. 2021, 16, 389–408.
[CrossRef] [PubMed]

https://doi.org/10.1212/WNL.0000000000001005
https://doi.org/10.1212/WNL.0000000000003685
https://www.ncbi.nlm.nih.gov/pubmed/28438841
https://doi.org/10.1111/j.1528-1167.2009.02397.x
https://doi.org/10.1684/epd.2018.0959
https://doi.org/10.12688/f1000research.17714.1
https://www.ncbi.nlm.nih.gov/pubmed/31700611
https://doi.org/10.1212/WNL.0000000000001280
https://doi.org/10.1016/j.neulet.2015.07.034
https://doi.org/10.15585/mmwr.mm6715a1
https://doi.org/10.1016/j.yebeh.2004.08.019
https://www.ncbi.nlm.nih.gov/pubmed/15582847
https://doi.org/10.1016/j.neuropharm.2019.107790
https://doi.org/10.1016/j.seizure.2019.02.007
https://www.ncbi.nlm.nih.gov/pubmed/30802844
https://doi.org/10.3389/fneur.2020.00701
https://www.ncbi.nlm.nih.gov/pubmed/32849189
https://doi.org/10.1109/MEMB.2010.936545
https://doi.org/10.3389/fneur.2021.724904
https://www.ncbi.nlm.nih.gov/pubmed/34489858
https://doi.org/10.1016/j.bspc.2019.101702
https://doi.org/10.1016/j.seizure.2016.07.012
https://doi.org/10.5543/tkda.2018.64928
https://doi.org/10.1016/j.jns.2021.117611
https://doi.org/10.1109/JTEHM.2018.2861882
https://www.ncbi.nlm.nih.gov/pubmed/30245945
https://doi.org/10.1016/j.yebeh.2016.01.003
https://doi.org/10.7759/cureus.10549
https://doi.org/10.1038/s41582-021-00464-1
https://www.ncbi.nlm.nih.gov/pubmed/33723459
https://doi.org/10.1016/S1474-4422(18)30274-6
https://www.ncbi.nlm.nih.gov/pubmed/30219655
https://doi.org/10.1038/s41467-020-15908-3
https://doi.org/10.1016/j.chest.2019.01.016
https://doi.org/10.1016/j.eplepsyres.2018.11.008
https://www.ncbi.nlm.nih.gov/pubmed/30712997
https://doi.org/10.1016/j.jsmc.2021.02.011
https://www.ncbi.nlm.nih.gov/pubmed/33985663


Sensors 2023, 23, 5805 14 of 14

30. Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [CrossRef]
31. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision

tree, 3149-3157. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017.

32. Tovar Quiroga, D.F.; Britton, J.W.; Wirrell, E.C. Patient and caregiver view on seizure detection devices: A survey study. Seizure
2016, 41, 179–181. [CrossRef]

33. Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog Artif. Intell. 2016, 5, 221–232.
[CrossRef]

34. Maher, C.; Yang, Y.; Truong, N.D.; Wang, C.; Nikpour, A.; Kavehei, O. Towards long term monitoring: Seizure detection with
reduced electroencephalogram channels. medRxiv 2021.

35. Ihle, M.; Feldwisch-Drentrup, H.; Teixeira, C.A.; Witon, A.; Schelter, B.; Timmer, J.; Schulze-Bonhage, A. EPILEPSIAE—A
European epilepsy database. Comput. Methods Programs Biomed. 2012, 106, 127–138. [CrossRef] [PubMed]

36. Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A review of epileptic seizure detection using machine learning
classifiers. Brain Inform. 2020, 7, 5. [CrossRef] [PubMed]

37. Sopic, D.; Teijeiro, T.; Atienza, D.; Aminifar, A.; Ryvlin, P. Personalized seizure signature: An interpretable approach to false
alarm reduction for long-term epileptic seizure detection. Epilepsia 2022, 1–11. [CrossRef] [PubMed]

38. Yuan, S.; Liu, J.; Shang, J.; Kong, X.; Yuan, Q.; Ma, Z. The earth mover’s distance and Bayesian linear discriminant analysis for
epileptic seizure detection in scalp EEG. Biomed. Eng. Lett. 2018, 8, 373–382. [CrossRef] [PubMed]

39. Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Böhringer, K.; Yapici, M.K. Wearable and Flexible Textile Electrodes for
Biopotential Signal Monitoring: A review. Electronics 2019, 8, 479. [CrossRef]

40. Pathmanathan, J.; Kjaer, T.W.; Cole, A.J.; Delanty, N.; Surges, R.; Duun-Henriksen, J. Expert Perspective: Who May Benefit Most
From the New Ultra Long-Term Subcutaneous EEG Monitoring? Front. Neurol. 2021, 12, 817733. [CrossRef]

41. Bacher, D.; Amini, A.; Friedman, D.; Doyle, W.; Pacia, S.; Kuzniecky, R. Validation of an EEG seizure detection paradigm
optimized for clinical use in a chronically implanted subcutaneous device. J. Neurosci. Methods 2021, 358, 109220. [CrossRef]

42. Gangstad, S.W.; Mikkelsen, K.B.; Kidmose, P.; Tabar, Y.R.; Weisdorf, S.; Lauritzen, M.H.; Hemmsen, M.C.; Hansen, L.K.; Kjaer,
T.W.; Duun-Henriksen, J. Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy. Biomed. Eng.
Online 2019, 18, 106. [CrossRef] [PubMed]
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